
Functional Image Synthesis

Conal Elliott
Microsoft Research
One Microsoft Way

Redmond, WA 98052

Abstract

Software used to produce visual beauty is usually created with imperative programming languages
and is typically unbeautiful itself. One fundamental reason for this situation is that these languages
reflect the underlying discreteness and sequentiality of the computers that run them. The essential nature
of what an image isbecomes muddled with details ofhow to display iton a computer. We can, however,
generate beautiful images with beautiful programs, by making a shift of programming paradigm, from
doingtobeing. This claim is illustrated by many examples expressed inPan, an image synthesis language
with a freely available optimizing compiler.

1 Introduction

Visual artwork and program source code typically have very different properties, appealing to different
modes of perception and comprehension. Art is usually percieved first as a whole and then dissected into
parts for more detailed examination. Programs, on the other hand, are usually perceived in pieces from the
beginning, as sequences of small operations, acting on one datum at a time. It is only after patient and
repeated examination, internalization, and creative reconstruction that the whole emerges. (This difference
has been noted for images vs language in general and written language in particular. See especially [16].)

Why point out this contrast? Is it of any harm that reading a program is so unlike viewing an artwork?
After all, programs are meant to be understood and acted on by unfeeling, sequential machines, right?
Not entirely. They also exist for humans to express ideas with clarity, to illuminate and inspire, and to
be combined with other such idea expressions for forming richer results. To serve these human purposes,
programs should be expressed as close as possible to the essence of the underlying ideas, stripping away
incidental artifacts of the machines on which they are intended to execute.

In contrast with the prevailing tendencies of art and programs, some art forms embrace sequentiality
(comics [15]), and some programming embraces the whole, in which even the smallest pieces of programs
produce and transform the large and even the infinite. In this paper, I will demonstrate some of this latter
form of programming in its use to create images.

In college math, we discover that spaces can have many dimensions, even infinite, and even uncountably
many dimensions. We learn to talk about spaces of functions. Every “point” in such a space is an infinite
thing, and yet, once accustomed, we can play with several of them at once, measuring distance between

them, etc. This is a beautiful and awe-inspiring idea, even a brush with the Divine. It is an invitation to
“hold Infinity in the palm of your hand,” in the words of William Blake.

When conventional programming is applied to image production, the beauty is almost all in the display,
very little in the program. I think that the causes for this situation are deeply rooted, and are as described by
John Backus in his 1977 Turing Award lecture:

Conventional programming languages are growing ever more enormous, but not stronger.
Inherent defects at the most basic level cause them to be both fat and weak: their primitive
word-at-a-time style of programming inherited from their common ancestor–the von Neumann
computer, their close coupling of semantics to state transitions, their division of programming
into a world of expressions and a world of statements, their inability to effectively use pow-
erful combining forms for building new programs from existing ones, and their lack of useful
mathematical properties for reasoning about programs. [2]

Backus then went on to explore the harmful properties of “von Neumann” programming languages (i.e.,
ones that closely follow the principles of the sequential computer, pioneered by John von Neumann), and
to offer an alternative,functional programming, drawing a compelling contrast between the two styles.
Although his Turing lecture was given nearly 25 years ago, the practice of programming continues to be
dominated by the “primitive word-at-a-time” style that Backus decried. I hope to persuade you that this
need not be the case in image synthesis, but rather that beautiful images may be formed with beautiful
programs.

This paper presents and illustrates an approach to the programming of image synthesis and transfor-
mation that is far removed from the sequential nature of the underlying computer architecture. Unlike
the conventional approach, ideal images are described and manipulated directly. Even the smallest sub-
expressions create and manipulate entire infinite images. The task of turning the described ideal images into
finite and discrete output for computer screen or paper is entirely automated, and so does not compromise
the simplicity, clarity, and perhaps most importantly, the composability of the image programs.

The language used in this paper is implemented as a freely available optimizing compiler whose work-
ings are described in [6]. It produces not just static pictures as shown here, but fastinteractiveimages. I
encourage you to visit the web site1, peruse the image gallery, download and play with precompiled inter-
active images, and then use the language and compiler to create your own examples.

