
Generalized Convolution and Efficient Language Recognition
(Extended version)

Conal Elliott

Target

conal@conal.net

July, 2019

Abstract

Convolution is a broadly useful operation with applications including signal processing, machine
learning, probability, optics, polynomial multiplication, and efficient parsing. Usually, however, this
operation is understood and implemented in more specialized forms, hiding commonalities and limiting
usefulness. This paper formulates convolution in the common algebraic framework of semirings and
semimodules and populates that framework with various representation types. One of those types is
the grand abstract template and itself generalizes to the free semimodule monad. Other representations
serve varied uses and performance trade-offs, with implementations calculated from simple and regular
specifications.

Of particular interest is Brzozowski’s method for regular expression matching. Uncovering the method’s
essence frees it from syntactic manipulations, while generalizing from boolean to weighted membership
(such as multisets and probability distributions) and from sets to n-ary relations. The classic trie data
structure then provides an elegant and efficient alternative to syntax.

Pleasantly, polynomial arithmetic requires no additional implementation effort, works correctly with
a variety of representations, and handles multivariate polynomials and power series with ease. Image
convolution also falls out as a special case.

1 Introduction

The mathematical operation of convolution combines two functions into a third—often written “h = f ∗ g”—
with each h value resulting from summing or integrating over the products of several pairs of f and g values
according to a simple rule. This operation is at the heart of many important and interesting applications in a
variety of fields [H.L., 2017].

• In image processing, convolution provides operations like blurring, sharpening, and edge detection
[Young et al., 1995].

• In machine learning convolutional neural networks (CNNs) allowed recognition of translation-independent
image features [Fukushima, 1988; LeCun et al., 1998; Schmidhuber, 2015].

• In probability, the convolution of the distributions of two independent random variables yields the
distribution of their sum [Grinstead and Snell, 2003].

• In acoustics, reverberation results from convolving sounds and their echos [Pishdadian, 2017]. Musical
uses are known as “convolution reverb” [Hass, 2013, Chapter 4].

• The coefficients of the product of polynomials is the convolution of their coefficients [Dolan, 2013].

• In formal languages, (generalized) convolution is language concatenation [Dongol et al., 2016].

1



2 Conal Elliott

Usually, however, convolution is taught, applied, and implemented in more specialized forms, obscuring the
underlying commonalities and unnecessarily limiting its usefulness. For instance,

• Standard definitions rely on subtraction (which is unavailable in many useful settings) and are dimension-
specific, while the more general form applies to any monoid [Golan, 2005; Wilding, 2015].

• Brzozowski’s method of regular expression matching [Brzozowski, 1964] appears quite unlike other
applications and is limited to sets of strings (i.e., languages), leaving unclear how to generalize to
variations like weighted membership (multisets and probability distributions) as well as n-ary relations
between strings.

• Image convolution is usually tied to arrays and involves somewhat arbitrary semantic choices at image
boundaries, including replication, zero-padding, and mirroring.

This paper formulates general convolution in the algebraic framework of semirings and semimodules,
including a collection of types for which semiring multiplication is convolution. One of those types is the grand
abstract template, namely the monoid semiring, i.e., functions from any monoid to any semiring. Furthermore,
convolution reveals itself as a special case of an even more general notion—the free semimodule monad. The
other types are specific representations for various uses and performance trade-offs, relating to the monoid
semiring by simple denotation functions (interpretations). The corresponding semiring implementations are
calculated from the requirement that these denotations be semiring homomorphisms, thus guaranteeing that
the computationally efficient representations are consistent with their mathematically simple and general
template.

An application of central interest in this paper is language specification and recognition, in which
convolution specializes to language concatenation. Here, we examine a method by Brzozowski [1964] for
flexible and efficient regular expression matching, later extended to parsing context-free languages [Might and
Darais, 2010]. We will see that the essential technique is much more general, namely functions from lists to an
arbitrary semiring. While Brzozowski’s method involves repeated manipulation of syntactic representations
(regular expressions or grammars), uncovering the method’s essence frees us from such representations. Thue’s
tries provide a compelling alternative in simplicity and efficiency, as well as a satisfying confluence of classic
techniques from the second and seventh decades of the twentieth century, as well as a modern functional
programming notion: the cofree comonad.

Concretely, this paper makes the following contributions:

• Generalization of Brzozowski’s algorithm from regular expressions representing sets of strings, to various
representations of [c ]→ b where c is any type and b is any semiring, including n-ary functions and
relations on lists (via currying).

