
A Brief Introduction to ActiveVRML

Conal Elli ott

February, 1996

Technical Report

MSR-TR-96-05

Microsoft Research

Advanced Technology Division

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

A Brief Introduction to ActiveVRML 2

Introduction...3
Overview of Supported Media Types..4
Embracing Existing Formats...5
Compositional Specification..5
Scoped Naming...7
Parameterization..7
Behaviors...8

Behaviors as Data Flow ...9
More Parameterization...9

Adding Sound..11
Reactivity...11

Simple Reactivity... 12
Chaining...12
Competing Events.. 12
Repetition...13
Hierarchical Reactivity ..14
Parametric Reactivity...14
Event Data ...15
The Varieties of Events..16

External Events ..16
Predicate-based Events...16
Alternative Events..17
Events with Handlers..17

User Interaction...18
Time Transforms...19
Differentiation and Integration..19
Conclusion...20
Appendix A. An Extended Example..21

Geometry Importation..21
One-Dimensional Bouncing...21
Three-Dimensional Bouncing..22
Many Bouncing Balls ..23
Vanishing Balls..25

3 A Brief Introduction to ActiveVRML

Introduction
This paper introduces the Active Virtual Reality Modeling Language (ActiveVRML), a
modeling language for specifying interactive animations.

To allow the creation of interactive animations to be as natural as possible,
ActiveVRML is based on a simple and intuitively famili ar view of the world; that is, as
a hybrid of continuous variations and discrete events. For example, the behavior of a
bouncing ball consists of continuous trajectories and discrete colli sions. Trajectories
cause colli sion events, and colli sion events cause new trajectories.

Using ActiveVRML, one can create simple or sophisticated animations without
programming in the usual sense of the word. For example:

• Although many frames are generated in presenting an animation, the author is freed
from any notion of sampling or frame generation, but rather describes how various
animation parameters vary continuously with time, user input, and other
parameters.

• An author describes events influencing an animation and the effects of these events
on the animation. The author is freed from the programming mechanics of checking
for events and causing the effects to happen.

• Although animations involve an extremely high degree of simultaneity
(concurrency), the author is freed from such programming issues as multi -
threading.

• Linguistically, there are no statements (commands) that are executed for their
effect, but rather expressions that are analyzed for their value. ActiveVRML uses
this approach to make specifying animations as natural as possible, while
simultaneously retaining maximal opportunities for optimization.1

While ActiveVRML is modeling language, it exploits three of the key ideas that give
programming languages their tremendous power:

• Composition. Animations are built of simpler animations in a modular, building
block style. By applying composition repeatedly, complex animation can be
constructed, while each layer of description remains manageable.

• Parameterization. Famili es of related animations can be defined in terms of
parameters of any kind, including other animations.

• Scoped naming. Animations and animation famili es can be given names to facilit ate
readabilit y and convenient reuse. The naming of an animation can be explicitly

1 In programming language terms, ActiveVRML is a declarative, rather than
imperative, language.

A Brief Introduction to ActiveVRML 4

limited, or scoped, so as not to conflict with possibly unrelated uses of the same
name elsewhere in a description.

ActiveVRML applies these principles pervasively to all types of static models,
continuous behaviors, and discrete events.

To make the discussion of ActiveVRML more concrete, the first few sections of this
paper use a running example—a solar system that begins as a single static planet, and
then adds animation, other planets, and sound.

The remainder of this paper is organized as follows. We first outline the media types
and operations. Next, we describe how ActiveVRML complements other Internet-
standard file formats by supporting importation. We then ill ustrate the keys ideas of
composition, parameterization, and scoped naming. Next, we introduce behaviors,
which are time-varying values of all types. We then show how to add spatialized sound
to a model. Next, we explain reactivity and the various kinds of events that support
reactivity. We then describe support for user interaction. Next, we ill ustrate the
principle of time transformation, which provides temporal modularity. We then briefly
describe the built -in support for behaviors defined in terms of rates of change. Finally,
we develop as an extended example, a collection of balls bouncing around in a box.

Overview of Supported Media Types
This section provides a brief overview of the media types supported in ActiveVRML.
(All of the types and operations are time-varying.)

• 3-D geometry. Supports importation, aggregation and transformation. Also
supports texture mapping of interactive animated images, manipulation of color and
opacity, and embedding of sounds and lights.

• Images. Provides infinite resolution and extent images. Supports importation, 2-D
transformation, opacity manipulation, and overlaying. Also supports rendering an
image from a 3-D model and rendering an image out of rich text. Even geometrical
and image renderings have infinite resolution and extent, since discretization and
cropping are left to the display step, which is always left implicit.