Concretely, the contributions of this work are as follows:

• A strikingly simple but precise model for resolution-independent images of any type, fitting neatly
into modern typed functional languages.

• Within this model, precise and simple definitions for a library of useful image building blocks.

• Demonstration that the simple model is capable of producing a wide range of visually interesting
images.

2 What is an “Image”?

When languages are given meaning precisely, it is often by being based on a precise mathematical model.
A good model strips away incidental details, leaving the essence behind. A first question to consider then is

1http://research.microsoft.com/˜conal/pan

http://research.microsoft.com/~conal/pan

what is a good model for images, that is,what is the essence of “image”?

One natural temptation is to confuse the essential notion with a familiar concrete embodiment. For
instance, an artist or art lover might consider “image” to mean a painting or drawing, rectangular in shape,
preferably framed. A photographer might come to think of images as photographic prints, or wall-projected
photographic slides. A computer user or programmer might say that an image is the contents of a file using
any of a number of formats, e.g., JPEG or PNG.

All of these candidates for the notion of an image carry excess baggage that comes from particular
technologies of image production, storage or use. In extracting an essential notion of image, let’s try to strip
away these incidental artifacts.2

• Drop the requirement of rectangularity, allowing images to have any shape at all. Circular or oval
matting is already a hint that many pictures feel uncomfortable inside rectangular frames.

• Drop the assumption of finiteness. Most representational pictures are finitely-cropped versions of a
much larger scene, which the artist invites the viewer to imagine. This larger scene is an image as
well, whether or not it is ever rendered physically. That larger scene may itself be part of a still larger
one, and so on. Consider a piece of fruit, in a bowl, on a table, in the kitchen, in a house, on a hill, at
the foot of a mountain range, in a far-away country, and so on.

• Drop the discreteness inherent in most computer-based and photographic image representations. Those
discreteimages are generally mere approximations of an underlyingcontinuousimage. (In other
words, essential images are infinite in resolution.)

Saying that rectangularity, finiteness, and discreteness are all technological artifacts, rather than essential
properties of images, is not to judge them unimportant. Artists, photographers and graphic designers are
craftspeople enough not only to cope with these artifacts, but also to exploit them in creative ways, such as
when the cropping of a picture imparts a feeling of confinement or of openness.

I propose the following as an essential notion of “image”: an assignment of a color to every point in
infinite, continuous, two-dimensional, Euclidean space. We will want to compose images out of simpler
ones, so it will be useful to accommodate the desire for finite, though usually non-rectangular, images. A
simple trick suffices: allow colors to have the property of partial opacity, ranging from fully transparent
to fully opaque. A “finite image” then is simply one that is fully transparent outside of a finitely bounded
region of space. Images may then be composed in layers, as illustrated in many examples throughout this
paper. Partially transparent colors allow lower layers to show through, mixing with upper layers.

Infinity of extent and of resolution support two dual desires of an image’s observer. Infinity of extent
allows the observer to “zoom out”, or step back from an image, getting more and more of the big picture,
while losing the details. Infinity of resolution allows the observer to zoom in, or step closer, getting more
and more detail while losing sight altogether of areas outside of the area of focus.

3 Expressing functions

I said that an image is an “assignment” of colors to every point in (infinite) two-dimensional (“2D”) space.
Fortunately, mathematics offers a precise and well-studied notion of such assignments, under the name of

2I do not want to be dogmatic here, arguing that there is one true essence of “image”. Rather, removing these “incidental”
aspects allows what I find to be a simpler semantic foundation on which to build a language. The rest of the article is offered as
evidence. Note that this practice of removing inessentials may have no ultimate stopping place short of oblivion.

“function”. One might express the definition of images as follows:3

type Image = Point → Color — first try

where

type Point = (Float , Float) — Cartesian coords

It is useful, however, to generalize the semantic model of images so that the range of an image is not
necessarilyColor , but an arbitrary type. For this reason,Image is really a typeconstructor, parameterized
by an arbitrary typec:

type Image c = Point → c

It can also be useful to generalize the domain of images, from points in 2D space to other types (such as
3D space or points with integer coordinates), but we shall not exploit that generality in this paper.