• Demonstration that the subtle aspect of Brzozowski’s algorithm (matching of concatenated languages)
is an instance of generalized convolution.

• Specialization of the generalized algorithm to tries (rather than regular expressions), yielding a simple
and apparently quite efficient implementation, requiring no construction or manipulation of syntactic
representations.

• Observation that Brzozowski’s two key operations on languages (emptiness and differentiation) generalize
to the comonad operations (coreturn and cojoin) of the standard function-from-monoid comonad
and various representations of those functions (including generalized regular expressions). The trie
representation is the cofree comonad, which memoizes functions from the free monoid (lists).

• Application and evaluation of a simple memoization strategy encapsulated in a familiar functor, resulting
in dramatic speed improvement.

2 Monoids, Semirings and Semimodules
The ideas in this paper revolve around a small collection of closely related algebraic abstractions, so let’s
begin by introducing these abstractions along with examples.



Generalized Convolution and Efficient Language Recognition (Extended version) 3

2.1 Monoids
The simplest abstraction we’ll use is the monoid, expressed in Haskell as follows:

class Monoid a where
ε :: a
(�) :: a → a → a
infixr 6 �

The monoid laws require that (�) (sometimes pronounced “mappend”) be associative and that ε (“mempty”)
is its left and right identity, i.e.,

(u � v) � w = u � (v � w)
ε � v = v
u � ε = u

One monoid especially familiar to functional programmers is lists with append:

instance Monoid [a ] where
ε = [ ]
(�) = (++)

Natural numbers form a monoid under addition and zero. These two monoids are related via the function
length :: [a ]→ N, which not only maps lists to natural numbers, but does so in a way that preserves monoid
structure:

length ε
= length [ ] -- ε on [a ]
= 0 -- length definition
= ε -- 0 on N

length (u � v)
= length (u ++ v) -- (�) on [a ]
= length u + length v -- length definition and induction
= length u � length v -- (�) on N

This pattern is common and useful enough to have a name [Yorgey, 2012]:

Definition 1. A function h from one monoid to another is called a monoid homomorphism when it satisfies
the following properties:

h ε = ε
h (u � v) = h u � h v

A fancier monoid example is functions from a type to itself, also known as endofunctions, for which ε is
the identity function, and (�) is composition:

newtype Endo a = Endo (a → a)

instance Monoid (Endo a) where
ε = Endo id
Endo g � Endo f = Endo (g ◦ f )

The identity and associativity monoid laws follow from the identity and associativity category laws, so
we can generalize to endomorphisms, i.e., morphisms from an object to itself in any category. A modest
generalization of Cayley’s theorem states that every monoid is isomorphic to a monoid of endofunctions
[Boisseau and Gibbons, 2018]. This embedding is useful for turning quadratic-time algorithms linear [Hughes,
1986; Voigtländer, 2008].



4 Conal Elliott

toEndo :: Monoid a ⇒ a → Endo a
toEndo a = Endo (λ z → a � z )

fromEndo :: Monoid a ⇒ Endo a → a
fromEndo (Endo f ) = f ε

The toEndo embedding provides another example of a monoid homomorphism:

toEndo ε
= Endo (λ z → ε � z ) -- toEndo definition
= Endo (λ z → z ) -- monoid law
= ε -- id on Endo a

toEndo (a � b)
= Endo (λ z → (a � b) � z ) -- toEndo definition
= Endo (λ z → a � (b � z )) -- monoid law
= Endo ((λ z → a � z ) ◦ (λ z → b � z )) -- (◦) definition
= Endo (λ z → a � z ) � Endo (λ z → b � z ) -- (�) on Endo a
= toEndo a � toEndo b -- toEndo definition (twice)

2.2 Additive Monoids
While (�) must be associative, it needn’t be commutative. Commutative monoids, however, will play an
important role in this paper as well. For clarity and familiarity, it will be convenient to use the name “(+)”
instead of “(�)” and refer to such monoids as “additive”:

class Additive b where
0 :: b
(+) :: b → b → b
infixl 6 +

The Additive laws are the same as for Monoid (translating ε and (�) to 0 and (+)), together with commuta-
tivity:

(u + v) + w = u + (v + w)
0 + v = v
u + 0 = u
u + v = v + u

Unlike lists with append, natural numbers form a additive monoid. Another example is functions with
pointwise addition, with any domain and with any additive codomain:

instance Additive b ⇒ Additive (a → b) where
0 = λ a → 0
f + g = λ a → f a + g a

Additive monoids have their form of homomorphism:

Definition 2. A function h from one additive monoid to another is an additive monoid homomorphism if it
satisfies the following properties:

h 0 = 0
h (u + v) = h u + h v

Curried function types of any number of arguments (and additive result type) are additive, thanks to repeated
application of the Additive (a → b) instance above. In fact,

Theorem 1 (Proved in Appendix A.1). Currying and uncurrying are additive monoid homomorphisms.



