
Tangible Functional Programming

Conal M. Elliott
LambdaPix

conal@conal.net

Abstract
We present a user-friendly approach to unifying program creation
and execution, based on a notion of “tangible values” (TVs), which
are visual and interactive manifestations of pure values, including
functions. Programming happens by gestural composition of TVs.
Our goal is to give end-users the ability to create parameterized,
composable content without imposing the usual abstract and lin-
guistic working style of programmers. We hope that such a system
will put the essence of programming into the hands of many more
people, and in particular people with artistic/visual creative style.

In realizing this vision, we develop algebras for visual presen-
tation and for “deep” function application, where function and ar-
gument may both be nested within a structure of tuples, functions,
etc. Composition gestures are translated into chains of combinators
that act simultaneously on statically typed values and their visual-
izations.

Categories and Subject Descriptors D.2.6 [SOFTWARE EN-
GINEERING]: Programming Environments—graphical environ-
ments, interactive environments

General Terms Human Factors, Languages, Theory

Keywords interactive programming, end-user programming, ges-
tural composition, combinator libraries, arrows, interactive visual-
ization

1. Introduction
The activities of creating and executing interactive programs typi-
cally differ greatly in form and thought process. Program creation
(including modification) happens in an abstract and linguistic set-
ting, while program execution is a (relatively) concrete and visual
experience.

Suppose users of interactive programs could also create such
programs with a simple extension of their current style of interac-
tion. First, such a development would enable many more people to
create and share computational content. Second, it would allow this
content to be created without imposing the abstract, linguistic mode
of creativity. This freedom may give birth to new kinds of programs
whose creation is nurtured by a concrete and visual environment.

This paper presents an approach to unifying program creation
and execution, based on a notion of “tangible values” (TVs), which
serve two roles. First, they allow interactive inspection of values

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’07, October 1–3, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00

(including functions). Second, they enable composition, to create
new TVs. In this way, end-users become programmers, without the
usual division between (a) the run-time world of visual interaction,
and (b) the compile-time world of syntax. Users run and create
(functional) programs by interacting with the same visual repre-
sentation. We have implemented this idea of TVs in a system called
Eros.

The work described in this paper makes the following contribu-
tions:

• An algebra of interactive visualizers for presenting typed val-
ues. In contrast to Haskell’s show function, which produces
strings and is not generally useful for functions, our approach
produces GUIs and is especially useful for functions. TVs are
formulated by simply pairing values and visualizers, combined
for convenience and separable for composability.

• A new approach to end-user functional programming. Users
create and compose functional programs gesturally (purely
without syntax), by working directly with the same concrete
visualizations used for interactive inspection. Specifically, a
user selects compatibly-typed input and output widgets, typi-
cally in different TVs. The result is a fusion of the two source
TVs, containing all of the original inputs and outputs except
for the connected input and output. Due to the structured na-
ture of visualizers and TVs, higher-order programming is fully
supported.

• A new functional programming style, in which a buried func-
tion can be applied to any compatibly typed buried value. This
programming style, which we call “deep application”, sub-
sumes function application and function composition. If the
function’s domain has a structured type (say nested pairs), it
may be applied to a portion of a domain value, yielding a resid-
ual function. Deep application is based on a set of combinators,
used in a simple way, to describe three paths in the type struc-
ture leading to (a) the buried function, (b) the relevant portion
of that function’s domain value, and (c) to the argument value.

• Generalization of these techniques to apply beyond functions,
via a new Arrow subclass. We formulate gestural composition
in this general setting, and specialize to tangible values.

The next two sections demonstrate the user’s experience of visu-
alizing and composing TVs. Section 4 then presents the deep appli-
cation combinators and their use, as applied to standard functions.
To prepare for the gestural setting, the tools are then generalized in
Section 5 with a new “DeepArrow” type class. Section 6 briefly
addresses the mechanics of translating a user’s gestures into (in-
visible) application of the deep application combinators. Section 7
describes support for persistence and (run-time) compilation, via
a data type and corresponding arrow instance that fits it into our
framework. We conclude with a discussion of related and future
work.

Figure 1. Simple, non-interactive visualizations

Figure 2. Composite visualizations

2. Interactive Visualization of Values
The standard Haskell library comes with a Show type class for
rendering values into strings. Class instances exist for many types,
including numbers and booleans, and for type constructors, includ-
ing tuples and lists. Additional instances may be defined or, for
algebraic data types, derived automatically. Notably missing, how-
ever, is a means of rendering functions. Moreover, some types are
rendered more naturally visually, e.g., graphs, structured 2D or 3D
graphics, some functions, and formatted text.

2.1 GUIs as visualizations
Functions and visual presentation can both be supported by render-
ing values into (possibly interactive) GUIs. In their simplest form,
these GUIs may have a single widget, as in Figure 1, which shows
simple non-interactive visualizations of pi , True , and the unit disk.

Visualizations may also be constructed out of simpler ones, as
in Figure 2. In those examples, pairs are rendered as horizontal
juxtaposed visualizations separated by a thin vertical space. (The
purpose of the space is explained below.)

To visualize functions in general, a simple technique suffices:
create an interactive presentation that allows the user to sample
the function dynamically, i.e., vary input values interactively, while
watching the corresponding output changes. By visualizing a func-
tion, we mean “function” in a semantic sense, as a mapping (usually
infinite), rather than any sort of syntax (“code”) for the function.
Figure 3 shows some function visualizations. Each take the form of
an input for the function’s domain stacked above a visualization for
the function’s range. Between input and output is a thin horizon-
tal space. A user varies the input values and immediately sees the
result of applying the function to the new value.

Figure 3. Functions (input above output)

Figure 4. Multiple arguments via pairing or currying

Functions of more than one argument may be handled in the
usual two ways, via tupled arguments or currying. Both variants
are shown in Figure 4, where1

magSq :: R2 → R
magSq (x , y) = x2 + y2

For magSq , the pair-valued input is composed out of two inputs.
For (<) ::R → R → Bool , the visual composition is a single real-
valued input above a single function-valued output, which consists
of a real-valued input above a Bool -valued output.

The structure of a visualization directly reflects the structure of
the type of the visualized value. In other words, the GUI’s structure
is a type visualization, i.e., “visual syntax” for a type. In Figure 1,
the types are all atomic (double , Bool , and Region), so each
visualization is atomic (i.e., contains a single widget). In Figure 2,
the types are pairs of atomic types, so the visualizations contain
two widgets horizontally abutted and connected by a vertical space,
which refers to the pair itself. That vertical space is the visual
counterpart for the comma in a pair type’s textual syntax. Similarly,
in Figure 3, the types are functions from one atomic type to another,
so the visualizations again contain two widgets, vertically abutted
and connected by a horizontal space, corresponding to the arrow in
textual syntax. Just as arrow is right-associative, vertical stacking
is “bottom-associative”, as in the example on the right in Figure 4.

