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3 A Brief Introduction to ActiveVRML

Introduction

This paper introduces the Active Virtual Reality Modeling Language (ActiveVRML), a
modeling language for spedfying interacive animations.

To allow the aedion of interadive animations to be & natural as possble,
ActiveVRML isbased on asimple and intuitively famili ar view of the world; that is, as
ahybrid of continuous variations and discrete events. For example, the behavior of a
bouncing ball consists of continuous trgjedories and discrete olli sions. Trajedories
cause mlli sion events, and colli sion events cause new trajedories.

Using ActiveVRML, one can creae simple or sophisticaed animations without
programming in the usual sense of the word. For example:

» Althoughmany frames are generated in presenting an animation, the author isfreed
from any notion of sampling or frame generation, but rather describes how various
animation parameters vary continuously with time, user input, and ather
parameters.

» Anauthor describes events influencing an animation and the dfeds of these events
on the animation. The author is freed from the programming mechanics of cheding
for events and causing the dfeds to happen.

» Althoughanimationsinvolve an extremely high degreeof simultaneity
(concurrency), the author is freed from such programming isaues as multi-
threading.

» Lingusticdly, there ae no statements (commands) that are exeauted for their
effed, but rather expressonsthat are analyzed for their value. ActiveVRML uses
this approach to make spedfying animations as natural as possble, while
simultaneously retaining maximal oppatunities for optimization.*

While ActiveVRML is modeling language, it exploits threeof the key ideas that give
programming languages their tremendous power:

» Compasition. Animations are built of simpler animations in a modular, building
block style. By applying compasition repeaedly, complex animation can be
constructed, while eab layer of description remains manageable.

» Parameterization. Famili es of related animations can be defined in terms of
parameters of any kind, including other animations.

* Scoped naming. Animations and animation famili es can be given names to fadlit ate
readability and convenient reuse. The naming of an animation can be explicitly

Y In programming languege terms, ActiveVRML is a dedarative, rather than
imperative, language.
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limited, or scoped, so as not to conflict with possbly unrelated uses of the same
name dsewhere in a description.

ActiveVRML applies these principles pervasively to al types of static models,
continuous behaviors, and discrete events.

To make the discusson of ActiveVRML more mncrete, the first few sedions of this
paper use arunning example—a solar system that begins as a single static planet, and
then adds animation, other planets, and sound.

The remainder of this paper is organized as foll ows. We first outli ne the media types
and operations. Next, we describe how ActiveVRML complements other Internet-
standard fil e formats by suppartingimportation. We then ill ustrate the keys ideas of
compasition, parameterization, and scoped naming. Next, we introduce behaviors,
which are time-varying values of all types. We then show how to add spatialized sound
to amodel. Next, we explain reactivity and the various kinds of events that suppart
readivity. We then describe suppart for user interadion. Next, we ill ustrate the
principle of time transformation, which provides temporal modularity. We then briefly
describe the built-in suppart for behaviors defined in terms of rates of change. Finally,
we develop as an extended example, a @llecion of ball s bouncing around in a box.

Overview of Supported Media Types

This sdion provides a brief overview of the mediatypes supparted in ActiveVRML.
(All of the types and operations are time-varying.)

» 3-D geometry. Supparts importation, aggregation and transformation. Also
supparts texture mapping of interadive animated images, manipulation of color and
opaaty, and embedding of sounds and lights.

» Images. Provides infinite resolution and extent images. Suppartsimportation, 2-D
transformation, opadty manipulation, and overlaying. Also supparts rendering an
image from a 3-D model and rendering an image out of rich text. Even geometricd
and image renderings have infinite resolution and extent, sincediscretizaion and
croppng are left to the display step, which is always left implicit.

* Sound Rudimentary suppart for importing, manipulating, and mixing sounds. Also,
sonic rendering of 3-D models; that is, geometric models may be li stened to as well
aslooked at. Conceptually infinite sampling rate and sample predsion.

» Montages. Composite 2 ¥2-D images, supparting convenient, multi-layered cd
animation.

e 2-D and 3D paints andvedors. Operations include vedor/vedor and pant/vedor
additi on, paint subtradion, scdar/veaor multiplication, and da and crossproducts.
Also supparts construction and deconstruction in red¢anguar and pdar/sphericd
coordinates.

» 2-D and 3D transforms. Supparts trandate, scae, rotate, shear, identity,
compasition, inversion, and matrix-based construction. Can be extended to non-
linea deformations, and so forth.
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» Colors. Various constants, construction, and deoconstruction in RGB and HSL color
spaces.