Boolean-valued “images” are useful for representing arbitrarily complex spatial regions (or “point sets”)
for complex image masking. This interpretation is just the usual identification between sets and characteris-
tic functions:

type Region = Image Bool

As a first example, Figure 1 shows an infinitely tall vertical strip of unit width,vstrip, as defined below.4

vstrip :: Region
vstrip (x , y) = |x | ≤ 1/2

For a slightly more complex example, consider the checkered region shown in Figure 2. The trick is to
take the floor of the pixel coordinates and test whether the sum is even or odd. Wheneverx or y passes an
integer value, the parity ofbxc+ byc changes.

checker :: Region
checker (x , y) = even (bxc + byc)

Images need not have straight edges and right angles. Figure 3 shows a collection of concentric black&white
rings. The definition is similar tochecker , but uses the distance from the origin to a given point, as computed
by distO .

altRings p = even bdistO pc
3All definitions in this paper are expressed in Haskell [13]. Comments follow “ — ”. We take some small liberties with

notation. As described in [6], our implementation really uses “expression types” with names likeFloatE instead ofFloat , in order
to optimize and compile Pan programs into efficient machine code. Operators and functions are overloaded to work on expression
types where necessary, but a few require special names, such as “== ∗” and “notE ”. The definitions used in this paper could,
however, be used directly as a valid but less efficient implementation.

4 Each figure shows an origin-centered finite window onto an infinite image and is annotated with the width of the window in
logical coordinates. For instance, this figure shows the window[−7/2, 7/2]× [−7/2, 7/2] onto the infinitevstrip image.

[width = 7]
Figure 1 vstrip

[width = 7]
Figure 2 checker

The distance-to-origin function is also easy to define:

distO (x , y) =
√

x 2 + y2

It is often more convenient to define images using polar coordinates (ρ, θ) rather than rectangular coor-
dinates (x , y). The following definitions are helpful.

type PolarPoint = (Float , Float)

fromPolar :: Point → PolarPoint
toPolar :: PolarPoint → Point
fromPolar(ρ, θ) = (ρ · cos θ, ρ · sin θ)
toPolar (x , y) = (distO (x , y), atan2 y x)

Figure 4 shows a “polar checkerboard”, defined using polar coordinates. The integer parametern deter-
mines the number of alternations, and hence is twice the number of slices.5 (We will see a simpler definition
of polarChecker in Section 8.)

polarChecker :: Int → Region
polarChecker n = checker ◦ sc ◦ toPolar

where
sc (ρ, θ) = (ρ, θ · fromInt n/π)

For grey-scale images, we can use as “pixel” values in the range in the real interval[0, 1]. This constraint
is not expressible in the type system of our language, but as a reminder, we introduce the type synonymFrac:

5 The “◦” operator is function composition; andfromInt turns an integer into some other type, hereFloat .

[width = 10]
Figure 3 altRings

[width = 10]
Figure 4 polarChecker 10

type Frac = Float — In [0, 1]

Figure 5 shows a wavy grey-scale image that shifts smoothly between white (zero) and black (one) in
concentric rings.

wavDist :: Image Frac
wavDist p = (1 + cos (π · distO p)) / 2

4 Colors

Pan colors are quadruples of real numbers in[0, 1], with the first three components for blue, green, and red
(BGR) components, and the last for transparency (“alpha”):

type Color = (Frac, Frac, Frac, Frac) — BGRA

The blue, green, and red components will have alpha multiplied in already, and so must less than or
equal to alpha (i.e., we are using “pre-multiplied alpha” [18]). Given this constraint, there is exactly one
fully transparent color:

invisible = (0, 0, 0, 0)

We are now in a position to define some familiar (completely opaque) colors:

red = (0, 0, 1, 1)

[width = 10]
Figure 5 wavDist

[width = 1]
Figure 6 bilerpBRBW

green = (0, 1, 0, 1)
. . .