Generalized Convolution and Efficient Language Recognition (Extended version) 5

2.3 Semirings
The natural numbers form a monoid in two familiar ways: addition and zero, and multiplication and
one. Moreover, these monoids interact usefully in two ways: multiplication distributes over addition, and
multiplication by zero (the additive identity) yields zero (i.e., “annihilates”). Similarly, linear endofunctions
and their various representations (e.g., square matrices) forms a monoid via addition and via composition, with
composition distributing over addition, and composition with zero yielding zero. In both examples, addition
commutes; but while natural number multiplication commutes, composition does not. The vocabulary and
laws these examples share is called a semiring (distinguished from a ring by dropping the requirement of
additive inverses):

class Additive b ⇒ Semiring b where
1 :: b
(∗) :: b → b → b
infixl 7 ∗

The laws, in addition to those for Additive above, include multiplicative monoid, distribution, and annihila-
tion:

u ∗ 0 = 0
0 ∗ v = 0
1 ∗ v = v
u ∗ 1 = u

(u ∗ v) ∗ w = u ∗ (v ∗ w)

p ∗ (q + r) = p ∗ q + p ∗ r
(p + q) ∗ r = p ∗ r + q ∗ r

Definition 3. A function h from one semiring to another is a semiring homomorphism if it is an additive
monoid homomorphism (Definition 2) and satisfies the following additional properties:

h 1 = 1
h (u ∗ v) = h u ∗ h v

As mentioned, numbers and various linear endofunction representations form semirings. A simpler example is
the semiring of booleans, with disjunction as addition and conjunction as multiplication (though we could
reverse roles):

instance Additive Bool where
0 = False
(+) = (∨)

instance Semiring Bool where
1 = True
(∗) = (∧)

An example of a semiring homomorphism is testing natural numbers for positivity:

positive :: N→ Bool
positive n = n > 0

As required, the following properties hold for m,n :: N:1

positive 0 = False = 0

positive 1 = True = 1

positive (m + n) = positive m ∨ positive n = positive m + positive n

positive (m ∗ n) = positive m ∧ positive n = positive m ∗ positive n

There is a more fundamental example we will have use for later:

Theorem 2 (Proved in Appendix A.2). Currying and uncurrying are semiring homomorphisms.

1 Exercise: What goes wrong if we replace natural numbers by integers?



6 Conal Elliott

2.4 Star Semirings
The semiring operations allow all finite combinations of addition, zero, multiplication, and one. It’s often
useful, however, to form infinite combinations, particularly in the form of Kleene’s “star” (or “closure”)
operation:

p∗ =
∑
i

pi -- where p0 = 1, and pn+1 = p ∗ pn .

Another characterization is as a solution to either of the following semiring equations:

p∗ = 1 + p ∗ p∗ p∗ = 1 + p∗ ∗ p

which we will take as a laws for a new abstraction, as well as a default recursive implementation:

class Semiring b ⇒ StarSemiring b where
·∗ :: b → b
p∗ = 1 + p ∗ p∗

Sometimes there are more appealing alternative implementations. For instance, when subtraction and division
are available, we can instead define p∗ = (1− p)−1 [Dolan, 2013].

Predictably, there is a notion of homomorphisms for star semirings:

Definition 4. A function h from one star semiring to another is a star semiring homomorphism if it is a
semiring homomorphism (Definition 3) and satisfies the additional property h (p∗) = (h p)∗.

One simple example of a star semiring (also known as a “closed semiring” [Lehmann, 1977; Dolan, 2013]) is
booleans:

instance StarSemiring Bool where b∗ = 1 -- = 1 ∨ (b ∧ b∗)

A useful property of star semirings is that recursive affine equations have solutions [Dolan, 2013]:

Lemma 3. In a star semiring, the affine equation p = b + m ∗ p has solution p = m∗ ∗ b.