» Tex. Rudimentary suppart for formatted text, with color, font family, optional bold,
and italic. If there ae Internet standards for rich text, then we would like to suppart
importation as well.

» Miscdlaneous. Suppart for numbers, charaders, and strings.

Embracing Existing Formats

There is an enormous amount of raw material avail able today, both commercially and
fredy on the Internet, that can be used as a starting point for constructing interadive
animations. This material isin fil es of many diff erent formats representing geometry,
images, video, sound, animation, motion paths, and so forth. ActiveVRML works with
these representations diredly, rather than requiring authors to creae raw material
spedficdly for ActiveVRML, or even converting existing material into a new format.

For our solar system, we start with aVRML 1.0 model of a unit sphere and an eath
texturein GIF format. We import this content into ActiveVRML by means of
import , and name the results for later use.?

sphere = import("sphere.wrl");

earthMap = import("earth-map.gif");

Eadh of these two linesis a definiti on, which baoth introduces a new name and provides
an expresson for the value of that name. The modeling rotion of definition differs
from the programming rotion of assgnment, in that the a<ociation between name and
value established by a definition holds throughout a model’s lifetime. Authors, readers,
and automatic optimizers can thus know from seang a definition like the first one
above that sphere will aways be the suggested imported model.

All names are typed, but types are dmost always inferred automaticdly by
ActiveVRML, and so rarely need to be spedfied explicitly. These two definitions
implicitly dedare sphere to be of typegeonet ry, and earthMap to be of type
i mage.

Compositional Specification

As mentioned in the introduction to this paper, compasitionis the buil ding-block style
of using existing models to make new models, combining the resulting models to make
more new models, and so on.

To start buil ding our eath geometry, we gply the eath texture to our earth sphere.
We begin by making atexture:

2 Geometry and image importation produces additi onal i nformation beyond the
geometry and image values themselves. We ae omitting these values for brevity.
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earthTexture = texture(earthMap);

We then apply the texture to the unit sphere:

unitEarth = earthTexture(sphere);

In our solar system, we will t ake the Sun’sradius to be one unit, and the eath’sto be
half as big. Given the texture-mapped unit sphere, we first make atransform that scaes
by one half, uniformly.

halfScale = scale3(0.5);

Now we can form the reduced sphere by applying the halfScale  transform to the
texture-mapped unit sphere:

earth = apply(halfScale, unitEarth);

Next we want to repasition the eatth, so that it will apart from the sun. We make a
trand ation transform and then apply it to the eath:

moveXby2 = translate(2,0,0);
movedEarth = moveXby2(earth);

Giving rames to transforms, textures, and geometric models at every step of
compasition leads to descriptions that are tedious to read and write. In ActiveVRML,
naming and composition are cmpletely independent, so the author isfreeto choose
how much and where to introduce names, based on the aithor’sindividual style and
intended reuse.

For example, we can name only the imported sphere and texture and the complete
moved eath, asin the foll owing description, which is equivalent to the previous one
but does not introduce & many names:

sphere = import("sphere.wrl");

earthMap = import("earth-map.gif");

movedEarth =
apply(translate(2,0,0),
apply(scale3(0.5),
texture(earthMap)(

sphere))));

Next we build amodel of the sun. No transformation is required, but we dowant it to
be yell ow:

sun = diffuseColor(yellow)(sphere);

To complete our first very simple solar system, we simply combine the sun and moved
eath into one model, using the infix union operation, which takes two geometric
models and results in a new, aggregate model.

solarSystem1 = sun union movedEarth;
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Scoped Naming

Namingis useful for making descriptions understandable and reusable, but can easily
cause dutter. When intermediate animations are named and then used in only one or a
few animations (as might be the cae of sun and movedEarth  above), they can
interfere with avail able dhoices for intermediate names in other animations. While this
clutter is not a problem with very simple animations described and maintained by a
singe aithor, it can become aserious obstade & complexity grows and separately
authored animations are cmbined to work together.

The solution to name dutter is to explicitly limit the scope of a name’s definition. In
our example, we will | eave the sphere , earthMap , and solarSystem1
definiti ons unscoped, but limit the scope of the sun and movedEarth  definitions.