• Sound. Rudimentary support for importing, manipulating, and mixing sounds. Also,
sonic rendering of 3-D models; that is, geometric models may be listened to as well
as looked at. Conceptually infinite sampling rate and sample precision.

• Montages. Composite 2 ½-D images, supporting convenient, multi -layered cel
animation.

• 2-D and 3-D points and vectors. Operations include vector/vector and point/vector
addition, point subtraction, scalar/vector multiplication, and dot and cross products.
Also supports construction and deconstruction in rectangular and polar/spherical
coordinates.

• 2-D and 3-D transforms. Supports translate, scale, rotate, shear, identity,
composition, inversion, and matrix-based construction. Can be extended to non-
linear deformations, and so forth.

5 A Brief Introduction to ActiveVRML

• Colors. Various constants, construction, and deconstruction in RGB and HSL color
spaces.

• Text. Rudimentary support for formatted text, with color, font family, optional bold,
and italic. If there are Internet standards for rich text, then we would like to support
importation as well .

• Miscellaneous. Support for numbers, characters, and strings.

Embracing Existing Formats
There is an enormous amount of raw material available today, both commercially and
freely on the Internet, that can be used as a starting point for constructing interactive
animations. This material is in files of many different formats representing geometry,
images, video, sound, animation, motion paths, and so forth. ActiveVRML works with
these representations directly, rather than requiring authors to create raw material
specifically for ActiveVRML, or even converting existing material into a new format.

For our solar system, we start with a VRML 1.0 model of a unit sphere and an earth
texture in GIF format. We import this content into ActiveVRML by means of
import , and name the results for later use.2

sphere = import("sphere.wrl");

earthMap = import("earth-map.gif");

Each of these two lines is a definition, which both introduces a new name and provides
an expression for the value of that name. The modeling notion of definition differs
from the programming notion of assignment, in that the association between name and
value established by a definition holds throughout a model’s li fetime. Authors, readers,
and automatic optimizers can thus know from seeing a definition like the first one
above that sphere will always be the suggested imported model.

All names are typed, but types are almost always inferred automatically by
ActiveVRML, and so rarely need to be specified explicitly. These two definitions
implicitly declare sphere to be of type geometry, and earthMap to be of type
image.

Compositional Specification
As mentioned in the introduction to this paper, composition is the building-block style
of using existing models to make new models, combining the resulting models to make
more new models, and so on.

To start building our earth geometry, we apply the earth texture to our earth sphere.
We begin by making a texture:

2 Geometry and image importation produces additional information beyond the
geometry and image values themselves. We are omitting these values for brevity.

A Brief Introduction to ActiveVRML 6

earthTexture = texture(earthMap);

We then apply the texture to the unit sphere:

unitEarth = earthTexture(sphere);

In our solar system, we will t ake the Sun’s radius to be one unit, and the earth’s to be
half as big. Given the texture-mapped unit sphere, we first make a transform that scales
by one half, uniformly.

halfScale = scale3(0.5);

Now we can form the reduced sphere by applying the halfScale transform to the
texture-mapped unit sphere:

earth = apply(halfScale, unitEarth);

Next we want to reposition the earth, so that it will apart from the sun. We make a
translation transform and then apply it to the earth:

moveXby2 = translate(2,0,0);

movedEarth = moveXby2(earth);

Giving names to transforms, textures, and geometric models at every step of
composition leads to descriptions that are tedious to read and write. In ActiveVRML,
naming and composition are completely independent, so the author is free to choose
how much and where to introduce names, based on the author’s individual style and
intended reuse.

For example, we can name only the imported sphere and texture and the complete
moved earth, as in the following description, which is equivalent to the previous one
but does not introduce as many names:

sphere = import("sphere.wrl");

earthMap = import("earth-map.gif");

movedEarth =

 apply(translate(2,0,0),

 apply(scale3(0.5),

 texture(earthMap)(

 sphere))));

Next we build a model of the sun. No transformation is required, but we do want it to
be yellow:

sun = diffuseColor(yellow)(sphere);

To complete our first very simple solar system, we simply combine the sun and moved
earth into one model, using the infix union operation, which takes two geometric
models and results in a new, aggregate model.

solarSystem1 = sun union movedEarth;

7 A Brief Introduction to ActiveVRML

Scoped Naming
Naming is useful for making descriptions understandable and reusable, but can easily
cause clutter. When intermediate animations are named and then used in only one or a
few animations (as might be the case of sun and movedEarth above), they can
interfere with available choices for intermediate names in other animations. While this
clutter is not a problem with very simple animations described and maintained by a
single author, it can become a serious obstacle as complexity grows and separately
authored animations are combined to work together.

