
  

Tangible 

Functional 

Programming

Conal Elliott
ICFP 2007



  



  

Programming favors 

left-brain creativity.

Abstract & linguistic

Usually sequential

Selects & influences creative processes

Powerful medium of expression

  with limited access



  

Can functional programming 

be artist-friendly?

Non-sequential

Still abstract & linguistic

“Authoring”: concrete & non-composable

Goal: concrete and composable

So artists can make their own tools



  

The insight:

Authoring is functional programming.

In disguise

Full of interpreted graphs

Lacks reuse & parameterization

Scripting bolted on 



  

Programming is a way to express

interfaces and denotations.

Code is a command-line UI.

Handy & inessential

Necessarily indirect



  

Where are we going?

Eros user experience

λ-mechanics



  

Key idea #1 (of 4):
Use GUIs to visualize typed values. 

GUI structure follows type.

GUI content presents value.

Functions visualize as interactive GUIs.

“Tangible values”



  

Base type values are widgets.



  

Pairs lay out horizontally.

“,” in (α , β) and (a,b)



  

Functions lay out vertically.

“→”
in

 α → β
and

λ a → b



  

Functions may be

curried or uncurried.



  

Functions visualize

as interactive GUIs.



  

Key idea #2:
Users make new TVs by fusion. 

Select compatible input & output,

which disappear.

Everything else remains,

fused into a single new TV.



  R → Region          R                          Region

TV fusion subsumes 

function application.



  R → Region       R → R                    R → Region

TV fusion subsumes 

function composition.



  

Fusion may reach into nested inputs.

   R → (R,R)→Bool          R → R         R → R → R→Bool



  

Let's take a look.

demo



  

Where are we?

Eros user experience

λ-mechanics



  

Key idea #3:
Keep visualization & value 

combined and separable.

type TV a = (Out a, a)

Operate on both parts in tandem

Combined for convenience

Separable for composability



  

Visualizations assemble 

as types and values do.

type Out a = ...
put     :: Put a -> Out a
opair   :: Out a -> Out b -> Out (a, b)
olambda :: In  a -> Out b -> Out (a->b)
type In a = ...
get   :: Get a -> In a
ipair :: In a -> In b -> In (a,b)



  

Key idea #4:
Translate gestural fusion to

combinator sequences.

“Deep application”.  Reaches buried
arguments,
functions, and
inputs.

Define for values & extend to TVs.



  

We already have the tools to 

aim functions at buried arguments.

first  :: (a -> a') -> ((a, b) -> (a',b ))
second :: (b -> b') -> ((a, b) -> (a ,b'))
result :: (b -> b') -> ((a->b) -> (a->b'))

first        f      = \ (a, b) -> (f a,b  )
second       g      = \ (a, b) -> (a  ,g b)
result       g      = \   f    ->   g . f



  

Compositions describe type paths 

to edit deeply buried arguments.

sf    :: (b->b') -> (a,(b ,c))
                 -> (a,(b',c))
sf    =  second.first
 
frsrf :: (c->c') -> (a->(f,b->(c ,g)),e)
                 -> (a->(f,b->(c',g)),e)
frsrf =  first.result.second.result.first



  

A similar game 

reaches buried functions.

funFirst ::
 (d -> (c->a)) -> ((d,b) -> (c->(a,b)))

Promotes a function extractor

Similarly, funSecond, funResult
Form type paths, as before.



  

The final combinators reach

buried inputs.



  

These tools generalize.

first and second work on arrows.
Add DeepArrow subclass & instances for
visualizations & pairings,
types, code, etc.



  

Functional programming 

can be artist-friendly.

Use GUIs to visualize typed values.

Users make new TVs by fusion.

Viz & value combined and separable.

Gestural fusion via combinator sequences.



  

To explore

Tangible polymorphism?

Direct structural tweaks

Symmetric In/Out (ilambda)

“GUIs are types” as GUI design guide

TVs as composable MVC