In addition to inspecting values, a user may hover over any piece
of visual structure to see the corresponding type’s textual syntax.
Figure 5 shows atomic types corresponding to atomic sub-widgets,
while Figure 6 shows composite types corresponding to compos-
ite widgets. (Note the down-associativity.) The value presented in
Figures 5 and 6 is λa b → magSq b < a2.

1 For brevity, we use the following type synonyms throughout this paper:

type R = Double

type R2 = (R,R)

Figure 5. Atomic inputs and outputs

Figure 6. Composite inputs and outputs

Figure 7. Example with slider and graphic

The value shown in Figures 5 and 6 may also be visualized quite
differently, as in Figure 7. This version is based on modeling spatial
regions as R2 → Bool , as in (Hudak and Jones 1994; Elliott 2003).
This visualization reveals that the function describes a disk, with
the first argument determining the radius. Points inside the region
(mapped to True by the function) are painted black.

2.2 Inputs and Outputs
To give the terms “visualization”, “input”, and “output” precise
meaning, we define two type constructors, Output and Input .
Values of type Output α, which we also call “α visualizers”,
describe how to present values of type α to a user. Values of type
Input α describe how to get values of type α from a user.2

2 The reason we package interactive visualizers via type constructors in-
stead of type classes (as Show) is to allow more than one way to input or
output a single type. For convenience, Eros also provides classes to assign
default inputs and outputs to types, such as as those used in Figure 4.

iGet :: WGet a → Input a
iPair :: Input a → Input b → Input (a , b)

oPut :: WPut a → Output a
oPair :: Output a → Output b → Output (a , b)
oLambda :: Input a → Output b → Output (a → b)

Figure 8. The visualizer algebra

The visualizations shown so far are all generated by outputs
composed via the visualizer algebra shown in Figure 8. The types
WPut a and WGet a are functions that take a container sub-
window and add some number of widgets to present values to or
get values from a user.

For example, the visualization in Figures 5 and 6 is described
by o1, where

o1 :: Output (R → R2 → Bool)
o1 = oLambda iRead

(oLambda (iPair iRead iRead) oCheck)

iRead = iGet readWGet
oCheck = oPut checkBoxWPut

readWGet :: Read a ⇒ WGet a
checkBoxWPut :: WPut Bool

Note that in the definition of o1 there are four inputs (three iRead
and one iPair) and three outputs (two oLambda and one oCheck),
as reflected in Figures 5 and 6.

A single value can be visualized in different ways. For instance,
the value displayed with o1 in Figures 5 and 6 may also be dis-
played as in Figure 7, using o2, where

type Region = R2 → Bool

o2 :: Output (R → Region)
o2 = oLambda iSlider oRegion

iSlider = iGet sliderWGet
oRegion = oPut regionWPut

sliderWGet :: WGet R
regionWPut :: WPut Region

2.3 Tangible Values
Each of the visual examples above combines a value with a means
of visualizing that value. This combination, which we call a tan-
gible value (or “TV”), is what the user inspects and, as described
later, creates.

data TV a = TV (Id a) (Output a)

The Id type constructor is just a wrapper around values:

newtype Id a = Id a

This wrapper will make some later definitions a bit more uniform.
More importantly, Id serves as a placeholder for an alternative in
Section 7 that enables persistence and compilation. The Haskell
expressions appearing at the top of TVs rely on that alternative.
They appear in this paper for clarity but are probably not desirable
for our target audience.

-- Pre-defined (in Parts menu)
udisk , checker :: Region
uscale, rotate :: R → Region → Region
intersect :: Region → Region → Region

-- Defined below
scaleDisk :: R → Region
scaleChecker :: R → Region
rotScaleChecker :: R → R → Region
intersectDisk :: R → Region → Region
diskChecker :: R → R → R → Region

scaleDisk ds = uscale ds udisk
scaleChecker cs = uscale cs checker
rotScaleChecker cs ang = rotate ang (scaleChecker cs)
intersectDisk ds reg = intersect (scaleDisk ds) reg
diskChecker cs ang ds = intersectDisk ds

(rotScaleChecker cs ang)

Figure 9. Region examples in conventional syntactic form

Figure 10. Composing a scaling disk

3. Gestural Composition
TVs are not just a way to view values, but also to create them.
As such, they serve as a “tangible” (concrete and visual) means of
programming. “Gestural composition”, illustrated in this section,
causes an output of one TV to be fed directly into an input of
another TV. The result is a fusion of the two source TVs, i.e., a
new TV containing all of the original inputs and outputs except for
the connected input and output, which vanish.

Figures 10 through 14 show the stages of development of a pa-
rameterized visual design (or an “interactive” visual design, de-
pending on perspective). Figure 9 shows conventional syntactic
definitions corresponding to the gestural development.

The user selects uscale and udisk from Parts, resulting in the
left and middle GUIs shown in Figure 10. The uscale GUI has a
slider for the first argument and an evaluator for the second argu-
ment. This evaluator passes the input string to GHC (for parsing,
type-checking, and run-time compilation), via hs-plugins (Pang
et al. 2004). In this case, the input image is xPos , which is the
half-space to the right of the Y axis.

Now we come to gestural composition. To replace the second
input of uscale with the output of udisk , the user right-clicks
first the region input and then the region ouput. The result is the

Figure 11. Scaling checker

Figure 12. Rotating, scaling checker

appearance of the right-most GUI. Note that the matched region
input and output have vanished, leaving just the slider input and the
region output from uscale .3

Eros gives visual feedback to aid composition, highlighting
inputs in blue when the cursor passes over them. After an input is
chosen, type-compatible outputs are highlighted in green, and only
those outputs are candidates for connection.

Figure 11 continues the interactive development. The user adds
uscale (left) and checker (middle), and then links uscale’s region
input (as with udisk above) with checker to get a scalable checker
(right). In Figure 12, the user next adds rotate (left) and links its
Region input to the scaled checker’s Region output. The result is
a checker that scales and rotates interactively. Again, with each of
the input/output linkings, the resulting TV is a hybrid of the two
given TVs, except for the matching input and output, which vanish.

Next the user wants to intersect the scaling disk with the scal-
ing, rotating checker. Figure 13 shows the first composition step,
connecting the first region input of intersect (of type Region →
Region → Region) with the region output of the scaling disk of
Figure 10, to get a TV of type R → Region → Region . Figure 14
then shows the final composition step, filling in the remaining re-
gion input (left over from intersect) with the region output of the
scaling, rotating checker.