The solution to name clutter is to explicitly limit the scope of a name’s definition. In
our example, we will l eave the sphere , earthMap , and solarSystem1
definitions unscoped, but limit the scope of the sun and movedEarth definitions.

To limit the scope of a collection of definitions to a given expression, use the form

let definitions in expression

(In addition to the given expression, the scope of the definitions include the bodies of
all of the definitions themselves, to allow for mutual recursion.)

solarSystem1 =

let

 movedEarth =

 apply(translate(2,0,0),

 apply(scale3(0.5),

 texture(earthMap)(sphere))));

 sun = diffuseColor(yellow)(sphere);

in

 sun union movedEarth;

The scope of movedEarth and sun is the expression in the last line of this definition
of solarSystem . Any other potential uses of the names movedEarth and sun
would not refer to the scoped definitions above.

Parameterization
It is often desirable to create several animations that are similar but not identical. If
such models differ only by transformation—for instance, if they are translations and
orientations of a single model—the composition approach is helpful. In general,
however, reuse with transform application (which corresponds to the instancing facilit y
commonly found in graphics modeling and programming systems) is a very limited
technique.

ActiveVRML goes far beyond instancing by providing a simple but extremely general
and powerful form of parameterization. Famili es of related animations can be defined
in terms of parameters of any kind, including other animations.

As an example of parameterization, suppose that we want a variety of simple solar
systems differing only in the sun color and an angle of rotation of the earth around the
sun. Each of these solar systems has its own color and own rotation angle, but in all

A Brief Introduction to ActiveVRML 8

other ways is identical to its other family members. We define such a family as
follows. (Note that sunColor and earthAngle are parameter names that refer
generically to the color and angle that distinguishes one simple solar system from
another.)

solarSystem2(sunColor, earthAngle) =

let

 movedEarth =

 apply(rotate(yAxis, earthAngle),

 apply(translate(2,0,0),

 apply(scale3(0.5),

 texture(earthMap)(sphere)))));

 sun = diffuseColor(sunColor)(sphere);

in

 sun union movedEarth;

To instantiate a solar system from this family, apply solarSystem2 to a color and
an angle. For instance,

solarSystem2(yellow, 0)

Behaviors
Up to this point, our examples have described static models—that is, models that do
not vary with time. These models were built compositionally, from static numbers,
colors, images, transforms, and other models. In ActiveVRML, one can just as easily
express behaviors, that is, time-varying values of all types, with static values being just
degenerate versions of the general case.

The simplest non-static behavior is time , which is a number-valued behavior that
starts out with value zero and increases at a rate of one unit per second.

As a simple example of a compositionally defined behavior, the following expression
describes a number-valued behavior that starts out with value zero and increases at a
rate of 2π per second:

rising = 2 * pi * time;

The use of time here refers to a local, not a global notion of time. Just as geometric
models are generally specified in spatial local (or modeling) coordinates, behaviors of
all types are generally specified in local temporal coordinates, and are then subjected
to temporal transformation, as discussed in the section “Time Transforms,” and
combined with other, possibly temporally transformed, behaviors.

We can use this number behavior to describe a time-varying uniform scaling transform
that starts as a zero scale and increases in size:

growing = scale3(rising);

9 A Brief Introduction to ActiveVRML

And we can use this growing behavior to describe a geometry-valued behavior, that
is, a 3-D animation, such as solar system growing from nothing:

growingSolarSystem1 = apply(growing, solarSystem1);

As always, intermediate definitions are optional; we could just as well use:

growingSolarSystem1 =

 apply(scale3(2 * pi * time), solarSystem1);

With a slight variation, we could have the scale go back and forth between 0 and 2:

pulsating =

 apply(scale3(1 + sin(time)), solarSystem1);

We can also apply our solarSystem2 family, defined above, to behavior arguments
to create time-varying solar systems, as in the following example in which the sun
color runs through a variety of hues while the earth rotates around the sun.

animatedSolarSystem2 =

 solarSystem2(colorHsl(time, 0.5, 0.5), 2 * pi * time)

Behaviors as Data Flow
For some people, it is helpful to visualize behaviors as data flow graphs. For example,
the animatedSolarSystem2 behavior above can be ill ustrated as in the figure
below. Note that, unlike traditional data flow, behaviors describe a continuous flow of
values, not a discrete sequence.

*

solarSystem2

colorHsl

2 ππ

time

0.5

time

Data flow diagrams, while somewhat helpful for ill ustrating simple non-reactive
behaviors, are much weaker than what can be expressed in ActiveVRML, because of
both reactivity and time transformabilit y.