It is often useful to interpolate (“lerp”) between colors, to create a smooth transition through space or
time. This is the purpose oflerpC w c1 c2. The first parameterw is a fraction, indicating the relative weight
of the colorc1. The weight assigned to the second colorc2 is 1− w :

lerpC :: Frac → Color → Color → Color
lerpC w (b1, g1, r1, a1) (b2, g2, r2, a2) = (h b1 b2, h g1 g2, h r1 r2, h a1 a2)

where
h x1 x2 = w · x1 + (1 − w) · x2

With lerpC , we can define other useful functions, e.g.,

lighten, darken :: Fraction → Color → Color
lighten x c = lerpC x c white
darken x c = lerpC x c black

It is also easy to extend color interpolation to two dimensions, by making three applications of lin-
ear interpolation–two horizontal and one vertical. Figure 6 illustrates this operation, and is centered at
(1/2, 1/2) rather than the origin.

bilerpBRBW = bilerpC black red blue white

bilerpC ::Color → Color → Color → Color → (Frac,Frac) → Color
bilerpC ll lr ul ur (dx , dy) = lerpC dy (lerpC dx ll lr) (lerpC dx ul ur)

Because of the type invariant on colors, this definition only makes sense ifdx anddy fall in the interval
[0, 1].

A operation similar tolerpC is color overlay, which will be used in the next section to define image
overlay. The result is a blend of the two colors, depending on the opacity of the top (first) color. A full
discussion of this definition can be found in [18]:

(b1, g1, r1, a1) ‘overC ‘ (b2, g2, r2, a2) = (h b1 b2, h g1 g2, h r1 r2, h a1 a2)
where

h x1 x2 = x1 + (1 − a1) · x2

(Note the use of backquotes to turn the nameoverC into an infix operator.) Not surprisingly, color-
valued images are of particular interest, so we’ll use a convenient abbreviation:

type ImageC = Image Color

5 Pointwise lifting

Many image operations result from pointwise application of operations on one or more values. For example,
the overlay of one image on top of another can be defined in terms ofoverC :

over :: ImageC → ImageC → ImageC
(top ‘over ‘ bot) p = top p ‘overC ‘ bot p

This commonly arising pattern is supported by a family of “lifting” functionals:6

lift1 :: (a → b) → (p → a) → (p → b)
lift2 :: (a → b → c) → (p → a) → (p → b) → (p → c)
lift3 :: (a → b → c → d) → (p → a) → (p → b) → (p → c) → (p → d). . .

lift1 h f1 p = h (f1 p)
lift2 h f1 f2 p = h (f1 p) (f2 p)
lift3 h f1 f2 f3 p = h (f1 p) (f2 p) (f3 p). . .

Thenover = lift2 overC .

Other examples of pointwise lifting includes selection (cond) and interpolation (lerpI) between two
images:7

cond :: Image Bool → Image c → Image c → Image c
cond = lift3 (λ a b c → if a then b else c)

lerpI :: Image Frac → ImageC → ImageC → ImageC
lerpI =lift3 lerpC

6For intuition, think ofp asPoint , so thatp → a = Image a and similarly forb, c, d .
7In a call-by-value language,cond would need to be defined differently, in order to avoid unnecessary evaluation.

Zero-ary lifting is already provided by Haskell’sconst function:

const :: a → (p → a)
const a p = a

Givenconst , we can define the empty image and give convenient names to several opaque, constant-color
images:

empty = const invisible
whiteI = const white
blackI = const black
redI = const red
. . .

Note thatall pointwise-lifted functions are polymorphic over the domain type (not necessarilyPoint),
and so could work for 1D images (e.g., interpreted as sound), 3D images (sometimes called “solid textures”),
or ones over discrete or abstract domains as well.