The previous examples are only nominally higher-order, in that
regions, though functions, are shown with an atomic visualizer.

3 All of the examples in this section follow the form of this example: TV
with selected input on the left, TV with selected output in the middle, and
resulting composition on the right. For clarity, we show simultaneously
input and output selections with cursors and type annotations, though in
reality, first the input is selected and then the output.

Figure 13. Intersection with disk

Figure 14. Intersection of scaling disk with scaling, rotating
checker

Figure 15. Higher-order composition: region intersection

Figure 15 demonstrates Eros’s support for higher-order gestural
programming, to construct the intersect function, using the fol-
lowing functions.

liftB2 :: (Bool → Bool → Bool)
→ (Region → Region → Region)

(&&) :: Bool → Bool → Bool

In the liftB2 TV on the left, the user has temporarily chosen equal-
ity as the input Boolean operation and xPos and udisk as the input
regions. For composition, the trick is to use one of the composite,
function-valued output handles in the middle TV (logical conjunc-
tion).

Eros is not limited to visual designs but can be used with any
type for which visualizers can be constructed. As a final example,

Figure 16. Extract words and sort

Figure 17. Sort a phrase

Figure 16 shows an example using standard Haskell functions. A
sentence is broken up into words and then the words are sorted.
Figure 17 then puts the sorted words back together into a new
sentence.

The Tweak menu allows the user to restructure a GUI by ap-
plying duplication, swapping, currying and uncurrying, argument
reordering, pair member extraction, and re-association of pairs. In
particular, duplication allows an output to be used more than once.

4. Deep Application
Eros implements gestural composition by translating gestures into
sequences of the combinators developed in this section.

As illustrated in Section 3, there are three gestures to translate:
(a) selection of an input, (b) selection of an output to be matched
up with an input to create a new hybrid TV, and (c) application of
one of the reshaping tools in the Tweak menu to create a new TV.

Semantically, these three gestures collapse into two actions. The
first is extraction of a function in response to gesture (a). The
second action is application of a function to a “buried” argument,
which is performed in response to gestures (b) and (c). For example,
consider Figure 12. To create the TV on the right, the user selects
the Region input from the left TV and then the Region output (the
checker board) from the middle TV. The left TV presents

rotate :: R → Region → Region

By selecting the Region input of rotate , the user indicates not
rotate itself to be applied, but rather a related function:

rotate ′ :: Region → R → Region
rotate ′ reg r = rotate r reg

In other words, rotate ′ = flip rotate . Then in selecting the region
output of the middle TV, the user indicates that the previously cho-
sen function (rotate ′) is to be applied not to the whole (function-
valued) TV, but just to the result of the function. In other words,
rotate ′ is to be composed with the checker-scaling function. Thus,
the result is

rotate ′ ◦ (λa → uscale a checker)

which is equivalent to the expression shown in the right TV:

λa b → rotate b (uscale a checker)

The rest of this section presents the combinators used in trans-
lating user gestures, breaking them into three groups. The first
group enables application of functions “deeply”, i.e., to buried ar-
guments. The second group extracts buried functions as well, so
that the result may be applied (perhaps deeply). The final group
extracts individual parts of a function argument, corresponding to
the inputs of Section 2.2. Typically, all three of these groups are
combined to create a new value via gestural composition.

Although our combinators may be viewed as an editing algebra,
they work on values, rather than syntax.

4.1 Transformation Embedders
When composing (whether gesturally or syntactically), we often
want to apply a function to part of a value. If we’re composing
syntactically, we simply insert the function application somewhere
inside of an expression rather than at the top. Working with values,
rather than syntax, requires corresponding semantic tools.4 Sup-
pose, for example, that we have a pair expression “(e1, e2)” and
we want to apply a function expression “f ” just in the first half.
If working syntactically, we would change the pair expression to
“(f e1, e2)”. Working with values, we can instead “embed” a func-
tion f into a function that works on pairs, and then apply that pair-
transforming function. Similarly, we can embed a function g to
work on pairs by transforming the second element. Thus, we have
two embedders:

first :: (a → a ′) → ((a, b) → (a ′ , b))
second :: (b → b′) → ((a, b) → (a , b′))

first f = λ(a, b) → (f a, b)
second g = λ(a, b) → (a , g b)

Note that, as needed, first and second apply their first arguments
to part of a pair value, carrying along the other half of the pair.

When working syntactically, we often apply functions under
lambdas. The corresponding value-level, embedding combinator is
just function composition. We use the name “result” as a synonym
for “◦”, for consistency with “first” and “second” and, more im-
portantly, for generalizing in Section 5.

result :: (b → b′) → ((a → b) → (a → b′))
result g = λ f → g ◦ f

What about deeper embeddings, say doubly layered? Given a
value of type (a, (b, c)), we might want to transform just the b part
and leave the rest intact. In other words, we’d like an embedder

secondFirst :: (b → b′) → ((a, (b, c)) → (a, (b′, c)))

Fortunately, this deeper embedder can be defined easily from
second and first :

secondFirst = second ◦ first

since, given f :: b → b′, we have first f :: (b, c) → (b′, c), and
second (first f) :: (a, (b, c)) → (a, (b′, c)).

We can make longer composition chains to transform more
deeply buried arguments. For example, given a value of type (a →
(f , b → (c, g)), e), we might want to apply a function to just the c
part and leave the rest intact.

4 There is a difference in flexibility between working with syntax and with
semantics (values). For example, given the expression “3 + 4”, a syntactic
programmer can insert a function application around “4”. When working
with values, we simply have 7, so the change would have to be made at an
earlier point in development.

emb1 :: (c → c′) → (a → (f , b → (c , g)), e)
→ (a → (f , b → (c′, g)), e)

emb1 = first ◦ result ◦ second ◦ result ◦ first

Note from this definition that a deep embedder is formed simply by
listing the path from the whole (root) value leading to a buried part.
For instance, to define emb1, we wrote down the steps in reaching
c within the type of the second argument (first of the pair, result
of that function, second of that pair, etc.)

Let’s return to our examples from Section 3 for examples of
forming and using transformation embedders. In Figure 13, the
intersect function is applied to the result of scaleDisk function.
Thus

intersectDisk = result intersect scaleDisk

Likewise, in Figure 14, an argument-flipped version of intersectDisk
is applied to the (region-valued) result of the result of the curried
function rotScaleChecker . Thus

diskChecker =
(result ◦ result) (flip intersectDisk) rotScaleChecker

4.2 Function Extractors
Instead of a buried argument, we might instead have a buried
function, e.g., λx → x ∗ x in (λx → x ∗ x , "square"). To apply
a buried function in a syntactic setting, one can float the lambda
to the top of the containing expression (following an η-expansion
if there is no explicit λ, and α-converting where needed to avoid
variable capture). For instance, (λx → x ∗ x , "square") becomes
λx → (x ∗ x , "square").