More Parameterization
We would now like to enrich our solar system in two ways: by making the earth
revolve around its own axis, as well as rotate about the sun, and by adding a moon that

A Brief Introduction to ActiveVRML 10

revolves about its axis and rotates around the earth. Parameterization allows us to
capture the similarities between moon and earth, while allowing for their differences.

We start with a simple definition that rotates a given model with a given period:

rotateWithPeriod(geo, orbitPeriod) =

 apply(rotate(yAxis, 2 * pi * time / orbitPeriod), geo);

We use rotateWithPeriod to create a revolving earth and moon and as a building
block for the following definition, which puts models into orbit:

orbit(geo, orbitPeriod, orbitRadius) =

 rotateWithPeriod(apply(translate(orbitRadius, 0, 0), geo),

 orbitPeriod)

We can now define our extended solar system:

solarSystem3 =

let

 // constants

 sunRadius = 1 // size of the sun

 day = 3 // seconds per day

 earthRadius = 0.5 * sunRadius // size of earth

 earthRotationPeriod = 1 * day

 earthOrbitRadius = 2.0 * sunRadius

 earthOrbitPeriod = 365 * day

 moonRadius = 0.25 * earthRadius // size of moon

 moonRotationPeriod = 28 * day

 moonOrbitRadius = 1.5 * earthRadius

 moonOrbitPeriod = moonRotationPeriod

 // sun is a yellow sphere

 // earth is a sphere with the earth-map texture

 // moon is a gray sphere

 sun = apply(scale3(sunRadius),

 diffuseColor(yellow)(sphere));

 earth = apply(scale3(earthRadius),

 texture(earthMap)(sphere);

 moon = apply(scale3(moonRadius),

 diffuseColor(rbgColor(0.5,0.5,0.5))(sphere))

 // define the relationships between and the motions of the bodies

 moonSystem = rotateWithPeriod(moon, moonRotationPeriod)

 earthSystem =

 RotateWithPeriod(earth, earthRotationPeriod) union

 orbit(moonSystem, moonOrbitPeriod, moonOrbitRadius)

 sunSystem =

11 A Brief Introduction to ActiveVRML

 sun union

 orbit(earthSystem, earthPeriod, earthOrbitRadius)

in

 sunSystem

Adding Sound
We will now add sound to our solar system example by having the earth emit a
“whooshing” sound3. The sound will come from the earth, so as a user moves around
in the solar system or as the earth moves around, the user will be able to maintain a
sense of the spatial relationship, even when the earth is out of sight. Moreover, if the
moon is making a sound as well , the user will hear both sounds appropriately altered
and mixed.

All that is necessary to add sound is to change the earth to include a spatially
embedded sound; we modify earth in the solarSystem2 definition as follows:

earth =

 apply(scale3(earthRadius), texture(earthMap)(sphere))

 union

 soundSource3(import("whoosh.au ”));

The soundSource3 function used here places a sound at the origin in 3-D space,
converting it into a geometric model, which can then be transformed and combined
with other geometric models.

We can also make sound attributes vary with time. For example, we can adjust the
earth sound’s pitch so that it fluctuates during the day, as in the following definition.
The formula used with pitch below causes the pitch factor to vary between 0.5 and
1.5 and back through the course of a day.

earth =

 apply(scale3(earthRadius), (earthMap)(sphere)

 union

 soundSource3(

 pitch(sin(2 * pi * time /day)/2 + 1)(

 import("whoosh.au ”));

Reactivity
In the real world, as well as in computer games, simulations, and other applications of
interactive animation, behaviors are influenced by events, and can be modeled as a
series of events and reactions (or stimuli and responses). In this paper, we refer to
behaviors that react to an event as reactive behaviors.

3 (In the time-honored science fiction-movie tradition of sounds in space.)

A Brief Introduction to ActiveVRML 12

Simple Reactivity
As a very simple example of a reactive behavior, suppose that we want our solar
system’s base color to be red at first, but then become green when a user presses the
left button on the mouse. We can ill ustrate this two phase reactive color as follows,
where, for succinctness, LBP refers to the event of pressing the left button:

red LBP green

In ActiveVRML, this behavior is expressed as

twoPhase = red until LBP => green

In this example and the following ones, the behavior phases are static values. In
general, however, they may be arbitrarily complex behaviors.

