Beautiful differentiation

Conal Elliott

LambdaPix
1 September, 2009 ICFP

Differentiation

Derivatives have many uses.

For instance,

- optimization
- root-finding
- surface normals
- curve and surface tessellation

There are three common differentiation techniques.

- Numeric
- Symbolic
- "Automatic" (forward \& reverse modes)

What's a derivative?

For scalar domain:

$$
\begin{gathered}
d:: \text { Scalar } s \Rightarrow(s \rightarrow s) \rightarrow(s \rightarrow s) \\
d f x=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-f x}{\varepsilon}
\end{gathered}
$$

What's a derivative?

For scalar domain:

$$
\begin{gathered}
d:: \text { Scalar } s \Rightarrow(s \rightarrow s) \rightarrow(s \rightarrow s) \\
d f x=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-f x}{\varepsilon}
\end{gathered}
$$

What about non-scalar domains?
Return to this question later.

Aside: We can treat functions like numbers.

```
instance Num \(\beta \Rightarrow \operatorname{Num}(\alpha \rightarrow \beta)\) where
    \(u+v=\lambda x \rightarrow u x+v x\)
    \(u * v=\lambda x \rightarrow u x * v x\)
instance Floating \(\beta \Rightarrow\) Floating \((\alpha \rightarrow \beta)\) where
    \(\sin u=\lambda x \rightarrow \sin (u x)\)
    \(\cos u=\lambda x \rightarrow \cos (u x)\)
```


We can treat applicatives like numbers.

```
instance Num \(\beta \Rightarrow \operatorname{Num}(\alpha \rightarrow \beta)\) where
    \((+)=\) liftA \(_{2}(+)\)
    \((*)=\operatorname{lift} A_{2}(*)\)
instance Floating \(\beta \Rightarrow\) Floating \((\alpha \rightarrow \beta)\) where
    \(\sin =\) fmap \(\sin\)
    \(\cos =\) fmap \(\cos\)
```


What is automatic differentiation?

- Computes function \& derivative values in tandem
- "Exact" method
- Numeric, not symbolic

Scalar, first-order AD

Overload functions to work on function/derivative value pairs:
data $D \alpha=D \alpha \alpha$
For instance,

$$
\begin{aligned}
& D a a^{\prime}+D b b^{\prime}=D(a+b)\left(a^{\prime}+b^{\prime}\right) \\
& D a a^{\prime} * D b b^{\prime}=D(a * b)\left(b^{\prime} * a+a^{\prime} * b\right) \\
& \sin \left(D a a^{\prime}\right)=D(\sin a)\left(a^{\prime} * \cos a\right) \\
& \operatorname{sqrt}\left(D a a^{\prime}\right)
\end{aligned}=D\left(\text { sqrt a) } \left(a^{\prime} /(2 * \text { sqrt a) }) ~ l\right.\right.
$$

Scalar, first-order AD

Overload functions to work on function/derivative value pairs:
data $D \alpha=D \alpha \alpha$
For instance,

$$
\begin{aligned}
& D a a^{\prime}+D b b^{\prime}=D(a+b)\left(a^{\prime}+b^{\prime}\right) \\
& D a a^{\prime} * D b b^{\prime}=D(a * b)\left(b^{\prime} * a+a^{\prime} * b\right) \\
& \sin \left(D a a^{\prime}\right)=D(\sin a)\left(a^{\prime} * \cos a\right) \\
& \operatorname{sqrt}\left(D a a^{\prime}\right)
\end{aligned}=D\left(\text { sqrt a) } \left(a^{\prime} /(2 * \text { sqrt a) })\right.\right. \text {) }
$$

Are these definitions correct?

What is automatic differentiation - really?

- What does AD mean?
- How does a correct implementation arise?
- Where else might these answers take us?

What does AD mean?