Again, working with values rather than syntax requires a differ-
ent trick. The following three function-extracting combinators are
handy:

funF :: (c → a , b) → (c → (a , b))
funS :: (a , c → b) → (c → (a , b))
funR :: (a → c → b) → (c → (a → b))

funF (f , b) = λc → (f c, b)
funS (a, f) = λc → (a, f c)
funR g = λc → λa → g a c

Returning to our example, if h = (λx → x ∗ x , "square"), then
funF h is a function ready to apply. For instance, funF h 3 ≡
(9, "square").

Next consider more deeply buried functions. Recall that the
combinators first , second , and result from Section 4.1 were di-
rectly composed for arbitrarily deep application. Our new combi-
nators funF , funS , and funR, however, do not have types suitable
for composition with each other. To fix this problem, define three
slightly more complex combinators. Each one maps an extractor
into another one that reaches more deeply.

funFirst :: (d → (c → a)) → ((d , b) → (c → (a , b)))
funSecond :: (d → (c → b)) → ((a , d) → (c → (a , b)))
funResult :: (d → (c → b)) → ((a → d) → (c → (a → b)))

Given a way to extract a function from the first element of a pair,
funFirst produces a way to extract a function from the pair itself.
Similarly for funSecond and funResult .

As an example function extractor,

fxt1 :: (d → (c → b)) → (e → (a, d), f)
→ (c → (e → (a, b), f))

fxt1 = funFirst ◦ funResult ◦ funSecond

To perform an extraction, apply the extractor to the identity func-
tion:

xt1 :: (e → (a, (c → b)), f)
→ (c → (e → (a, b), f))

xt1 = fxt1 id

In Section 4.3, we will see alternatives to id .
The three composable function extractors are defined easily in

terms of the simpler, non-composable ones. For instance, to extract
a function buried somewhere in the first element of a pair, extract
the function from the first element and then extract one last level to
the top.

funFirst h = funF ◦ first h
funSecond h = funS ◦ second h
funResult h = funR ◦ result h

The examples of Section 3 use only very simple function ex-
tractors, namely id and funResult . For instance, in Figure 12, the
user selected the (region-valued) input of the result of the function
rotate ::R → Region → Region . The extracted function is there-
fore

rotate ′ :: Region → R → Region
rotate ′ = funResult id rotate

Of course, in this case, a simpler definition would be rotate ′ =
funR rotate . As mentioned above, we use funResult in general,
because the simpler funR (a synonym for the standard flip func-
tion) lacks the composability property required to extract deeply
buried functions.

4.3 Input Extractors
Recall from Section 3 that our goal is to allow a user to connect
compatibly typed inputs and outputs. The function extractors in
Section 4.2 are helpful but not sufficient for this goal, since they
do not reach into structured inputs.5

For example, consider f :: ((a, b), c) → d . We could consider
f to have five “inputs”, of types a , b, c, (a, b), and ((a, b), c). Any
of these five inputs could be eliminated by filling it in with a cor-
respondingly typed value, possibly leaving a residual input. Elimi-
nating the input of type b would yield a result of type (a, c) → d
(which has three inputs, of types a , c, and (a, c)). The usual no-
tion of function application is a special case, in that eliminating the
input of type ((a, b), c) results in a value of type d .

To support elimination of part of a function argument, we define
some tools for “input extraction”. The idea is to transform the given
function into a (possibly curried) function of just the desired input,
which may then be applied directly. For example, to eliminate the
b input from f , we would first transform f into a function of type
b → (a, c) → d , and then apply the transformed function.

The simplest case is that in which the input is the whole function
argument, so there is nothing to be done to extract the input.

If the chosen input is directly within a pair type, extraction is
also easy, using one of the following two functions:

inpF :: ((a, b) → c) → (a → (b → c))
inpS :: ((a, b) → c) → (b → (a → c))

inpF = curry
inpS = flip ◦ curry

A trickier case is where the chosen input is more deeply buried.
For example, consider how to eliminate the b input in a function
of type ((a, b), c) → d or ((a, (b, e)), c) → d . We will want to
make “input extractors” with the following types:

5 For now, we use the word “input” to mean part of a function argument,
rather than as defined in Section 2.2 for TVs. In Section 5, we will general-
ize these techniques to a setting that applies to TVs.

ixt1 :: (((a, b), c) → d) → (b → (a , c) → d)

ixt2 :: (((a, (b, e)), c) → d) → (b → ((a, e), c) → d)

We cannot use the simple combinators inpF and inpS , because
they do not have composable types (as with the simple combinators
funF , funS , and funR from Section 4.2). To get composability, de-
fine the following two combinators, which promote input extractors
from simpler to more complex types:

inpFirst :: ((a → c) → (d → (a ′ → c)))
→ (((a, b) → c) → (d → ((a ′, b) → c)))

inpSecond :: ((b → c) → (d → (b′ → c)))
→ (((a, b) → c) → (d → ((a , b′) → c)))

Given a way to extract a d input from an a input, leaving an a ′

residual input, inpFirst yields a way to extract a d input from
an (a, b) input, leaving an (a ′, b) residual input. Similarly for
inpSecond . Definitions can be inferred from the types:

inpFirst h f d (a ′, b) = h (λa → f (a, b)) d a ′

inpSecond h f d (a, b′) = h (λb → f (a, b)) d b′

Input extraction works by using compositions of inpFirst and
inpSecond to target an application of inpS or inpF . For example,
ixt1 and ixt2, whose types are given above, are easily defined:

ixt1 = inpFirst inpS
ixt2 = (inpFirst ◦ inpSecond) inpF

Typically, we will have to combine function and input extractors.
For instance, using fxt1 from Section 4.2 with ixt2,

xt2 :: (e → (g , (((a, (b, e)), c) → d)), f)
→ (b → (e → (g , (((a, e), c) → d)), f))

or, spelled out,

xt2 = (funFirst ◦ funResult ◦ funSecond
◦ inpFirst ◦ inpSecond
) inpF

If xt2 is applied to a suitably-typed value, the resulting function
can be directed, via a function embedder, at an argument of type b
buried deeply inside some other value.

The examples from Section 3 do not need input extractors (other
than the identity), because they do not have pair-valued inputs.