Chaining
When the user presses the left button, twoPhase turns from red to green, and stays
green permanently; that is, it is no longer reactive. We can also specify a behavior that
is still reactive in its second phase. For example, we can have the solar system’s color
change to yellow when the user presses the left button for the second time:

red LBP green LBP yellow

In ActiveVRML, this process is expressed as follows:

threePhase =

 red until

 LBP => (green until LBP => yellow)

Competing Events
In the twoPhase and threePhase examples, each phase was interested in at most
one event (LBP or nothing). Often, a phase reacts to a number of different events, each
leading to a different new phase. For instance, we can define a variation of twoPhase
that also starts in the red phase, but will react to either a left or right button press with a
different new behavior:

13 A Brief Introduction to ActiveVRML

red

LBP
green

RBP
blue

where RBP refers to our user’s right button press event.

In ActiveVRML, this process is expressed as follows:

choose =

 red until

 LBP => green

 | RBP => blue

Repetition
Now suppose we want a color that switches back and forth between red and green at
each button press, no matter how many times a button is pressed. Describing this
repetitive behavior by a chain of single-color phases, as with twoPhase and
threePhase , requires a infinite chain. Fortunately, this infinite chain has a succinct
description.

red green

LBP

LBP

In ActiveVRML, this repetitive behavior is expressed as follows:

cyclic =

 red until

 LBP => green until

 LBP => cyclic

A Brief Introduction to ActiveVRML 14

As ill ustrated in this example, ActiveVRML definitions may be self-referential.

Hierarchical Reactivity
In the previous three reactive behavior examples, each phase was a simple static color.
In general, each phase of a reactive behavior can be an arbitrary behavior, even a
reactive one. For example, we may want to present our user with the red/green cyclic
behavior above only until the user presses the mouse’s right button, at which time the
color becomes permanently yellow.

red green RBP yellow

LBP

LBP

In ActiveVRML, this process is expressed as follows:

cyclic until

 RBP => yellow

Parametric Reactivity
Sometimes a reactive behavior goes through a sequence of phases that are similar, but
not identical. For instance, a game may need to keep track of a player’s score.
Supposed we have already defined scored to refer to the event of a player scoring a
point. (The subject of how events such as scored are defined is addressed later.) A
score-keeping behavior can be ill ustrated as follows:

0 scored 1 scored 2 scored . . .

Each phase in this score-keeping behavior is similar in that its value is a static number.
It is waiting for an occurrence of the scored event, at which time it will switch to a
similar phase with one greater value. To define all of these phase behaviors at once, we
describe the family parameterized by the only difference among them—the current
score:

Note

15 A Brief Introduction to ActiveVRML

score(current) =

 current until

 scored => score(current+1)

The behavior that starts counting from 0 is expressed as follows:

scoreFromZero = score(0)

As always, we can limit the scope of the intermediate definition, even for
parameterized definitions:

scoreFromZero =

let

 score(current) =

 current until

 scored => score(current+1)

in

 score(0)

Event Data
Some events have data associated with their occurrences. For example, each
occurrence of a key press event has an associated character value. (It would be
unwieldy to have a separate event associated with every key on a keyboard.)

As another example of events with data, we can generalize our score-keeping behavior
so that each occurrence of the scored event could have its own number of points to
be added to the total score. In the new version shown below, the event data generated
by the scored event (number of points) is consumed by a parameterized behavior
(addPoints below), which adds the number of points to the current score and
continues counting.

score(current) =

let

 addPoints(points) =

 score(current+points)

in

 current until

 scored => addPoints

As mentioned in the previous section “Compositional Specification,” naming is
optional. Even parameterized definitions can be replaced by the parameterized
behavior itself, using the construct function (parameters). Expression. The
following definition of score is equivalent to the previous one.

score(current) =

 current until

 scoreds => function (points). score(current+points)

A Brief Introduction to ActiveVRML 16

The Varieties of Events
The preceding section ill ustrated a variety of ways to use events to describe behaviors
in terms of other behaviors—that is, these behaviors are described compositionally.
The next few sections examine how to describe the events themselves. As you may
have guessed, in ActiveVRML, even events can be described compositionally.

External Events
Some events originate outside of ActiveVRML; for example, they can originate with a
user, such as the left or right mouse button press events in some of our previous
reactive examples.

Another example of an external event is a key press. Like a button event, a key press
event can occur repetitively, but unlike a button event, key presses have associated
data that indicates which character was pressed.