To limit the scope of a wlledion of definitionsto a given expresson, use the form

| et definitions in expression
(In additi on to the given expresson, the scope of the definitions include the bodes of
all of the definiti ons themselves, to all ow for mutual reaursion.)

solarSysteml =
let
movedEarth =
apply(translate(2,0,0),
apply(scale3(0.5),
texture(earthMap)(sphere))));

sun = diffuseColor(yellow)(sphere);
sun union movedEarth;

The scope of movedEarth and sun isthe expressoninthe last line of this definition
of solarSystem . Any other potential uses of the names movedEarth and sun
would not refer to the scoped definiti ons above.

Parameterization

It is often desirable to creae several animations that are similar but not identicd. If
such models differ only by transformation—for instance, if they are trandations and
orientations of a single model—the cmmpasition approac is helpful. In general,
however, reuse with transform appli cation (which corresponds to the instancing fadlity
commonly found in graphics modelingand programming systems) is a very limited
technique.

ActiveVRML goes far beyond instancing by providing a simple but extremely general

and pawerful form of parameterization. Famili es of related animations can be defined
in terms of parameters of any kind, including other animations.

As an example of parameterization, suppose that we want a variety of simple solar
systems differing only in the sun color and an andle of rotation of the eath around the
sun. Each of these solar systems hasits own color and own rotation angle, but in all
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Behaviors

other waysisidenticd to its other family members. We define such afamily as
follows. (Note that sunColor and earthAngle  are parameter names that refer
genericdly to the mlor and ang e that distinguishes one simple solar system from
another.)

solarSystem2(sunColor, earthAngle) =
let
movedEarth =
apply(rotate(yAxis, earthAngle),
apply(translate(2,0,0),
apply(scale3(0.5),
texture(earthMap)(sphere)))));

sun = diffuseColor(sunColor)(sphere);
sun union movedEarth;

To instantiate asolar system from this family, apply solarSystem2  to a wlor and
an angle. For instance,

solarSystem2(yellow, 0)

Up to this point, our examples have described static models—that is, models that do
not vary with time. These models were built compasitionally, from static numbers,
colors, images, transforms, and ather models. In ActiveVRML, one can just as easily
expressbehaviors, that is, time-varying values of all types, with static values being just
degenerate versions of the general case.

The simplest non-static behavior istime , which is anumber-valued behavior that
starts out with value zeo and increases at arate of one unit per second.

Asasimple example of a mmpasitionally defined behavior, the foll owing expresson
describes a number-valued behavior that starts out with value zeo and incresses at a
rate of 2 per second:

rising = 2 * pi * time;

Theuse of time hererefersto alocal, not a globd notion of time. Just as geometric
models are generally spedfied in spatial locd (or modeling) coordinates, behaviors of
all types are generally spedfied in locd temporal coordinates, and are then subjeded
to temporal transformation, as discussed in the sedion “Time Transforms,” and
combined with other, passbly temporally transformed, behaviors.

We can use this number behavior to describe atime-varying uriform scdingtransform
that starts as a zeo scade and increasesin size

growing = scale3(rising);



9 A Brief Introduction to ActiveVRML

And we car usethisgrowing behavior to describe ageometry-valued behavior, that
is, a 3-D animation, such as lar system growing from nothing:

growingSolarSystem1 = apply(growing, solarSystem1);

As aways, intermediate definitions are optional; we uld just as well use:

growingSolarSystem1 =
apply(scale3(2 * pi * time), solarSystem1);

With adlight variation, we could have the scde go bad and forth between 0 and 2

pulsating =
apply(scale3(1 + sin(time)), solarSystem1);

We can also apply our solarSystem2  family, defined above, to behavior arguments
to creae time-varying solar systems, asin the foll owing example in which the sun
color runsthroughavariety of hues while the eath rotates around the sun.

animatedSolarSystem2 =
solarSystem2(colorHsl(time, 0.5, 0.5), 2 * pi * time)

Behaviors as Data Flow

For some people, it is helpful to visualize behaviors as data flow graphs. For example,
the animatedSolarSystem?2 behavior above can beill ustrated asin the figure
below. Note that, unlike traditional data flow, behaviors describe acontinuous flow of
values, not a discrete sequence.

time \
: colorHsl

0.5

solarSystem2

time

Data flow diagrams, whil e somewhat helpful for ill ustrating simple non-readive
behaviors, are much wedker than what can be expressed in ActiveVRML, because of
both readivity and time transformability.

More Parameterization

We would now like to enrich our solar system in two ways. by making the eath
revolve aound its own axis, aswell asrotate aout the sun, and by adding a moon that
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revolves about its axis and rotates around the eath. Parameterization all ows us to
cgpture the simil ariti es between moon and eath, while dlowing for their differences.