Proof.

b + m ∗ (m∗ ∗ b)
= b + (m ∗m∗) ∗ b -- associativity of (∗)
= 1 ∗ b + m ∗m∗ ∗ b -- identity for (∗)
= (1 + m ∗m∗) ∗ b -- distributivity
= m∗ ∗ b -- star semiring law

2.5 Semimodules
As fields are to vector spaces, rings are to modules, and semirings are to semimodules. For any semiring s, a
left s-semimodule b is an additive monoid whose values can be multiplied by s values on the left. Here, s
plays the role of “scalars”, while b plays the role of “vectors”.

class (Semiring s,Additive b)⇒ LeftSemimodule s b | b → s where
(·) :: s → b → b

In addition to the laws for the additive monoid b and the semiring s, we have the following laws specific to
left semimodules: [Golan, 2005]:

(s ∗ t) · b = s · (t · b)
(s + t) · b = s · b + t · b
s · (b + c) = s · b + s · c

1 · b = b
0 · b = 0



Generalized Convolution and Efficient Language Recognition (Extended version) 7

There is also a corresponding notion of right s-semimodule (with multiplication on the right by s values),
which we will not need in this paper. (Rings also have left- and right-modules, and in commutative rings and
semirings (including vector spaces), the left and right variants coincide.)

As usual, we have a corresponding notion of homomorphism, which is more commonly referred to as
“linearity”:

Definition 5. A function h from one left s-semimodule to another is a left s-semimodule homomorphism if
it is an additive monoid homomorphism (Definition 2) and satisfies the additional property h (s · b) = s · h b.

Familiar s-semimodule examples include various containers of s values, including single- or multi-
dimensional arrays, lists, infinite streams, sets, multisets, and trees. Another, of particular interest in
this paper, is functions from any type to any semiring:

instance Semiring s ⇒ LeftSemimodule s (a → s) where s · f = λ a → s ∗ f a

If we think of a → s as a “vector” of s values, indexed by a, then s · f scales each component of the vector f
by s.

There is an important optimization to be made for scaling. When s = 0, s · p = 0, so we can discard
p entirely. This optimization applies quite often in practice, for instance with languages, which tend to
be sparse. Another optimization (though less dramatically helpful) is 1 · p = p. Rather than burden each
LeftSemimodule instance with these two optimizations, let’s define (·) via a more primitive (̂·) method:

class (Semiring s,Additive b)⇒ LeftSemimodule s b | b → s where
(̂·) :: s → b → b

infixr 7 ·
(·) :: (Additive b,LeftSemimodule s b, IsZero s, IsOne s)⇒ s → b → b
s · b | isZero s = 0

| isOne s = b
| otherwise = s ·̂ b

The IsZero and IsOne classes:

class Additive b ⇒ IsZero b where isZero :: b → Bool
class Semiring b ⇒ IsOne b where isOne :: b → Bool

As with star semirings (Lemma 3), recursive affine equations in semimodules over star semirings also
have solutions:

Lemma 4. In a left semimodule over a star semiring, the affine equation p = b +m ·p has solution p = m∗ · b

The proof closely resembles that of Lemma 3, using the left semimodule laws above:

Proof.

s∗ · r
= (1 + s ∗ s∗) · r -- star semiring law
= 1 · r + (s ∗ s∗) · r -- distributivity
= r + s · (s∗ · r) -- multiplicative identity and associativity

2.6 Function-like Types and Singletons
Most of the representations used in this paper behave like functions, and it will be useful to use a standard
vocabulary. An “indexable” type x with domain a and codomain b represents a → b: Sometimes we will need
to restrict a or b.

class Indexable a b x | x → a b where
infixl 9 !



8 Conal Elliott

(!) :: x → a → b

instance Indexable a b (a → b) where
f ! k = f k

Sections 2.1 through 2.5 provides a fair amount of vocabulary for combining values. We’ll also want an
operation that constructs a “vector” (e.g., language or function) with a single nonzero component:

class Indexable a b x ⇒ HasSingle a b x where
infixr 2 7→
(7→) :: a → b → x

instance (Eq a,Additive b)⇒ HasSingle a b (a → b) where
a 7→ b = λ a ′ → if a ′ = a then b else 0

Two specializations of a 7→ b will come in handy: one for a = ε, and the other for b = 1.

single :: (HasSingle a b x ,Semiring b)⇒ a → x
single a = a 7→ 1

value :: (HasSingle a b x ,Monoid a)⇒ b → x
value b = ε 7→ b

In particular, ε 7→ 1 = single ε = value 1.
The (7→) operation gives a way to decompose arbitrary functions:

Lemma 5 (Proved in Appendix A.3). For all f :: a → b where b is an additive monoid,

f =
∑
a

a 7→ f a

For the uses in this paper, f is often “sparse”, i.e., nonzero on a relatively small (e.g., finite or at least
countable) subset of its domain.