Figure 7 shows a simple example of image interpolation based on the examples in Figures 5, 2, and 4.
SincelerpI works on color images, we must first color the region arguments.

bwIm, byIm :: Region → ImageC

bwIm reg = cond reg blackI whiteI
byIm reg = cond reg blueI yellowI

As a simpler example, Figure 8 interpolates between blue and yellow, and will be useful in several later
examples.

ybRings = lerpI wavDist blueI yellowI

6 Spatial transforms

In computer graphics, spatial transforms are commonly represented by matrices, and hence are restricted
to special classes like linear, affine, or projective. Application of transformations is implemented as a ma-
trix/vector multiplication, and composition as matrix/matrix multiplication. In fact, this representation is so
common that transforms are often thought of asbeingmatrices. A simpler and more general point of view,
however, is that transforms are simply space-to-space functions.

type Transform = Point → Point

It is then easy to define the familiar affine transforms:

type Vector = (Float ,Float)
translateP :: Vector → Transform
translateP (dx , dy) (x , y) = (x + dx , y + dy)

[width = 7]
Figure 7 lerpI wavDist(bwIm (polarChecker 10))

(byIm checker)
[width = 10]

Figure 8 ybRings

scaleP :: Vector → Transform
scaleP (sx , sy) (x , y) = (sx · x , sy · y)

uscaleP :: Float → Transform — uniform
uscaleP s = scaleP (s, s)

rotateP :: Float → Transform
rotateP θ (x , y) = (x · cos θ − y · sin θ , y · cos θ + x · sin θ)

By definition, transforms map points to points. Can we “apply” them, in some sense, to map images into
transformed images?

applyTrans :: Transform → Image c → Image c

A look at the definitions of theImage andTransform types suggests the following simple definition:

applyTrans xf im ?= im ◦ xf — wrong

Figures 9 and 10 show a unit diskudisk and the result ofudisk ◦ uscaleP 2, where

udisk :: Region
udisk p = distO p < 1

[width = 3]
Figure 9 udisk

[width = 3]
Figure 10 udisk ◦ uscaleP 2

Notice that theuscaleP -composedudisk ishalf rather than twice the size ofudisk . (Similarly,udisk ◦ translateP (1, 0)
movesudisk to theleft rather than right.) The reason is thatuscaleP 2 maps input points to be twice as far
from the origin, so points have to start out within1/2 unit of the origin in order for their scaled counterparts
to be within 1 unit.

In general, to transform an image, we mustinverselytransform sample points before feeding them to the
image being transformed:

applyTrans xf im = im ◦ xf −1

While this definition is simple and general, it has the serious problem of requiring inversion of arbitrary
spatial mappings. Not only is it sometimes difficult to construct inverses, but also some interesting mappings
are many-to-one and hence not invertible. In fact, from an image-centric point-of-view, weonly need the
inverses and not the transforms themselves. For these reasons, we simply construct the transforms in inverted
form, and do not useapplyTrans.8

Because it can be mentally cumbersome always to think of transforms as functions and transform-
application as composition, Pan provides a friendly vocabulary of image-transforming functions:

type Filter c = Image c → Image c

translate, scale :: Vector → Filter c
uscale, rotate :: Float → Filter c

translate (dx , dy) im = im ◦ translateP(−dx , −dy)
scale (sx , sy) im = im ◦ scaleP (1/sx , 1/sy)
uscale s im = im ◦ uscaleP (1/s)
rotate θ im = im ◦ rotateP (−θ)

8Easy invertibility is one of the benefits of restricting transforms to be affine and representing them as matrices.

In addition to these familiar affine transforms, one can define any other kind of space-to-space function,
limited only by one’s imagination. For instance, here is a “swirling” transform. It takes each pointp and
rotates it about the origin by an amount that depends on the distance fromp to the origin. For predictability,
this transform takes a parameterr that gives the distance at which a point is rotated through a complete
circle (2π radians):

swirlP :: Float → Transform
swirlP r p = rotate (distO p · 2 π / r) p

swirl :: Float → Filter c — Image version
swirl r im = im ◦ swirlP (−r)

Applying theswirl effect tovstrip (Figure 1) defined earlier results in an infinite spiral whose arms thin
out away from the origin (Figure 11).

It will be useful to have compact names for transformations of color images:

type FilterC = Filter Color

7 Animation

Just as an image is a function of space, an animation is a function of continuous time. This model is adopted
from Fran [7, 5], and leads to temporal resolution independence, which allows animations to be transformed
in time, as easily as images are transformed in space.