We start with a simple definiti on that rotates a given model with a given period:

rotateWithPeriod(geo, orbitPeriod) =

We use rotateWithPeriod

apply(rotate(yAxis, 2 * pi * time / orbitPeriod), geo);

block for the foll owing definition, which puts modelsinto orbit:

orbit(geo, orbitPeriod, orbitRadius) =

rotateWithPeriod(apply(translate(orbitRadius, 0, 0), geo),

orbitPeriod)

We can now define our extended solar system:

solarSystem3 =

let

/I constants

sunRadius = 1 /I size of the sun
day =3 I/l seconds per day
earthRadius = 0.5 * sunRadius // size of earth

earthRotationPeriod = 1 * day
earthOrbitRadius = 2.0 * sunRadius
earthOrbitPeriod = 365 * day

moonRadius = 0.25 * earthRadius // size of moon
moonRotationPeriod = 28 * day

moonOrbitRadius = 1.5 * earthRadius
moonOrbitPeriod = moonRotationPeriod

/l sun is a yellow sphere
/ earth is a sphere with the earth-map texture
/ moon is a gray sphere

sun = apply(scale3(sunRadius),
diffuseColor(yellow)(sphere));

earth = apply(scale3(earthRadius),
texture(earthMap)(sphere);

moon = apply(scale3(moonRadius),
diffuseColor(rbgColor(0.5,0.5,0.5))(sphere))

/I define the relationships between and the motions of the bodies

moonSystem = rotateWithPeriod(moon, moonRotationPeriod)
earthSystem =
RotateWithPeriod(earth, earthRotationPeriod) union
orbit(moonSystem, moonOrbitPeriod, moonOrbitRadius)
sunSystem =

to creae arevolving eath and moon and as a buil ding
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sun union
orbit(earthSystem, earthPeriod, earthOrbitRadius)

sunSystem

Adding Sound

We will now add sound to our solar system example by having the eath emit a
“whoashing” sound®. The sound will come from the eath, so as a user moves around
in the solar system or asthe eath moves around, the user will be aleto maintain a
sense of the spatial relationship, even when the eath is out of sight. Moreover, if the
moon is making a sound as well, the user will hea both sounds appropriately altered
and mixed.

All that is necessary to add sound is to change the eath to include aspatially
embedded sound; we modify earth inthe solarSystem2  definition as foll ows:

earth =
apply( scale3(earthRadius), texture(earthMap)(sphere))
union
soundSource3(import("whoosh.au ");

The soundSource3 function used here places a sound at the origin in 3-D space
convertingit into a geometric model, which can then be transformed and combined
with other geometric models.

We can also make sound attributes vary with time. For example, we can adjust the
eath sound's pitch so that it fluctuates during the day, as in the foll owing definiti on.
The formula used with pitch  below causes the pitch fador to vary between 0.5 and
1.5 and badk throughthe course of aday.

earth =
apply( scale3(earthRadius), (earthMap)(sphere)
union
soundSource3(
pitch(sin(2 * pi * time /day)/2 + 1)(
import("whoosh.au ");

Reactivity

In the red world, aswell asin computer games, simulations, and ather appli cations of
interadive animation, behaviors are influenced by events, and can be modeled as a
series of events and readions (or stimuli and responses). In this paper, we refer to
behaviorsthat read to an event as reactive behaviors.

3 (In the time-honored science fiction-movie traditi on of soundsin space)
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Simple Reactivity

Chaining

Asavery simple example of areadive behavior, suppaose that we want our solar
system’s base lor to be red at first, but then become green when a user presses the
left button on the mouse. We can ill ustrate this two phase readive wlor asfoll ows,
where, for sucdnctness LBP refersto the event of pressng the left button:

LBP

In ActiveVRML, this behavior is expressd as

twoPhase = red until LBP => green

In this example and the foll owing ones, the behavior phases are static values. In
general, however, they may be abitrarily complex behaviors.

When the user presses the left button, twoPhase turnsfrom red to green, and stays
green permanently; that is, it isno longer readive. We can also spedfy a behavior that
is dill readiveinits soond phase. For example, we can have the solar system’s color
change to yell ow when the user presses the left button for the second time:

LBP LBP

In ActiveVRML, this processis expressed as foll ows:

threePhase =
red until
LBP => (green until LBP => yellow)

Competing Events

InthetwoPhase andthreePhase examples, eat phase was interested in at most
one esent (LBP or nothing). Often, a phase reads to a number of different events, ead
leading to a different new phase. For instance, we can define avariation of twoPhase
that also startsin the red phase, but will read to either aleft or right button presswith a
different new behavior:
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Repetition

. —=LBP
~RBP
where RBPrefersto our user’s right button pressevent.