What does AD mean?

data $D \alpha=D \alpha \alpha$

$$
\begin{aligned}
& t o D::(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow D \alpha) \\
& t o D f=\lambda x \rightarrow D(f x)(d f x)
\end{aligned}
$$

Spec: toD combinations correspond to function combinations, e.g.,

$$
\begin{aligned}
t o D u+t o D v & \equiv t o D(u+v) \\
t o D u * t o D v & \equiv t o D(u * v) \\
r e c i p(t o D u) & \equiv t o D(r e c i p u) \\
\sin (t o D u) & \equiv t o D(\sin u) \\
\cos (t o D u) & \equiv t o D(\cos u)
\end{aligned}
$$

l.e., toD preserves structure.

How does a correct implementation arise?

How does a correct implementation arise?

Goal: $\quad \forall u \cdot \sin (t o D u) \equiv t o D(\sin u)$

How does a correct implementation arise?

Goal: $\quad \forall u \cdot \sin (t o D u) \equiv t o D(\sin u)$

Simplify each side:

$$
\begin{aligned}
\sin (t o D u) & \equiv \lambda x \rightarrow \sin (t o D u x) \\
& \equiv \lambda x \rightarrow \sin (D(u x)(d u x)) \\
t o D(\sin u) & \equiv \lambda x \rightarrow D(\sin u x) \quad(d(\sin u) x) \\
& \equiv \lambda x \rightarrow D((\sin \circ u) x)((d u * \cos u) x) \\
& \equiv \lambda x \rightarrow D(\sin (u x)) \quad(d u x * \cos (u x))
\end{aligned}
$$

How does a correct implementation arise?

Goal: $\quad \forall u \cdot \sin (t o D u) \equiv t o D(\sin u)$

Simplify each side:

$$
\begin{aligned}
\sin (t o D u) & \equiv \lambda x \rightarrow \sin (t o D u x) \\
& \equiv \lambda x \rightarrow \sin (D(u x)(d u x)) \\
t o D(\sin u) & \equiv \lambda x \rightarrow D(\sin u x) \quad(d(\sin u) x) \\
& \equiv \lambda x \rightarrow D((\sin \circ u) x)((d u * \cos u) x) \\
& \equiv \lambda x \rightarrow D(\sin (u x)) \quad(d u x * \cos (u x))
\end{aligned}
$$

Sufficient:

$$
\sin (D u x d u x)=D(\sin u x)(d u x * \cos u x)
$$

Where else might these answers take us?

Where else might these answers take us?

In this talk

- Prettier definitions
- Higher-order derivatives
- Higher-dimensional functions

Digging deeper - the scalar chain rule

$$
d(g \circ u) x \equiv d g(u x) * d u x
$$

For scalar domain \& range. Variations for other dimensions.

Define and reuse:

$$
(g \bowtie d g)(D u x d u x)=D(g u x)(d g u x * d u x)
$$

For instance,

$$
\begin{aligned}
& \sin =\sin \bowtie \cos \\
& \cos =\cos \bowtie \lambda x \rightarrow-\sin x \\
& \operatorname{sqrt}=\operatorname{sqrt} \bowtie \lambda x \rightarrow \operatorname{recip}(2 * \operatorname{sqrt} x)
\end{aligned}
$$

Function overloadings make for prettier definitions.

```
instance Floating \(\alpha \Rightarrow\) Floating ( \(D \alpha\) ) where
    \(\exp =\exp \bowtie \exp\)
    \(\log =\log \bowtie\) recip
    sqrt \(=\) sqrt \(\bowtie \operatorname{recip}(2 * s q r t)\)
    \(\sin =\sin \bowtie \cos\)
    \(\cos =\cos \bowtie-\sin\)
    \(\operatorname{acos}=\operatorname{acos} \bowtie \operatorname{recip}(-\operatorname{sqrt}(1-\operatorname{sqr}))\)
    atan \(=\operatorname{atan} \bowtie \operatorname{recip}(1+\) sqr \()\)
    \(\sinh =\sinh \bowtie \cosh\)
    \(\cosh =\cosh \bowtie \sinh\)
```