As a simple animation example, Figure 12 shows whatswirl does to the half planexPos given by
x > 0. We square time to emphasize small and large values of theswirl parameter.

xPos :: Region
xPos (x , y) = x > 0

8 Region algebra

Boolean images are useful in many situations, and can be thought of as “regions” of space. This interpreta-
tion is just the usual identification between sets and characteristic functions:

type Region = Image Bool

Set operations are useful and easy to define:

(∩), (∪), xorR, (\) :: Region → Region → Region
compR :: Region → Region
universeR, emptyR :: Region

[width = 5]
Figure 11 swirl 1 vstrip

[duration = 2, width = 5]

Figure 12 λt → swirl (t2) xPos

(∩) = lift2 and
(∪) = lift2 or
xorR = lift1 xor
compR = lift1 not
universeR = const True
emptyR = const False
r \ r ′ = r ∩ compR r ′

Let’s see what we can do with these region operators. First, build an annulus out of our unit disk, given
an inner radius, by subtracting one disk from another:

annulus :: Frac → Region
annulus inner = udisk \ uscale inner udisk

Next, make a region consisting of alternating infinite pie wedges (Figure 14), which is a simplification
of Figure 4.

radReg :: Int → Region
radReg n = test ◦ toPolar

where
test (r , a) = even ba · fromInt n / πc

Putting these two together, we get Figure 13.

wedgeAnnulus :: Float → Int → Region
wedgeAnnulus inner n = annulus inner ∩ radReg n

[width = 2.5]
Figure 13 wedgeAnnulus 0.25 7

[duration = 8, width = 1]
Figure 14 radReg n for n = 0, . . . , 8

The xorR operator is useful for creating op art. For instance, Figure 15 is made from two copies of
altRings (Figure 3), shifted in opposite directions and combined withxorR.

shiftXor :: Float → Filter Bool
shiftXor r reg = reg ′ r ‘xorR‘ reg ′ (−r)

where
reg ′ d = translate (d , 0) reg

Why stop at two copies ofaltRings? For any givenn, the following definition distributesn copies of
altRings around a circle of radiusr and xors them all together (Figure 16).

xorgon :: Int → Float → Region → Region
xorgon n r = xorRs (map rf [0 .. n − 1])

where
rf i = translate (fromPolar (r , a)) altRings

where
a = fromInt i · 2 · π / fromInt n

The functionxorRs does for a list of regions whatxorR does for two.

xorRs :: [Region] → Region
xorRs = foldr xorR emptyR

Note also thatpolarChecker (Figure 4) can be redefined very simply by applyingxorR to altRings
(Figure 3) andradReg (Figure 14):

polarChecker n = altRings ‘xorR‘ radReg n

[width = 10]
Figure 15 shiftXor 2.6 altRings

[width = 7]

Figure 16 xorgon 8 (7/4) altRings

Similarly, one could usexorR and a coordinate-swapping filter to redefinechecker (Figure 2) in terms of a
region with alternating horizontal or vertical slabs,

One use for regions is to crop a color-valued image:

crop :: Region → FilterC
crop reg im = cond reg im empty

For instance, the title figures come from croppingybRings (Figure 8) with regions produced fromwedgeAnnulus
(left of title) or a swirledwedgeAnnulus (right).

9 Some polar transforms

TheswirlP function (from Section 6 and used to defineswirl) can be somewhat simplified by considering
points in polar rather than rectangular coordinates.9

swirlP r = polarXf (λ (ρ, θ) → (ρ, θ + ρ · 2π / r))

Note thatθ changes butρ does not.

The useful functionpolarXf is defined very simply:

polarXf :: Transform → Transform
polarXf xf = fromPolar ◦ xf ◦ toPolar

9In polar coordinates, a pointp is identified by a pair(ρ, θ), whereρ is the distance from the origin andθ is the angle between
the positiveX axis and the ray emanating fm the origin and passing throughp.