In ActiveVRML, this processis expressed as foll ows:

choose =
red until
LBP => green
| RBP => blue

Now suppose we want a clor that switches badk and forth between red and green at
ead button press no matter how many times a button is pressed. Describing this
repetitive behavior by a chain of single-color phases, as with twoPhase and
threePhase , requiresainfinite chain. Fortunately, thisinfinite chain has a sucdnct

description.
:L B Pi
LBP

In ActiveVRML, this repetitive behavior is expressed as foll ows:
cyclic =
red until

LBP => green until
LBP => cyclic
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Note Asillustrated in this example, ActiveVRML definitions may be self-referential.

Hierarchical Reactivity

In the previous threereadive behavior examples, eat phase was a simple static color.
In general, ead phase of areadive behavior can be an arbitrary behavior, even a
readive one. For example, we may want to present our user with the red/green cyclic
behavior above only until the user presses the mouse' s right button, at which time the
color becomes permanently yell ow.

LBP
LBP

In ActiveVRML, this processis expressed as foll ows:

cyclic until
RBP => yellow

Parametric Reactivity

Sometimes areadive behavior goes througha sequence of phases that are simil ar, but
not identicd. For instance, agame may need to keep track of aplayer's sore.
Suppased we have drealdy defined scored to refer to the event of a player scoringa
point. (The subjed of how events suich asscored are defined is addressed later.) A
score-keegping behavior can be ill ustrated as foll ows:

@scored@SCOred@—scored» P oo

Eadh phase in this sore-kegping behavior is smilar in that its value is a static number.
It iswaiting for an occurrence of the scored event, at which timeit will switchto a
simil ar phase with one greaer value. To define dl of these phase behaviors at once, we
describe the family parameterized by the only diff erence anong them—the aurrent
score:
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score(current) =
current until
scored => score(current+1)

The behavior that starts counting from 0 is expressed as foll ows:

scoreFromZero = score(0)

Asaways, we can limit the scope of the intermediate definition, even for
parameterized definitions:

scoreFromZero =
let
score(current) =
current until
scored => score(current+1)

score(0)

Event Data

Some events have data associated with their occurrences. For example, ead
occurrence of akey pressevent has an associated charader value. (It would be
unwieldy to have aseparate event associated with every key on akeyboard.)

As another example of events with data, we can generali ze our score-keeping behavior
so that ead occurrence of the scored  event could have its own number of pointsto
be alded to the total score. In the new version shown below, the event data generated
by the scored event (number of points) is consumed by a parameterized behavior
(addPoints  below), which adds the number of paointsto the arrent score and
continues courting.

score(current) =
let
addPoints(points) =
score(current+points)

current until
scored => addPoints

As mentioned in the previous dion “Compasitional Spedfication,” namingis
optional. Even parameterized definitions can be replacal by the parameterized
behavior itself, usingthe mnstruct f uncti on (parameters). Expresson. The
foll owing definition of score is equivalent to the previous one.

score(current) =
current until
scoreds => function (points). score(current+points)
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The Varieties of Events

The precaling sedion ill ustrated a variety of waysto use eventsto describe behaviors
in terms of other behaviors—that is, these behaviors are described compositiondly.
The next few sedions examine how to describe the erents themselves. As you may
have guessed, in ActiveVRML, even events can be described compasitionally.

External Events

Some events originate outside of ActiveVRML; for example, they can originate with a
user, such as the left or right mouse button pressevents in some of our previous
readive examples.

Another example of an external event isakey press Like abutton event, akey press
event can occur repetitively, but unlike abutton event, key presses have associated
data that indicates which charader was pressd.

Predicate-based Events

Another kind of event is one in which a predicate (condition) about model parameters
beomes true. For example, in the definition of scoreFromZero  given above, the
courting behavior goes on forever. We may, however, want to stop counting ypon
reading some given maximum; that is, we may want to stop counting when the
predicate current = maxScore beoomes true for agiven maxScore . Predicae-
based events are written as pr edi cat e( condtion_expresson) asin the following
replacement for scoreFromZero.

scoreUpTo(maxScore) =
let
score(current) =
current until
scored => score(current+1)
| predicate(current = maxScore) => current

score(0)

Note: In the context of apredicate, the equal sign (=) means equality, not definition.