Predicate-based Events
Another kind of event is one in which a predicate (condition) about model parameters
becomes true. For example, in the definition of scoreFromZero given above, the
counting behavior goes on forever. We may, however, want to stop counting upon
reaching some given maximum; that is, we may want to stop counting when the
predicate current = maxScore becomes true for a given maxScore . Predicate-
based events are written as predicate(condition_expression) as in the following
replacement for scoreFromZero.

scoreUpTo(maxScore) =

let

 score(current) =

 current until

 scored => score(current+1)

 | predicate(current = maxScore) => current

in

 score(0)

Note: In the context of a predicate, the equal sign (=) means equality, not definition.

Alternatively, we could define scoreUpTo in terms of the scoreFromZero .

scoreUpTo(maxScore) =

 scoreFromZero until

 predicate(scoreFromZero = maxScore) => maxScore

These event conditions may be arbitrarily complex. As a slightly more sophisticated
example, suppose we want a ball to respond to the event of hitting the floor. We’ ll
define center as the (time-varying) height of the ball ’s center point, and radius as
the ball ’s radius. We will consider the ball to be hitting the floor when two conditions
are true: the bottom of the ball (that is, the center height minus the radius) is not above

17 A Brief Introduction to ActiveVRML

the floor, and the ball i s moving in a downward direction (that is, the rate is less than
zero).

In ActiveVRML, this event is expressed as follows:

hitFloor =

 predicate((center - radius <= floor) and (derivative(center) < 0))

Derivatives of this event are discussed later in this document.

The parentheses in this example are not required and are included for clarity only,
since the syntactic precedence of and is weaker than that of inequality operators.

Alternative Events
Given any two events, we can describe the event that occurs when either happens. For
example, the following describes either a left mouse button being pressed or our ball
hitting the floor:

LBP | hitFloor

By repeatedly using the choice operator |, we can include as many component events
as desired in the choice. For example:

LBP | hitFloor | predicate(scoreFromZero = maxScore)

Events with Handlers
Another way to build events is to introduce or enhance event data. For example, we
may want an event that occurs whenever our user presses the left or right mouse
button, and has value 1 if the left button is pressed and value 2 if the right button is
pressed. First, we describe an event that occurs if the left button is pressed and has
value 1:

LBP => 1

Then we describe a similar event based on the right button and having value 2:

RBP => 2

We then combine these two number-valued events into a single event:

buttonScore = LBP => 1 | RBP => 2

If an event already produces data, we can supply a way to transform the data into some
other, more usable value. For example, we may want an event similar to
buttonScore , but with values multiplied by 10. Rather than changing the definition
of buttonScore , which may be needed elsewhere or may be out of our control, we
make a new event by adding a multiply-by-ten event handler:

multiplyByTen(x) = 10 * x

buttonScore10 =

Note

A Brief Introduction to ActiveVRML 18

 buttonScore => multiplyByTen

We can do the same thing without introducing the multiplyByTen definition:

buttonScore10 =

 buttonScore => function (x). 10 * x

As another, simpler example of transforming event data, we may want to take a key
press event and change all l owercase letters to uppercase.

keyPress => capitalize

It is no coincidence that the notation for alternative events (e|e’) and events
with handlers (e=>f) is the same as introduced for reactive behaviors in the

previous sections “Simple Reactivity” and “Event Data.” The infix until operation
used to express reactive behaviors applies to a behavior b and an event e, and yields a
behavior that mimics b until the event e occurs, yielding a new behavior b’ , at which
time the until behavior starts mimicking b’ .

User Interaction
ActiveVRML animations are intrinsically interactive, meaning that they know how to
respond to user interaction events. We have already seen examples of events based on
mouse buttons. Another form of input is a key press, which is similar to a button press
but includes the generated character as event data.

Geometric user interaction is supported through an event where an animation is being
probed. From the animation’s viewpoint, the user's probe is a point-valued behavior
that ActiveVRML breaks into a static point at the onset of probing and an offset vector
behavior to show relative movement. These points and vectors are 2-D for probed
images and 3-D for probed geometry.

Because there may be any number of transformed versions of an ActiveVRML
animation coexisting at any time, there is no unique relationship between an animation
and any given coordinate system, such as user coordinates. Thus, animations can only
make sense of user input given to them within their own local coordinates.
ActiveVRML automatically converts from the user’s coordinates to the animation’s
own local coordinates.

For example, the following describes an image moving under user interaction:4

movingImage(startImage) =

 // Stay with startImage until clicked on.

4 The event andEvent (e,e’) occurs when e and e’ occur simultaneously. Its event data
results from pairing the data produced from these two occurrences. Event handlers will
then often destructure the resulting pair into its components and subcomponents, as in
this example, in which the button press occurrence always generates the trivial data—
which is written ()—and the probe occurrence generates a point and vector behavior.