$\operatorname{sqr} x=x * x$

Scalar, higher-order AD

Generate infinite towers of derivatives (Karczmarczuk 1998):
data $D \alpha=D \alpha(D \alpha)$
Suffices to tweak the chain rule:

$$
\begin{array}{lll}
(g \bowtie d g) \quad\left(D u x_{0} d u x\right) & =D\left(g u x_{0}\right)\left(d g u x_{0} * d u x\right) & \text {-- old } \\
(g \bowtie d g) u x @\left(D u x_{0} d u x\right)=D\left(g u x_{0}\right)(d g u x * d u x) & \text {-- new }
\end{array}
$$

Most other definitions can then go through unchanged.
The derivations adapt.

What's a derivative - really?

For scalar domain:

$$
d f x=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-f x}{\varepsilon}
$$

What's a derivative - really?

For scalar domain:

$$
d f x=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-f x}{\varepsilon}
$$

Redefine: unique scalar s such that

$$
\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-f x}{\varepsilon}-s \equiv 0
$$

What's a derivative - really?

For scalar domain:

$$
d f x=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-f x}{\varepsilon}
$$

Redefine: unique scalar s such that

$$
\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-f x}{\varepsilon}-s \equiv 0
$$

Equivalently,

$$
\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-f x-s \cdot \varepsilon}{\varepsilon} \equiv 0
$$

or

$$
\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-(f x+s \cdot \varepsilon)}{\varepsilon}=0
$$

What's a derivative - really?

What's a derivative - really?

$$
\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-(f x+s \cdot \varepsilon)}{\varepsilon} \equiv 0
$$

Now generalize: unique linear map T such that:

$$
\lim _{\varepsilon \rightarrow 0} \frac{|f(x+\varepsilon)-(f x+T \varepsilon)|}{|\varepsilon|} \equiv 0
$$

What's a derivative - really?

$$
\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-(f x+s \cdot \varepsilon)}{\varepsilon} \equiv 0
$$

Now generalize: unique linear map T such that:

$$
\lim _{\varepsilon \rightarrow 0} \frac{|f(x+\varepsilon)-(f x+T \varepsilon)|}{|\varepsilon|} \equiv 0
$$

Derivatives are linear maps.

Captures all "partial derivatives" for all dimensions.
See Calculus on Manifolds by Michael Spivak.

The chain rules all unify into one.

Generalize from

$$
d(g \circ u) x \equiv d g(u x) * d u x
$$

etc

The chain rules all unify into one.

Generalize from

$$
d(g \circ u) x \equiv d g(u x) * d u x
$$

etc to

$$
d(g \circ u) x \equiv d g(u x) \circ d u x
$$

Generalized derivatives

Derivative values are linear maps: $\alpha \multimap \beta$.

$$
\begin{aligned}
d & ::(\text { Vector s } \alpha, \text { Vector } s \beta) \\
& \Rightarrow(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow(\alpha \rightarrow \beta))
\end{aligned}
$$

First-order AD:
data $\alpha \triangleright \beta=D \beta(\alpha \multimap \beta)$
Higher-order AD:
data $\alpha \triangleright^{*} \beta=D \beta\left(\alpha \triangleright^{*}(\alpha \multimap \beta)\right)$

$$
\approx \beta \times(\alpha \multimap \beta) \times(\alpha \multimap(\alpha \multimap \beta)) \times \ldots
$$

What's a linear map?

Preserves linear combinations:

$$
h\left(s_{1} \cdot u_{1}+\ldots+s_{n} \cdot u_{n}\right) \equiv s_{1} \cdot h u_{1}+\ldots+s_{n} \cdot h u_{n}
$$

What's a linear map?