[width = 2.2]
Figure 17 radInvert checker

9.1 Turning things inside out.

Next, let’s consider a polar transform that changesρ but notθ. Simply multiplyingρ by a constant is
equivalent to uniform scaling (uscale). However,invertingρ has a striking effect (Figure 17):

radInvertP :: Transform
radInvertP = polarXf (λ (ρ, θ) → (1/ρ, θ))

radInvert :: Image c → Image c
radInvert im = im ◦ radInvertP

9.2 Radial ripples.

As another radial (ρ) transformation, we can multiplyρ by an amount that oscillates around 1 with a
given magnitudes, having a given numbern of periods asθ varies from 0 to2π. As usual, define an
image-transforming version as well:10

rippleRadP :: Int → Float → Transform
rippleRadP n s = polarXf $ λ (ρ, θ) → (ρ · (1 + s · sin (fromInt n · θ)), θ)
rippleRad :: Int → Float → Image c → Image c
rippleRad n s im = im ◦ rippleRadP n (−s)

In order to visualize the effect ofrippleRad , apply it toybRings (Figure 8). The result is Figure 18.

The examples so far have been infinite in size. We can also make finite ones by cropping against a
region. As a convenience, definecropRad as a function that crops an image to a disk-shaped region of a
given radius:

10The “$” operator is infix, right-associative, low-precedence function application. It often reduces the need for parentheses.

[width = 10]
Figure 18 rippleRad 8 0.3 ybRings

[width = 10]
Figure 19 swirl 8 $ cropRad 5$

rippleRad 5 0.3$ ybRings

cropRad :: Float → FilterC
cropRad r = crop (uscale r udisk)

To make the picture more interesting, let’s crop, ripple, then swirl (Figure 19).

10 Related Work

Peter Henderson began the game of functional geometry for image synthesis [9]. Since then there have been
several other such libraries, including [14, 19, 3, 1, 8, 7]. None have addressed the general notion of images.

Gerard Holzmann developed a system called “Pico”, which consisted of an editor, a simple language
for image transformations, and a machine-code generator for fast display. His delightful book shows many
examples, using photos of Bell Labs employees [10]. Pico’s model of images was the discrete rectangular
array of bytes, which could be interpreted as grey-scale values or other scalar fields. The host language
appears to have been very primitive, with essentially no abstraction mechanisms.

John Maeda’s “Design by Numbers” (DBN) is another language aimed at simplifying image synthesis,
sharing with Pan the goals of simplicity and encouragement of creative exploration [4]. In contrast, the DBN
language is squarely in the imperative style (doing rather thanbeing). Its programs are lists of commands
for outputting dots or line segments and changing internal state, with an image emerging as the cumulative
result. Like Pico, DBN presents a discrete notion of space, partitioned into a finite array of square pixels.

The Haskell “region server” [12] used characteristic functions to represent regions, in essentially the
same formulation as Pan (Section 8). Those regions were not used for visualization, nor were they general-
ized to range types other than Boolean. Paul Hudak also used regions for graphics [11]. There an algebraic

data-type represents regions, but an interpretation (semantics) is given by translating to a function from 2D
space to Booleans.

In his work on evolution for computer graphics, Karl Sims represented images as Lisp expressions over
variables with namesx , y , andt (addingz for solid textures) [17]. He did not exploit Lisp’s support for
higher-order functional programming for composing image functions.

11 Conclusions

For the purpose of image synthesis, imperative programming languages (including most object-oriented
ones) are unpleasantly “low-level” in the sense of Alan Perlis: “A programming language is low level when
its programs require attention to the irrelevant.”

This paper presents a simple model and high-levelfunctional programming language for images, as
functions from continuous 2D space to colors, and then tests the expressiveness of this model by means of
several examples. These examples represent just a hint at what can be done, and are far from exhaustive,
or even necessarily representative. I hope that readers are inspired to apply their own creativity to generate
images and animations that look very different from the examples in this paper.

12 Acknowledgements

Sigbjørn Finne and Oege de Moor collaborated on the implementation and provided fruitful discussions.
Brian Guenter suggested the project of an image manipulation language and optimizing compiler and has
provided helpful expertise. Koen Classen provided helpful comments on a related paper.

References

[1] Kavi Arya. A functional animation starter-kit.Journal of Functional Programming, 4(1):1–18, January
1994.

[2] John Backus. Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs.Communications of the ACM, 21(8):613–641, August 1978.

[3] Joel F. Bartlett. Don’t fidget with widgets, draw! Technical Report 6, DEC Western Digital Laboratory,
250 University Avenue, Palo Alto, California 94301, US, May 1991.