Alternatively, we uld define scoreUpTo interms of the scoreFromZero

scoreUpTo(maxScore) =
scoreFromZero until
predicate(scoreFromZero = maxScore) => maxScore

These event conditions may be abitrarily complex. As a slightly more sophisticated
example, suppose we want a ball to respond to the event of hitting the floor. We'll
define center  asthe (time-varying) height of the ball’s center point, and radius  as
the ball’ s radius. We will consider the ball to be hitting the floor when two conditions
aretrue: the bottom of the ball (that is, the center height minus the radius) is not above
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Note

the floor, and the ball is movingin adownward diredion (that is, the rate is lessthan
Zeo).

In ActiveVRML, this event is expressed as foll ows:

hitFloor =
predicate((center - radius <= floor) and (derivative(center) < 0))

Derivatives of this event are discussed later in this document.

The parenthesesin this example ae not required and are included for clarity only,
sincethe syntadic precalence of and iswedker than that of inequality operators.

Alternative Events

Given any two events, we can describe the event that occurs when either happens. For
example, the foll owing describes either aleft mouse button being pressed or our ball
hitting the floor:

LBP | hitFloor

By repeaedly using the choice operator | , we caninclude a many component events
asdesired in the choice For example:

LBP | hitFloor | predicate(scoreFromZero = maxScore)

Events with Handlers

Another way to build eventsis to introduce or enhance event data. For example, we
may want an event that occurs whenever our user presses the left or right mouse
button, and has value 1 if the left button is pressed and value 2 if the right buttonis
pressed. First, we describe an event that occursif the left button is pressed and has
value 1

LBP =>1

Then we describe asimil ar event based on the right button and having value 2:
RBP =>2

We then combine these two number-valued events into asingle event:
buttonScore = LBP =>1 | RBP =>2

If an event already produces data, we can supply away to transform the data into some
other, more usable value. For example, we may want an event similar to

buttonScore , but with values multiplied by 10. Rather than changing the definition
of buttonScore , which may be needed elsewhere or may be out of our control, we
make anew event by adding a multi ply-by-ten event handler:

multiplyByTen(x) = 10 * x

buttonScorel0 =
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buttonScore => multiplyByTen

We can do the same thing without introducing the multiplyByTen  definition:

buttonScorel0 =
buttonScore => function (x). 10 * x

As another, simpler example of transforming event data, we may want to take akey
pressevent and change dl | owercase letters to uppercase.

keyPress => capitalize

Note It isno coincidencethat the notation for alternative events (e| e’ ) and events

with handlers (e=>f ) isthe same aintroduced for readive behaviorsin the
previous edions“Simple Readivity” and “Event Data.” Theinfix until  operation
used to expressreadive behaviors applies to a behavior b and an event e, and yields a
behavior that mimics b until the event e occurs, yielding a new behavior b’, at which
time the urtil behavior starts mimickingb’.

User Interaction

ActiveVRML animations are intrinsicdly interadive, meaning that they know how to
respond to user interadion events. We have dready seen examples of events based on
mouse buttons. Another form of input is akey press which is smilar to a button press
but includes the generated charader as event data.

Geometric user interadion is sipparted throughan event where an animation is being
probed. From the animation’s viewpaint, the user's probe is a point-valued behavior
that ActiveVRML bre&sinto astatic point at the onset of probing and an off set vedor
behavior to show relative movement. These points and vedors are 2-D for probed
images and 3-D for probed geometry.

Because there may be any number of transformed versions of an ActiveVRML
animation coexisting at any time, there is no unique relationship between an animation
and any given coordinate system, such as user coordinates. Thus, animations can only
make sense of user input given to them within their own locd coordinates.
ActiveVRML automaticdly converts from the user’s coordinates to the animation’s
own locd coordinates.

For example, the foll owing describes an image moving urder user interaction:*

movinglmage(startimage) =
/I Stay with startimage until clicked on.

* The event andEvent (e,e') occurs when eand € occur simultaneously. Its event data
results from pairing the data produced from these two occurrences. Event handlers will
then often destructure the resulting pair into its components and subcomponents, asin
this example, in which the button pressoccurrence dways generates the trivial data—
which iswritten ()—and the probe occurrence generates a point and vedor behavior.
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startimage until
andEvent(leftButtonPress, probed(startimage)) =>
function ((), (pickPoint, offset)).
/I Then make a version that moves with the offset
/I (given in modeling coords)
let
moving = apply(translate(offset), startimage)

/I Then stay with the moving image until released.
moving until
/I Then snap-shot the moving image and use to restart.
snapshot(moving, leftButtonRelease) => movinglmage

Time Transforms

Just as 2-D and 3-D transforms suppart spatial modularity in geometry and image
behaviors, time transforms suppart temporal modularity for behaviors of al types.