Note

19 A Brief Introduction to ActiveVRML

 startImage until

 andEvent(leftButtonPress, probed(startImage)) =>

 function ((), (pickPoint, offset)).

 // Then make a version that moves with the offset

 // (given in modeling coords)

 let

 moving = apply(translate(offset), startImage)

 in

 // Then stay with the moving image until released.

 moving until

 // Then snap-shot the moving image and use to restart.

 snapshot(moving, leftButtonRelease) => movingImage

Time Transforms
Just as 2-D and 3-D transforms support spatial modularity in geometry and image
behaviors, time transforms support temporal modularity for behaviors of all types.

For example, suppose we have a rocking sailboat expressed as follows:

sailBoat1 = apply(rotate(zAxis, sin(time) * pi/6),

 import("sailboat.wrl"))

If we want a slower sailboat, we could replace sin(time) with sin(time/4) ,
However, for reusabilit y, we want instead to describe a new sailboat in terms of
sailBoat1 .

sailBoat2 = timeTransform(sailBoat1, time/4)

With this technique, we could define any number of coexisting similar sailboats, each
having its own rate of rocking.

Differentiation and Integration
Because ActiveVRML time is continuous, rather than proceeding in a series of small
jumps, it makes sense to talk about the rate of change of behavior of types such as
number, point, vector, and orientation. For example, suppose that moonCenter is the
time-varying position of the center of the moon. The moon’s 3-D velocity vector
(which is also time-varying) is expressed as follows:

derivative(moonCenter)

and the moon’s 3-D acceleration vector is expressed as:

derivative(derivative(moonCenter))

Conversely, it is common to know the rate of motion of an object and want to
determine the position over time. Given a velocity and an initial position, we could
express the position over time as:

initialPos + integral(velocity)

A Brief Introduction to ActiveVRML 20

It is often useful to specify the rate of motion of an object in terms of its own position.
Suppose we have a goal, which may be moving, and we want to describe a point that
starts at some initial position and always moves toward the goal, slowing down as it
gets closer to the goal. The following definition describes this behavior:

pos = initialPos + integral(goal - pos)

This definition is equivalent to saying that the value of pos at the behavior’s start time
is initialPos , and that its velocity is goal - pos , which is in the direction of
goal , relative to pos , with a speed equal to the square of the distance between goal
and pos . If, for example, pos and goal coincide, then pos will not be moving at all .

Many realistic-looking physical effects can be described in this fashion, especially
when the definitions are extended to use force, mass, and acceleration.

Integrals in this self-referential form are ordinary differential equations. Any
number of such definitions may be expressed in a mutually recursive fashion to

express systems of ordinary differential equations.

Implementations should take care to decouple the step sizes used in numerical
integrators from that used for frame generation. There are a variety of numerically
robust and eff icient techniques, some of which adapt their step sizes to the local
properties of the behavior being integrated.

Conclusion
In this paper, we have briefly introduced ActiveVRML, a language for modeling
interactive, multimedia animations, and have ill ustrated some of ActiveVRML’s
expressiveness through a series of simple examples. We refer the interested reader to
the ActiveVRML Reference Manual for more details.

Note

21 Appendix A. An Extended Example

Appendix A. An Extended Example
In this appendix, we present a larger ActiveVRML example, namely a collection of
balls bouncing around in a box.

Geometry Importation
The first step in our example is to import the basic geometric components—a ball and
a box. Each geometry importation yields both a (static) geometry and two 3-D points,
representing a minimum bounding box for the imported geometry.

ball, ballMin, ballMax = import("ball.wrl");

rawBox, boxMin, boxMax = import("box.wrl");

We will use the ball geometry as is, but we need to make the box mostly transparent,
so the bouncing balls inside will be visible.

box = opacity3(0.2)(rawBox);

One-Dimensional Bouncing
It will be useful to define a one-dimensional (number-valued) bouncing behavior,
parameterized by lower and upper bounds, acceleration, and initial position and
velocity. This bouncing behavior will be made up of an infinite sequence of phases,
punctuated by bounce events. Each phase is parameterized by a initial position and
velocity for that position, which start out as the overall i nitial position and velocity.
The first bounce during a phase ends the phase, at which time the position and velocity
are captured to provide the parameters of the next phase.

bounce1(min, max, accel, pos0, vel0) =

22 A Brief Introduction to ActiveVRML

let

 // Describe one phase of behavior and transition to next, given

 // starting position and velocity.

 bouncePhase(newPos0, newVel0) =

 let

 // Start velocity at newVel0, and accelerate

 vel = newVel0 + integral(accel);

 // Start position at newVel0, and grow with velocity.

 pos = newPos0 + integral(vel);

 // Bounce event. Hits min descending or max ascending.

 bounce = predicate((pos <= min and vel < 0)

 or (pos >= max and vel > 0))

 in

 // Follow this position phase until a bounce. Then snapshot

 // the position and the reversed, reduced velocity to get the

 // next starting position and velocity, and repeat.

pos until

 snapshot((pos, -.9 * vel), bounce) => bouncePhase

in

 bouncePhase(pos0, vel0);

Three-Dimensional Bouncing
Next we will construct a 3-D bouncing behavior by appealing to the one-dimensional
bouncing behavior for each of the three dimensions.