4.4 Deep Application—Definitions and Examples
We now have the tools to fully implement the constructions given
in Section 3. See the conventional syntactic definitions in Figure 9
for comparison.

Using our new tools, we have the following definitions. To
clearly relate our combinators with gestural composition, define the
following higher-order function for “deep application”:

deep ::
(d → (a → b)) -- function extractor

→ d -- function container
→ ((a → b) → (a ′ → b′)) -- transformation embedder
→ a ′ -- argument container
→ b′ -- overall result

deep xtr fc emb ac = emb (xtr fc) ac

The definitions in Figure 18 exactly parallel the gestural com-
positions given in Section 3. In each gestural composition, the user
selects (a) an input, determining the (combined function and input)
extractor xtr and function-containing value fc, and (b) an output,
determining the embedder emb and the argument-containing value
ac. In these examples, the name “idA” is synonymous with “id”
(the identity function), though it will be generalized in the next
section.

scaleDisk = deep (funResult idA)
uscale
id
udisk

intersectDisk = deep (id idA)
intersect
result
scaleDisk

scaleChecker = deep (funResult idA)
uscale
id
checker

rotScaleChecker = deep (funResult idA)
rotate
result
scaleChecker

diskChecker = deep (funResult idA)
intersectDisk
(result ◦ result)
rotScaleChecker

Figure 18. Deep Application Examples

5. Generalizing Deep Application
The combinators from Section 4 enable the gestural composition
of pure values. We want, however, to compose not just the values,
but visualizers for those values. In fact, we want to compose values
and visualizers in tandem, i.e., tangible values (TVs), as described
in Section 2. In this section, we generalize the combinators so that
they apply more broadly, including to visualizers and TVs.

5.1 An Arrow for Visualization
The first and second combinators used in Section 4.1 are already
defined quite broadly, for arrow types (Hughes 2000).

class Arrow (;) where
first :: (a ; a ′) → ((a, b) ; (a ′, b))
second :: (b ; b′) → ((a, b) ; (a , b′))

arr :: (a → b) → (a ; b)
(>>>) :: (a ; b) → (b ; c) → (a ; c)

The definitions of first and second in Section 4.1 belong to the
function Arrow (i.e., the “→” instance of Arrow), where also arr
is the identity and (>>>) is reverse function composition.

To handle visualization, we’ll need another Arrow instance, to
represent transformation of the “outputs” introduced in Section 4.
The following simple definition suffices:

newtype OFun a b = OFun (Output a → Output b)

We define the OFun instance of Arrow in close analogy with
the “→” instance. Recall the definitions of first and second for
functions (Section 4.1):

first f = λ(a, b) → (f a, b)
second g = λ(a, b) → (a , g b)

The definitions for OFun are almost identical, using “output pairs”
rather than value pairs. In order to pattern-match on structure,
we represent outputs and inputs as generalized algebraic data

types (Peyton Jones et al. 2006) that directly mirror the visualizer
algebra in Figure 8.6

instance Arrow OFun where
first (OFun f) =

OFun (λ(OPair a b) → OPair (f a) b)
second (OFun g) =

OFun (λ(OPair a b) → OPair a (g b))

Arrow composition is defined via function composition.

OFun f >>> OFun g = OFun (f >>> g)

Given only a pure function, arr has no useful way of render-
ing values. One could signal an error or yield an output that dis-
plays a warning message. Unavailability of arr comes up in other
contexts (Alimarine et al. 2005), so it may be worth introducing a
Arrow superclass without arr .

5.2 An Arrow for Tangible Values
Recall from Section 2.3 that a tangible value is simply a value and
an output. Providing an arrow instance for TVs is a simple matter
of combining the function arrow for transforming values and the
OFun arrow for transforming outputs.

data TvFun a b = TvFun (a → b) (OFun a b)

The instance definition then operates on values and their visual-
izers in tandem.

instance Arrow TvFun where
first (TvFun f ox) = TvFun (first f) (first ox)
second (TvFun f ox) = TvFun (second f) (second ox)
TvFun f ox >>> TvFun f ′ ox ′ =

TvFun (f >>> f ′) (ox >>> ox ′)
arr f = TvFun (arr f) (arr f)

5.3 Deep Arrows
Section 4 introduced additional combinators besides first and
second . To generalize these combinators beyond values, we de-
fine a new type class DeepArrow , as shown in Figure 19.

Besides the methods introduced in Section 4, the DeepArrow
class contains several more that are useful for manipulating outputs
and TVs. Most of the DeepArrow methods are generalizations of
familiar functions.

As shown in Figure 20, the function instance of DeepArrow
defines result as function composition (as in Section 4.1) and
otherwise uses arr to give very simple definitions. Any arrow with
a useful arr can use these same arr -based definitions.

The OFun instance of DeepArrow is defined by mimicking the
function instance.

instance DeepArrow OFun where
result (OFun ox)

= OFun (λ (OLambda a b)
→ (OLambda a (ox b)))

funF = OFun (λ (OPair (OLambda c a) b)
→ (OLambda c (OPair a b)))

lAssocA = OFun (λ (OPair a (OPair b c))
→ (OPair (OPair a b) c))

. . .

6 Note that the functions in the right-hand sides of the definitions may
fail, because pair-valued outputs may be constructed by OPut rather than
OPair . Our gestural setting, however, ensures that first and second get
applied only to outputs constructed by OPair . In a less constrained setting,
a simple alternative to partiality of first and second would be mapping a
non-OPair to an OPut-based output that displays a warning message in a
GUI component.

class Arrow (;) ⇒ DeepArrow (;) where
result :: (b ; b′) → ((a → b) ; (a → b′))

funF :: (c → a , b) ; (c → (a , b))
funS :: (a , c → b) ; (c → (a , b))
funR :: (a → c → b) ; (c → a → b)

curryA :: ((a , b) → c) ; (a → b → c)
uncurryA :: (a → b → c) ; ((a , b) → c)
lAssocA :: (a , (b , c)) ; ((a , b) , c)
rAssocA :: ((a , b) , c) ; (a , (b , c))

idA :: a ; a
dupA :: a ; (a, a)
fstA :: (a , b) ; a
sndA :: (a , b) ; b
swapA :: (a , b) ; (b , a)

flipA :: DeepArrow (;) ⇒ (a → c → b) ; (c → a → b)
flipA = funR

inpF :: DeepArrow (;) ⇒ ((a, b) → c) ; (a → (b → c))
inpF = curryA

inpS :: DeepArrow (;) ⇒ ((a, b) → c) ; (b → (a → c))
inpS = curryA >>> flipA

Figure 19. DeepArrow class

Given the function and OFun instance of DeepArrow , the TvFun
instance (for transforming TVs) is defined to work on values and
their visualizers in tandem (as with the Arrow instance defined in
Section 5.2).