For example, suppose we have arocking sailboat expressed as foll ows:

sailBoatl = apply(rotate(zAxis, sin(time) * pi/6),
import("sailboat.wrl"))

If we want a dower sailboat, we could replacesin(time)  with sin(time/4)
However, for reusability, we want instead to describe anew sailboat in terms of
sailBoatl

’

sailBoat2 = timeTransform(sailBoatl, time/4)

With this technique, we @uld define any number of coexisting similar sail boats, eat
having its own rate of rocking.

Differentiation and Integration

Because ActiveVRML timeis continuous, rather than proceadingin a series of small
jumps, it makes sense to talk about the rate of change of behavior of types aich as
number, point, vedor, and orientation. For example, suppose that moonCenter isthe
time-varying pasition of the center of the moon. The moon’'s 3-D velocity vedor
(which is also time-varying) is expressed as foll ows:

derivative(moonCenter)

and the moon’s 3-D accéeration vedor is expressd as:

derivative(derivative(moonCenter))

Conversely, it iscommon to know the rate of motion of an objed and want to
determine the position over time. Given avelocity and an initial position, we muld
expressthe paosition over time &s:

initialPos + integral(velocity)
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It is often useful to spedfy the rate of motion of an objed in terms of its own position.
Suppase we have agoal, which may be moving, and we want to describe apoint that
Starts at someinitial position and always moves toward the goal, Slowing down as it
gets closer to the goal. The foll owing definiti on describes this behavior:

pos = initialPos + integral(goal - pos)

This definition is equivalent to saying that the value of pos at the behavior’'s gart time
isinitialPos , and that itsvelocity isgoal - pos , whichisinthe diredion of
goal , relativeto pos, with a speed equal to the square of the distance between goal
and pos. If, for example, pos and goal coincide, then pos will not be movingat all.

Many redistic-looking physicd effeds can be described in this fashion, espedally
when the definitions are extended to use force, mass and acceeration.

Note Integralsin this %lf-referential form are ordinary differential equations. Any
number of such definitions may be expressed in a mutually reaursive fashion to
express ystems of ordinary differential equations.

Implementations sould take caeto decouple the step sizes used in numericd
integrators from that used for frame generation. There ae avariety of numericdly
robust and efficient techniques, some of which adapt their step sizes to the locd
properties of the behavior being integrated.

Conclusion

In this paper, we have briefly introduced ActiveVRML, alanguage for modeling
interadive, multimedia animations, and have ill ustrated some of ActiveVRML's
expressvenessthrougha series of smple examples. We refer the interested reader to
the ActiveVRML Reference Manud for more detail s.
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Appendix A. An Extended Example

In this appendix, we present alarger ActiveVRML example, namely a wlledion of
ball s bouncing around in a box.

Geometry Importation

Thefirst step in our example isto import the basic geometric components—a ball and
abox. Each geometry importation yields both a (static) geometry and two 3-D paints,
representing a minimum bounding box for the imported geometry.

ball, ballMin, ballMax = import("ball.wrl");
rawBox, boxMin, boxMax = import("box.wrl");

We will usethe ball geometry asis, but we need to make the box mostly transparent,
so the bouncing ball sinside will be visible.

box = opacity3(0.2)(rawBox);

One-Dimensional Bouncing

It will be useful to define aone-dimensional (number-valued) bouncing behavior,
parameterized by lower and upper bounds, acceeration, and initial position and
velocity. This bouncing behavior will be made up of an infinite sequence of phases,
punctuated by bounce events. Each phaseis parameterized by ainitial position and
velocity for that position, which start out as the overall initial position and velocity.
Thefirst bounce during a phase ends the phase, at which time the position and velocity
are cgtured to provide the parameters of the next phase.

bouncel(min, max, accel, pos0, vel0) =
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let
/I Describe one phase of behavior and transition to next, given
// starting position and velocity.
bouncePhase(newPos0, newVel0) =
let
/I Start velocity at newVelO, and accelerate
vel = newVelO + integral(accel);
/I Start position at newVelO, and grow with velocity.
pos = newPos0 + integral(vel);
// Bounce event. Hits min descending or max ascending.
bounce = predicate( (pos <= min and vel < 0)
or (pos >= max and vel > 0))

/I Follow this position phase until a bounce. Then snapshot
/I the position and the reversed, reduced velocity to get the
/I next starting position and velocity, and repeat.
pos until
snapshot((pos, -.9 * vel), bounce) => bouncePhase

bouncePhase(pos0, vel0);

Three-Dimensional Bouncing

Next we will construct a 3-D bouncing behavior by appedingto the one-dimensional
bouncing behavior for ead of the threedimensions.