[4] John Maeda. Foreword by Paola Antonelli.Design By Numbers. MIT Press, May 1999.http:
//www.maedastudio.com/dbn .

[5] Conal Elliott. An embedded modeling language approach to interactive 3D and multimedia an-
imation. IEEE Transactions on Software Engineering, 25(3):291–308, May/June 1999. Special
Section: Domain-Specific Languages (DSL).http://research.microsoft.com/˜conal/
papers/tse-modeled-animation .

[6] Conal Elliott, Sigbjørn Finne, and Oege de Moor. Compiling embedded languages. In Walid Taha,
editor,Semantics, Applications and Implementation of Program Generation (SAIG). ICFP, September
2000.http://research.microsoft.com/˜conal/papers/saig00 .

http://www.maedastudio.com/dbn
http://www.maedastudio.com/dbn
http://research.microsoft.com/~conal/papers/tse-modeled-animation
http://research.microsoft.com/~conal/papers/tse-modeled-animation
http://research.microsoft.com/~conal/papers/saig00

[7] Conal Elliott and Paul Hudak. Functional reactive animation. InProceedings of the 1997
ACM SIGPLAN International Conference on Functional Programming, pages 263–273, Amsterdam,
The Netherlands, 9–11 June 1997.http://research.microsoft.com/˜conal/papers/
icfp97.ps .

[8] Sigbjorn Finne and Simon Peyton Jones. Pictures: A simple structured graphics model. InGlasgow
Functional Programming Workshop, Ullapool, July 1995.

[9] Peter Henderson. Functional geometry. InACM Symposium on LISP and Functional Programming,
pages 179–187, 1982.

[10] Gerard J. Holzmann.Beyond Photography — the Digital Darkroom. Prentice-Hall, Englewood Cliffs,
New Jersey, 1988. (Out of print).

[11] Paul Hudak.The Haskell School of Expression – Learning Functional Programming through Multi-
media. Cambridge University Press, New York, 2000.

[12] Paul Hudak and Mark P. Jones. Haskell vs. Ada vs. C++ vs Awk vs . . . an experiment in software
prototyping productivity. Technical report, Yale, 1994.

[13] SL Peyton Jones, RJM Hughes, L Augustsson, D Barton, B Boutel, W Burton, J Fasel, K Hammond,
R Hinze, P Hudak, T Johnsson, MP Jones, J Launchbury, E Meijer, J Peterson, A Reid, C Runciman,
and PL Wadler. Haskell 98: A non-strict, purely functional language.http://haskell.org/
definition , February 1999.

[14] Peter Lucas and Stephen N. Zilles. Graphics in an applicative context. Technical report, IBM Almaden
Research Center, 650 Harry Road, San Jose, CA 95120-6099, July 8 1987.

[15] Scott McCloud.Understanding Comics. Kitchen Sink Press, 1994.

[16] Leonard Shlain.The Alphabet versus the Goddess – The Conflict Between Word and Image. Pen-
guin/Arkana, 1998.

[17] Karl Sims. Artificial evolution for computer graphics.ACM Computer Graphics, 25(4):319–328, July
1991. SIGGRAPH ’91 Proceedings.

[18] Alvy Ray Smith. Image compositing fundamentals. Technical Report Technical Memo #4, Microsoft,
July 1995.http://www.alvyray.com/Memos .

[19] S.N. Zilles, P. Lucas, T.M. Linden, J.B. Lotspiech, and A.R. Harbury. The Escher document imaging
model. InProceedings of the ACM Conference on Document Processing Systems (Santa Fe, New
Mexico), pages 159–168, December 5–9 1988.

http://research.microsoft.com/~conal/papers/icfp97.ps
http://research.microsoft.com/~conal/papers/icfp97.ps
http://haskell.org/definition
http://haskell.org/definition
http://www.alvyray.com/Memos

	Introduction
	What is an ``Image''?
	Expressing functions
	Colors
	Pointwise lifting
	Spatial transforms
	Animation
	Region algebra
	Some polar transforms
	Related Work
	Conclusions
	Acknowledgements