instance DeepArrow TvFun where
result (TvFun f ox) = TvFun (result f) (result ox)

idA = TvFun idA idA
dupA = TvFun dupA dupA
fstA = TvFun fstA fstA
. . .
rAssocA = TvFun rAssocA rAssocA

Defining generalized versions of the input extractors inpFirst
and inpSecond is considerably trickier. The function-based defini-
tions from Section 4.3 use λ abstraction and hence do not translate
directly to an arrow setting. We use an indirect approach. First re-
express the λ-based versions in combinator (λ-free) form, and then
replace the combinators with generalized versions. The combina-
tor versions are as follows, with a breakdown of these definitions
given Figure 21. These definitions use “lexically scoped type vari-
ables” (Peyton Jones and Shields 2002), to relate the types of the
locally defined qi to the type of the top-level definitions.

inpFirst h = result uncurry ◦ result flip ◦ flip
◦ result h ◦ flip ◦ curry

inpSecond h = result uncurry ◦ flip ◦ result h ◦ curry

The generalized definitions then follow simply by replacing
each function-based combinator with its generalized version from
Arrow or DeepArrow (replacing “g ◦f ” with “f >>>g”). Figure 22

instance DeepArrow (→) where
result = (◦)
funF = arr (λ(f , b) → λc → (f c, b))
funS = arr (λ(a, f) → λc → (a, f c))
funR = arr flip
curryA = arr curry
uncurryA = arr uncurry
lAssocA = arr (λ(a, (b, c)) → ((a, b), c))
rAssocA = arr (λ((a, b), c) → (a, (b, c)))
idA = arr id
dupA = arr (λx → (x , x))
fstA = arr fst
sndA = arr snd
swapA = arr (λ(a, b) → (b, a))

Figure 20. DeepArrow instance for functions

inpFirst :: ∀a a ′ b c d .
((a → c) → (d → (a ′ → c)))

→ (((a, b) → c) → (d → ((a ′, b) → c)))

inpFirst h f = q6

where
q1 = curry f :: a → (b → c)
q2 = flip q1 :: b → (a → c)
q3 = result h q2 :: b → (d → (a ′ → c))
q4 = flip q3 :: d → (b → (a ′ → c))
q5 = result flip q4 :: d → (a ′ → b → c)
q6 = result uncurry q5 :: d → ((a ′, b) → c)

inpSecond :: ∀a b b′ c d .
((b → c) → (d → (b′ → c)))

→ (((a, b) → c) → (d → ((a, b′) → c)))

inpSecond h f = q4

where
q1 = curry f :: a → (b → c)
q2 = result h q1 :: a → (d → (b′ → c))
q3 = flip q2 :: d → (a → (b′ → c))
q4 = result uncurry q3 :: d → ((a, b′) → c)

Figure 21. Derivations of inpFirst and inpSecond

shows the generalized types and definitions of the function and
input extractors of Section 4.

5.4 Transforming Values
In order to use our DeepArrow values to transform other values,
we introduce a class that relates an arrow (e.g., “→”, OFun , or
TvFun) with a wrapper type (e.g., Id , Output , or TV). The class
method toArr turns wrapped functions into arrow values, while $$
turns arrow values into functions on wrapped values.7

7 This (multi-parameter) class definition uses “functional dependen-
cies” (Jones 2000), expressing that each of the type parameters uniquely
determines the other. This detail helps the compiler resolve some ambigui-
ties in type inference and is otherwise unimportant.

funFirst :: DeepArrow (;) ⇒
(d ; (c → a)) → ((d , b) ; (c → (a , b)))

funSecond :: DeepArrow (;) ⇒
(d ; (c → b)) → ((a , d) ; (c → (a , b)))

funResult :: DeepArrow (;) ⇒
(d ; (c → b)) → ((a → d) ; (c → (a → b)))

funFirst h = first h >>> funF
funSecond h = second h >>> funS
funResult h = result h >>> funR

inpFirst :: DeepArrow (;) ⇒
((a → c) ; (d → (a ′ → c)))

→ (((a, b) → c) ; (d → ((a ′, b) → c)))

inpSecond :: DeepArrow (;) ⇒
((b → c) ; (d → (b′ → c)))

→ (((a, b) → c) ; (d → ((a, b′) → c)))

inpFirst h = curryA >>> flipA >>> result h >>> flipA >>>
result flipA >>> result uncurryA

inpSecond h = curryA >>> result h >>> flipA >>>
result uncurryA

Figure 22. Generalized function and input extractors

class FunArr (;) w | (;) → w ,w → (;) where
toArr :: w (a → b) → (a ; b)
($$) :: (a ; b) → w a → w b

The simplest FunArr instance relates “→” and the identity
wrapper:

instance FunArr (→) Id where
toArr (Id f) = f
f $$ Id a = Id (f a)

An OFun can transform an Output , with toArr discarding the
Input , and “$$” applying the output function.

instance FunArr OFun Output where
toArr (OLambda res) = OFun (const res)
OFun ox $$ oa = ox oa

Finally, a TvFun can transform a TV , working in tandem (as
usual) on values and visualizers:

instance FunArr TvFun TV where
toArr (TV f fo) = TvFun (toArr f) (toArr fo)
TvFun f ox $$ TV ida o = TV (f $$ ida) (ox $$ o)

5.5 Deep Application
The “deep application” higher-order function, deep from Sec-
tion 4.4, generalizes simply:

deep :: FunArr (;) w
⇒ (d ; (a → b)) -- function extractor
→ w d -- function container
→ ((a ; b) → (a ′ ; b′)) -- transformation embedder
→ w a ′ -- argument container
→ w b′ -- overall result

deep xtr fc emb ac = emb (toArr (xtr $$ fc)) $$ ac

With this new definition, the examples in Figure 18 all work
for tangible values, exactly as written (assuming TV versions of

the pre-defined udisk , checker etc from Figure 9). That is, the
definition simultaneously construct values and visualizers for those
values. Only the definition types differ. For instance (cf. Figure 9),

scaleDisk :: TV (R → Region)
diskChecker :: TV (R → R → R → Region)

6. Translating Gestures to Deep Application
Where are we now?

Recall that our goal is to enable an end-user to construct pure
values—including higher-order values—with a concrete presenta-
tion in the form of GUIs. This combination, which we call “tangi-
ble values” (TVs), allows interactive inspection, as shown in Sec-
tion 2. Section 3 illustrated “gestural composition”, in which a user
matches up compatibly-typed inputs and outputs of existing TVs to
create new TVs. The newly created TV is a fusion of the two TVs,
with the connected input and output removed. Sections 4 and 5 pro-
vided the all of the tools (combinators) we need, and in a general
enough setting, to support gestural composition.