The minimum and maximum ball translations are determined from the box’s and ball’'s
minimum and maximum points, which were generated during importation. The ball’s
minimum all owed trandation is the one that when added to the ball’ s minimum point
puts it into contad with the box’s minimum point, and similarly for the maxima. These
two observations lead to the foll owing definiti ons for the minimum and maximum
trandation vedors:
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ballTranslateMin = boxMin - ballMin;
ballTranslateMax = boxMax - ballMax;

Now we can define abouncing ball geometry behavior, which is parameterized by the
initial position and velocity.
bouncyBall(pos0, vel0) =
let
/I Appeal to the 1D version three times, ...
xmin,ymin,zmin = XyzComponents(ballTranslateMin);
xmax,ymax,zmax = XyzComponents(ballTranslateMax);

X0, y0, z0 = XyzComponents(pos0);
dx0,dy0,dz0 = XyzComponents(vel0);

X = bouncel(xmin,xmax, 0 ,x0,dx0);
y = bouncel(ymin,ymax, 0 ,y0,dy0);
Z = bouncel(zmin,zmax,-9.8,z0,dz0);

/I Use the results to translate the ball.
apply(translate(x, y, z), ball)

It is a simple matter then to add a box, to get asingle-ball version of our example:

bouncyModell(posO0, vel0) =
box union bouncyBall(posO0, vel0)

Many Bouncing Balls

Instead of just asingle bouncing ball, we want an animation in which a user can cause
any number of ballsto be generated, all bouncingindependently. To make this
happen, we will define asecond model, parameterized not by a singe (pos0,vel0)
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pair, but rather by an event that produces (posO0,vel0) pairs, and adds a ball on
ead occurrence of the given event. This ond model isthe union of the box with a
geometry compased of first no ball (the enpty geometry), then one & the first
occurrence of the given ball generator, then two at the second occurrence, and so
forth.

bouncyModel2(ballGen) =
let
balls = emptyGeometry until
ballGen => function (pos0, vel0).
bouncyBall(pos0, vel0) union balls

box union balls

Hereisabrief explanation of how this definition works: At first, balls  isthe empty
geometry. When ballGen occurs, its (pos0,vel0) pair is used to generate a
single new bouncing ball, together with another instance of balls , which, as before,
isempty urtil the first occurrence of ballGen  (after thisnew ball's  start), at
which time this ssoond instance of balls  becomes a new bouncing ball together with
athird instanceof balls , and so on.

Asagtylistic variation, we might fador our event processng into multi ple phases:
generation of (posO,vel0) , by ballGen , conversion of (pos0,vel0) into a
bouncing ball, by bouncyBall , and adding the rest of the balls, by a new function,
addRest .

bouncyModel2(ballGen) =
let
addRest(geom) = geom union balls

balls =
emptyGeometry until
ballGen => bouncyBall => addRest
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box union balls

Note that the cascading effed of event data handlers. The => operation asciates to
the left, so the handler line éove isequivalent to

(ballGen => bouncyBall) => addRest

How might we define aball generating event, as needed by bouncyModel2 ? There
are many posshiliti es, but one very simple one isto wait for a button pressevent and
then use the time of the button pressto generate apseudo-random positi on and
velocity,

Vanishing Balls

With bouncyModel2 , ead new ball staysaround forever onceit comesinto being.
In this next variation, we will make eat ball vanish (become the empty geometry)
when it is picked. All we need to dois add another intermediate phase of event
handling, untilPicked , that converts the newly creaed, permanent ball into a
temporary one just before aldingto the rest of the balls.

bouncyModel3(ballGen) =
let
untilPicked(geom) =
geom until
andEvent(leftButtonPress, probe(geom)) => emptyGeometry

addRest(geom) = geom union balls
balls =

emptyGeometry until
ballGen => bouncyBall => untilPicked => addRest
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box union balls