The minimum and maximum ball translations are determined from the box’s and ball ’s
minimum and maximum points, which were generated during importation. The ball ’s
minimum allowed translation is the one that when added to the ball ’s minimum point
puts it into contact with the box’s minimum point, and similarly for the maxima. These
two observations lead to the following definitions for the minimum and maximum
translation vectors:

23 Appendix A. An Extended Example

ballTranslateMin = boxMin - ballMin;

ballTranslateMax = boxMax - ballMax;

Now we can define a bouncing ball geometry behavior, which is parameterized by the
initial position and velocity.

bouncyBall(pos0, vel0) =

let

 // Appeal to the 1D version three times, ...

 xmin,ymin,zmin = XyzComponents(ballTranslateMin);

 xmax,ymax,zmax = XyzComponents(ballTranslateMax);

 x0, y0, z0 = XyzComponents(pos0);

 dx0,dy0,dz0 = XyzComponents(vel0);

 x = bounce1(xmin,xmax, 0 ,x0,dx0);

 y = bounce1(ymin,ymax, 0 ,y0,dy0);

 z = bounce1(zmin,zmax,-9.8,z0,dz0);

in

 // Use the results to translate the ball.

 apply(translate(x, y, z), ball)

It is a simple matter then to add a box, to get a single-ball version of our example:

bouncyModel1(pos0, vel0) =

 box union bouncyBall(pos0, vel0)

Many Bouncing Balls
Instead of just a single bouncing ball , we want an animation in which a user can cause
any number of balls to be generated, all bouncing independently. To make this
happen, we will define a second model, parameterized not by a single (pos0,vel0)

24 A Brief Introduction to ActiveVRML

pair, but rather by an event that produces (pos0,vel0) pairs, and adds a ball on
each occurrence of the given event. This second model is the union of the box with a
geometry composed of first no ball (the empty geometry), then one at the first
occurrence of the given ball generator, then two at the second occurrence, and so
forth.

bouncyModel2(ballGen) =

let

 balls = emptyGeometry until

 ballGen => function (pos0, vel0).

 bouncyBall(pos0, vel0) union balls

in

 box union balls

Here is a brief explanation of how this definition works: At first, balls is the empty
geometry. When ballGen occurs, its (pos0,vel0) pair is used to generate a
single new bouncing ball , together with another instance of balls , which, as before,
is empty until the first occurrence of ballGen (after this new ball's start), at
which time this second instance of balls becomes a new bouncing ball together with
a third instance of balls , and so on.

As a stylistic variation, we might factor our event processing into multiple phases:
generation of (pos0,vel0) , by ballGen , conversion of (pos0,vel0) into a
bouncing ball , by bouncyBall , and adding the rest of the balls, by a new function,
addRest .

bouncyModel2(ballGen) =

let

 addRest(geom) = geom union balls

 balls =

 emptyGeometry until

 ballGen => bouncyBall => addRest

25 Appendix A. An Extended Example

in

 box union balls

Note that the cascading effect of event data handlers. The => operation associates to
the left, so the handler line above is equivalent to

 (ballGen => bouncyBall) => addRest

How might we define a ball generating event, as needed by bouncyModel2 ? There
are many possibiliti es, but one very simple one is to wait for a button press event and
then use the time of the button press to generate a pseudo-random position and
velocity,

Vanishing Balls
With bouncyModel2 , each new ball stays around forever once it comes into being.
In this next variation, we will make each ball vanish (become the empty geometry)
when it is picked. All we need to do is add another intermediate phase of event
handling, untilPicked , that converts the newly created, permanent ball i nto a
temporary one just before adding to the rest of the balls.

bouncyModel3(ballGen) =

let

 untilPicked(geom) =

 geom until

 andEvent(leftButtonPress, probe(geom)) => emptyGeometry

 addRest(geom) = geom union balls

 balls =

 emptyGeometry until

 ballGen => bouncyBall => untilPicked => addRest

in

26 A Brief Introduction to ActiveVRML

 box union balls