To put all of these pieces together, Eros uses the GUI structure
and user gestures to synthesize combinator chains, which are then
used to create new TVs. Each GUI is a tree of input and output sub-
GUIs (individual widgets and composites). Every input node has an
associated a function extractor (Sections 4.2 and 4.3) that can ex-
tract that input all the way to the root, resulting in a function whose
domain is the type of the extracted input. Similarly, every output
node has an associated transformation embedder (Section 4.1) that
can deeply apply a user-chosen TV transformation (TvFun from
Section 5.2) at the given output node.

7. Persistence and Compilation
While the first definition of TV (Section 2.3) suffices for interac-
tion and composition, it does not support persistence or compila-
tion. These latter goals can both be achieved by introducing a term
representation to be used in place of the Id constructor in the def-
inition of TV , and a corresponding DeepArrow instance in place
of “→” in the definition of TvFun .

data TV a = TV (Term a) (Output a)

data TvFun a b = TvFun (TFun a b) (OFun a b)

For simplicity, we use higher-order abstract syntax (as apparent
in the Lam constructor below), which frees us from dealing with
variable capture and α-conversion (Pfenning and Elliott 1988). Be-
cause we wanted static typing wherever possible, the term represen-
tation is a generalized algebraic data type (GADT) (Peyton Jones
et al. 2006).8

type TX a b = Term a → Term b

data Term :: ∗ → ∗ where
Lit :: String → a → Term a
App :: Term (a → b) → Term a → Term b
Lam :: PatShape a → TX a b → Term (a → b)

Fst :: Term ((a, b) → a)
Snd :: Term ((a, b) → b)
Pair :: Term (a → b → (a, b))

newtype TFun a b = TFun (TX a b)

8 In the GADT definition for Term , the first line says that Term maps
types to types. The indented lines that follow list the Term constructors
and their types.

instance Arrow TFun where
TFun f >>> TFun g = TFun (f >>> g)
first (TFun g) =

toArr (Lam (SPair SVar SVar) (λab →
Pair @ˆ f (Fst @ˆ ab) @ˆ Snd @ˆ ab))

. . .

instance DeepArrow TFun where
result (TFun tx) = TFun (

inLets (λab@(Lam sa) →
Lam sa (tx ◦ (ab@ˆ))))

idA = TFun id
. . .

instance FunArr TFun Term where
toArr tf = TFun (toArrT tf)
TFun tx $$ ta = inLets tx ta

toArrT :: Term (a → b) → TX a b
toArrT f = inLets (f @ˆ)

-- Apply under β-redices
inLets :: TX a b → TX a b
inLets tx (App (Lam s f) t) = Lam s (inLets tx ◦ f) @ˆ t
inLets tx term = tx term

Figure 23. Term transformation instances

The last three Term constructors are necessary only for simpli-
fications made during term construction, together with limitations
in type checking for GADTs. Ongoing improvements to GADT
type checking may address this issue, allowing us to simplify the
term representation and improve simplification.

For pretty-printing, lambda terms have “pattern shapes”:

data PatShape :: ∗ → ∗ where
SVar :: PatShape a
SPair :: PatShape a → PatShape b → PatShape (a, b)

7.1 Evaluation and Compilation
Evaluation is very simple. The only novel case is Lam . The trick
there is to apply the contained function to a new literal.

eval :: Term a → a

eval (Lit a) = a
eval (App fun arg) = (eval fun) (eval arg)
eval (Lam tfun) = λx → eval (tfun (Lit "_" x))
eval Fst = fst
eval Snd = snd
eval Pair = (,)

Term evaluation is simple but involves repeated interpretation.
For faster execution, Eros transforms terms into strings of Haskell
code and invokes GHC, by means of hs-plugins (Pang et al. 2004).
There is a noticeable but quite tolerable pause during compilation
(typically well under a second, after GHC is first loaded). Haskell
code generation is also used to generate the syntactic descriptions
seen near the top of TVs in the figures throughout this paper.

7.2 Term Transformation
Terms are transformed via TFun , defined above. Figure 23 shows
how TFun serves as a deep arrow and how it is used to transform

terms. The function inLets is very handy for term simplification. It
applies applies a term transformation under a sequence of outer
“let”-bindings (represented as β-redices). The infix @ˆ operator
is a simplifying “smart constructor” for function application. The
toArr method (turning a function-valued term into a TFun) just
makes a (smart) application inside of outer lets.

8. Related Work
8.1 Visual Programming Languages
Eros has similar goals to those of “visual” (or “graphical”) pro-
gramming languages (VPLs), namely making programming more
accessible through a concrete and visual style of construction. The
user experience of Eros, however, is meant to be profoundly more
direct that of VPLs. Eros users construct and interact directly with
values (semantics) rather than indirectly through code (syntax).
(Our use of a term representation is not essential and is intended
to be hidden from the user.)

In addition to the philosophical and psychological shift, work-
ing with values rather than code has a significant effect on scala-
bility. The size and complexity of a TV depends only on its type,
not its construction. For this reason, users can construct TVs with
considerable internal complexity while maintaining visual simplic-
ity. The key to retaining simplicity is that each deep application
step eliminates the connected input and output. The newly created
TV is thus strictly less complex than the combined complexity of
the two source TVs. In contrast, the composition step in VPLs (as
also with textual languages) creates a visual representation that is
strictly larger than the combined sizes of the source components, so
VPLs quickly clutter visual space. On the other hand, by preserv-
ing and displaying syntactic structure, VPLs allow editing of that
structure, unlike Eros. (An easy partial solution for Eros would be
to give each TV a button that regenerates its source TVs.)

Most VPLs make a strict stylistic separation between “func-
tions” and “values” (typically rendered as boxes and arrows). VPLs
thus tend not to support higher-order programming, though there
are exceptions (Poswig et al. 1994; Kelso 1994; Najork and Golin
1990). Eros allows functions to be visualized differently, and yet
is fully higher-order. Not only are a function’s inputs and outputs
accessible and connectable, but so is the function itself.

8.2 Spreadsheets
The most popular end-user programming environment is the spread-
sheet, which has an execution model much like Eros’s. Once rela-
tionships are established, input cells can be altered by the user, and
related output cells update automatically. Moreover, the relation-
ships are often established gesturally, using a mouse to select input
cells and operation. Wakeling (2007) demonstrated use of (purely
syntactic) functional code in the cells of a standard spreadsheet.