Preserves linear combinations:

$$
h\left(s_{1} \cdot u_{1}+\ldots+s_{n} \cdot u_{n}\right) \equiv s_{1} \cdot h u_{1}+\ldots+s_{n} \cdot h u_{n}
$$

Fully determined by behavior on basis of α, so

$$
\text { type } \alpha \multimap \beta=\text { Basis } \alpha \xrightarrow{M} \beta
$$

Memoized for efficiency.

What's a linear map?

Preserves linear combinations:

$$
h\left(s_{1} \cdot u_{1}+\ldots+s_{n} \cdot u_{n}\right) \equiv s_{1} \cdot h u_{1}+\ldots+s_{n} \cdot h u_{n}
$$

Fully determined by behavior on basis of α, so

$$
\text { type } \alpha \multimap \beta=\text { Basis } \alpha \xrightarrow{M} \beta
$$

Memoized for efficiency.

Vectors, matrices, etc re-emerge as memo-tries. Statically dimension-typed!

What's a basis?

class Vector s $v \Rightarrow$ HasBasis s v where type Basis $v:: *$
coord $\quad:: v \rightarrow($ Basis $v \rightarrow s)$
basisValue $::$ Basis $v \rightarrow v$

```
instance HasBasis Double Double where
    type Basis Double \(=()\)
    coord \(s \quad=\lambda() \rightarrow s\)
    basisValue () \(=1\)
```

instance (HasBasis s u, HasBasis s v)
\Rightarrow HasBasis $s(u, v)$ where
type Basis (u,v) = Basis u 'Either' Basis v
coord $(u, v)=$ coord u 'either' coord v
basisValue $($ Left a) $=($ basisValue $a, 0)$
basisValue (Right b) $=(0$, basisValue $b)$

Automatic differentiation - naturally

Can we make $A D$ even simpler?

Recall our function overloadings:

$$
\begin{aligned}
& \text { instance } \operatorname{Num} \beta \Rightarrow \text { Num }(\alpha \rightarrow \beta) \text { where } \\
& \qquad(+)=\operatorname{lift}_{2}(+) \\
& (*)=\operatorname{lift}_{2}(*)
\end{aligned}
$$

instance Floating $\beta \Rightarrow$ Floating $(\alpha \rightarrow \beta)$ where
$\sin =f m a p \sin$
$\cos =$ fmap cos

These definitions are standard for applicative functors.
Could they work for D ?

Automatic differentiation - naturally

Could we simply define AD via the standard

$$
\sin =f m a p \sin
$$

etc? What is fmap? Require to D_{x} be a natural transformation:

$$
f m a p g \circ t o D_{x} \equiv t o D_{x} \circ f m a p g
$$

where

$$
t o D_{x} u=D(u x)(d u x)
$$

Define fmap from this naturality condition.

Derive AD naturally

$$
\begin{aligned}
t o D_{x}(f m a p g u) & \equiv t o D_{x}(g \circ u) \\
& \equiv D((g \circ u) x)(d(g \circ u) x) \\
& \equiv D(g(u \times))(d g(u \times) \circ d u x) \\
\text { fmap } g\left(t o D_{x} u\right) & \equiv f m a p g(D(u \times)(d u x))
\end{aligned}
$$

Sufficient definition:
fmap $g(D u x d u x)=D(g u x)(d g u x \circ d u x)$
Similar derivation for liftA S $_{2}$ for $(+),(*)$, etc).

Sufficient definition:

$$
f m a p g(D u x d u x)=D(g u x)(d g u x \circ d u x)
$$

Oops. d doesn't have an implementation.

Solution A: Inline fmap for each fmap g and rewrite $d g$ to known derivative.

Solution B: Generalize Functor to allow non-function arrows, and replace functions by differentiable functions.

Conclusions

- Specification as a structure-preserving semantic function.
- Implementation derived systematically from specification.
- Prettier implementation via functions-as-numbers.
- Infinite derivative towers with nearly no extra code.
- Generalize to differentiation over vector spaces.
- Even simpler specification/derivation via naturality.