On the other hand, Eros remedies some of the significant limi-
tations of spreadsheets. Eros supports a rich, static type system. In
particular, it fully supports higher-order functional programming.
Spreadsheets typically do not even support definability of func-
tions, though see Peyton Jones et al. (2003). The Forms/3 sys-
tem (Burnett et al. 2001), while still first order, relaxes the usual
spreadsheet style with free-form layout and graphical types.

Another spreadsheet system that explores graphical types is
“Spreadsheets for Images” (SI) (Levoy 1994). The author remarks
that SI is more scalable because it “spends its screen space on
operands rather than operators, which are usually more interesting
to the user”. On the other hand, SI shows all intermediate values
as with spreadsheets in general and unlike Eros. SI has a mixed
functional/imperative style, exposing “registers” and commands
that explicitly write into registers. It also lacks the early feedback
made possible by static typing.

8.3 Vital
Vital (Hanna 2002) is a document-oriented system that presents
both (syntactic) source code and the results of evaluating the code,
with rich facilities for value visualization. Syntactic editing results
in automatic value update, and direct-manipulation editing of val-
ues results in update of corresponding expressions. In contrast to
Eros, Vital’s direct manipulation is used to edit first-order values,
rather than to explore (possibly higher-order) values, and functions
are created syntactically.

9. Limitations and Future Work
Eros could be improved in a number of significant ways.

• Polymorphism. How can one concretely visualize polymorphic
values? The very tangibility of our enterprise would seem to
preclude parametric polymorphism, at a considerable loss of
expressiveness. A possible solution is inspired by the idea of
type abstraction in explicitly polymorphic λ-calculi (Reynolds
1974). In place of a type abstraction, a polymorphic TV could
have a sort of “viz-abstraction”, a different kind of input (e.g., a
menu) with which a user can choose a visualizer and, in doing
so, a type. Initially, these special inputs would have default
values (as regular inputs do). When the user selects a different
visualizer, uses of the previously chosen visualizer would get
dynamically replaced.

• Naturalness. Gestural composition could be made much more
natural and intuitive. For instance, to flip the arguments of a
function, the user must select flip from the Tweak menu. At the
very least, a visual representation of flip would be friendlier.
Better yet would be for the user to grab and move the inputs
directly. Similarly for duplication, currying, pair reassociation
and the other methods of the DeepArrow class (Figure 19).

• Fluidity and optimization. Especially with improvements to
gestural composition, the user experience would be enhanced
by even faster generation of new TVs. For instance, one could
imagine dragging an output over various inputs and having the
tentative composition results shown immediately. If the user
moves on without completing the connection (the “drop” of
drag & drop), the composition vanishes. The main obstacle to
this level of fluidity is the time taken by dynamic compilation.

• Haskell integration. It is fairly easy to import definitions from
Haskell libraries and make them available in Eros. However, it
could be more convenient still. For instance, there could be a
pre-processor that reads Haskell source files, interpreting cer-
tain comments as declaring what visualizers to use (including
lower and upper bounds for slider inputs). A form of integra-
tion that is completely lacking now is the ability to save TVs
to a Haskell module. Given the persistent representation from
Section 7, we know of no obstacle to doing so.

10. Acknowledgments
The inspiration for Eros came out of conversations with Holly
Croydon. Sean Seefried and Simon Peyton Jones made several
helpful suggestions on improving presentation. Sean suggested the
name “tangible values”.

References
Artem Alimarine, Sjaak Smetsers, Arjen van Weelden, Marko van

Eekelen, and Rinus Plasmeijer. There and back again: arrows
for invertible programming. In Haskell ’05: Proceedings of the
2005 ACM SIGPLAN workshop on Haskell, pages 86–97, New
York, NY, USA, 2005. ACM Press.

Margaret Burnett, John Atwood, Rebecca Walpole Djang, James
Reichwein, Herkimer Gottfried, and Sherry Yang. Forms/3:
A first-order visual language to explore the boundaries of the
spreadsheet paradigm. Journal of Functional Programming, 11
(2):155–206, 2001.

Conal Elliott. Functional Images. In The Fun of Programming,
“Cornerstones of Computing” series. Palgrave, March 2003.

Keith Hanna. Interactive visual functional programming. In S Pey-
ton Jones, editor, ICFP ’02: Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Program-
ming, pages 100–112. ACM, October 2002.

Paul Hudak and Mark P. Jones. Haskell vs. Ada vs. C++ vs
Awk vs . . . an experiment in software prototyping productivity.
Technical report, Yale, 1994.

John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, May 2000.

Mark P. Jones. Type classes with functional dependencies. In
ESOP ’00: Proceedings of the 9th European Symposium on
Programming Languages and Systems, pages 230–244, London,
UK, 2000. Springer-Verlag.

Joel Kelso. A visual representation for functional programs. Tech-
nical Report CS/95/01, Western Australia, Australia, 1994.

Marc Levoy. Spreadsheets for images. In SIGGRAPH ’94: Pro-
ceedings of the 21st Annual Conference on Computer Graph-
ics and Interactive Techniques, pages 139–146, New York, NY,
USA, 1994. ACM Press.

M. A. Najork and E. Golin. Enhancing show-and-tell with a poly-
morphic type system and higher-order functions. In Proceed-
ings of the IEEE Workshop 1990 on Visual Languages, pages
215–220, Skokie, IL, 1990.

André Pang, Don Stewart, Sean Seefried, and Manuel M. T.
Chakravarty. Plugging Haskell in. In Proceedings of the
ACM SIGPLAN Workshop on Haskell, pages 10–21. ACM Press,
2004.

Simon Peyton Jones and Mark Shields. Lexically scoped type
variables. March 2002.

Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. A
user-centred approach to functions in Excel. In ICFP ’03: Pro-
ceedings of the eighth ACM SIGPLAN international conference
on Functional programming, pages 165–176, New York, NY,
USA, 2003. ACM Press.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for
GADTs. In Proceedings of the Eleventh ACM SIGPLAN In-
ternational Conference on Functional Programming, Portland,
Oregon, September 2006. ACM SIGPLAN.

Frank Pfenning and Conal Elliott. Higher-Order Abstract Syntax.
In Programming Language Design and Implementation, 1988.

Jörg Poswig, Guido Vrankar, and Claudio Moraga. VisaVis: a
higher-order functional visual programming language. Journal
of Visual Languages and Computing, 5(1):83–111, 1994.

John C. Reynolds. Towards a theory of type structure. In Program-
ming Symposium, Proceedings Colloque sur la Programmation,
pages 408–423, London, UK, 1974. Springer-Verlag.

David Wakeling. Spreadsheet functional programming. Journal of
Functional Programming, 17(1):131–143, 2007.