Singletons also curry handily and provide another useful homomorphism:

Lemma 6 (Proved in Appendix A.4). For functions,

(a 7→ b 7→ c) = curry ((a, b) 7→ c)

Lemma 7. For (→) a, partial applications (a 7→) are left semi-module (and hence additive) homomorphisms
(given the LeftSemimodule s (a → s) instance in Section 2.5). Moreover, value = (ε 7→) is a semiring
homomorphism.

Proof. Straightforward from the definition of (7→).

3 Calculating Instances from Homomorphisms
So far, we’ve started with instance definitions and then noted and proved homomorphisms where they arise.
We can instead invert the process, taking homomorphisms as specifications and calculating instance definitions
that satisfy them. This process of calculating instances from homomorphisms is the central guiding principle
of this paper, so let’s see how it works.

Consider a type “P a” of mathematical sets of values of some type a. Are there useful instances of the
abstractions from Section 2 for sets? Rather than guessing at such instances and then trying to prove the
required laws, let’s consider how sets are related to a type for which we already know instances, namely
functions.

Sets are closely related to functions-to-booleans (“predicates”):

pred :: P a → (a → Bool)
pred as = λ a → a ∈ as

pred−1 :: (a → Bool)→ P a

pred−1 f = { a | f a }



Generalized Convolution and Efficient Language Recognition (Extended version) 9

This pair of functions forms an isomorphism, i.e., pred−1 ◦ pred = id and pred ◦ pred−1 = id , as can be
checked by inlining definitions and simplifying. Moreover, for sets p and q , p = q ⇐⇒ pred p = pred q , by
the extensionality axiom of sets and of functions. Now let’s also require that pred be an additive monoid
homomorphism. The required homomorphism properties:

pred 0 = 0

pred (p + q) = pred p + pred q

We already know definitions of pred as well as the function versions of 0 and (+) (on the RHS) but not yet
the set versions of 0 and (+) (on the LHS). We thus have two algebra problems in two unknowns. Since only
one unknown appears in each homomorphism equation, we can solve them independently. The pred/pred−1

isomorphism makes it easy to solve these equations, and removes all semantic choice, allowing only varying
implementations of the same meaning.

pred 0 = 0

⇐⇒ pred−1 (pred 0) = pred−1 0 -- pred−1 injectivity
⇐⇒ 0 = pred−1 0 -- pred−1 ◦ pred = id

pred (p + q) = pred p + pred q

⇐⇒ pred−1 (pred (p + q)) = pred−1 (pred p + pred q) -- pred−1 injectivity
⇐⇒ p + q = pred−1 (pred p + pred q) -- pred−1 ◦ pred = id

We thus have sufficient (and in this case semantically necessary) definitions for 0 and (+) on sets. Now let’s
simplify to get more direct definitions:

pred−1 0

= pred−1 (λ a → 0) -- 0 on functions
= pred−1 (λ a → False) -- 0 on Bool

= { a | False } -- pred−1 definition
= ∅

pred−1 (pred p + pred q)

= pred−1 ((λ a → a ∈ p) + (λ a → a ∈ q)) -- pred definition (twice)
= pred−1 (λ a → (a ∈ p) + (a ∈ q)) -- (+) on functions
= pred−1 (λ a → a ∈ p ∨ a ∈ q) -- (+) on Bool

= { a | a ∈ p ∨ a ∈ q } -- pred−1 definition
= p ∪ q -- (∪) definition

Without applying any real creativity, we have discovered the desired Semiring instance for sets:

instance Additive (P a) where
0 = ∅
(+) = (∪)

Next consider a LeftSemimodule instance for sets. We might be tempted to define s · p to multiply s by
each value in p, i.e.,

instance LeftSemimodule s (P s) where s ·̂ p = { s ∗ x | x ∈ p } -- wrong

This definition, however, would violate the semimodule law that 0·p = 0, since 0·p would be { 0 }, but 0 for sets
is ∅. Both semimodule distributive laws fail as well. There is an alternative choice, necessitated by requiring
that pred−1 be a left Bool -semimodule homomorphism. The choice of Bool is inevitable from the type of
pred−1 and the fact that a → b is a b-semimodule for all semirings b, so a → Bool is a Bool -semimodule.
The necessary homomorphism property:



10 Conal Elliott

pred (s · p) = s · pred p

Equivalently,

s · p
= pred−1 (s · pred p) -- pred−1 injectivity
= pred−1 (s · (λ a → a ∈ p)) -- pred definition
= pred−1 (λ a → s ∗ (a ∈ p)) -- (·) on functions
= pred−1 (λ a → s ∧ a ∈ p) -- (∗) on Bool

= { a | s ∧ a ∈ p } -- pred−1 definition
= if s then { a | s ∧ a ∈ p } else { a | s ∧ a ∈ p } -- property of if

= if s then { a | a ∈ p } else ∅ -- simplify conditional branches
= if s then p else ∅ -- pred−1 ◦ pred = id

= if s then p else 0 -- 0 for sets

Summarizing,

instance LeftSemimodule Bool (P a) where
s ·̂ p = if s then p else 0

While perhaps obscure at first, this alternative will prove useful later on.
Note that the left s-semimodule laws specialized to s = Bool require True (1) to preserve and False (0)

to annihilate the second (·) argument. Every left Bool -semimodule instance must therefore agree with this
definition.

4 Languages and the Monoid Semiring
A language is a set of strings over some alphabet, so the Additive and LeftSemimodule instances for sets
given above apply directly. Conspicuously missing, however, are the usual notions of language concatenation
and closure (Kleene star), which are defined as follows for languages U and V :

U V = { u � v | u ∈U ∧ v ∈V }

U ∗ =
⋃
i

U i -- where U 0 = 1, and U n+1 = U U n .

Intriguingly, this U ∗ definition would satisfy the StarSemiring laws if (∗) were language concatenation. A bit
of reasoning shows that all of the semiring laws would hold as well:

• Concatenation is associative and has as identity the language { ε }.

• Concatenation distributes over union, both from the left and from the right.

• The 0 (empty) language annihilates (yields 0) under concatenation, both from the left and from the
right.

All we needed from strings is that they form a monoid, so we may as well generalize:

instance Monoid a ⇒ Semiring (P a) where
1 = { ε } -- = ε 7→ 1 = single ε = value 1 (Section 2.6)
p ∗ q = { u � v | u ∈ p ∧ v ∈ q }

instance StarSemiring (P a) -- use default ·∗ definition (Section 2.4).

These new instances indeed satisfy the laws for additive monoids, semimodules, semirings, and star semirings.
They seem to spring from nothing, however, which is disappointing compared with the way the Additive and



Generalized Convolution and Efficient Language Recognition (Extended version) 11

instance (Semiring b,Monoid a)⇒ Semiring (a → b) where
1 = single ε

f ∗ g =
∑
u,v

u � v 7→ f u ∗ g v

= λw →
∑
u,v

u�v=w

f u ∗ g v

instance (Semiring b,Monoid a)⇒ StarSemiring (a → b) -- default ·∗

Figure 1: The monoid semiring

LeftSemimodule instances for sets follow inevitably from the requirement that pred be a homomorphism for
those classes (Section 3). Let’s not give up yet, however. Perhaps there’s a Semiring instance for a → b
that specializes with b = Bool to bear the same relationship to P a that the Additive and LeftSemimodule
instances bear. The least imaginative thing we can try is to require that pred be a semiring homomorphism.
If we apply the same sort of reasoning as in Section 3 and then generalize from Bool to an arbitrary semiring,
we get the definitions in Figure 1. With this instance, a → b type is known as the monoid semiring, and its
(∗) operation as convolution [Golan, 2005; Wilding, 2015].

Theorem 8 (Proved in Appendix A.5). Given the instance definitions in Figure 1, pred is a star semiring
homomorphism.

For some monoids, we can also express the product operation in a more clearly computable form via
splittings:

f ∗ g = λw →
∑

(u,v)∈splits w

f u ∗ g v

where splits w yields all pairs (u, v) such that u � v = w :

class Monoid t ⇒ Splittable t where
splits :: t → [(t , t)] -- multi-valued inverse of (�)

Examples of splittable monoids include natural numbers and lists:

instance Splittable N where
splits n = [(i ,n − i) | i ← [0 . .n ]]

instance Splittable [c ] where
splits [ ] = [([ ], [ ])]
splits (c : cs) = ([ ], c : cs) : [((c : l), r) | (l , r)← splits cs ]

While simple, general, and (assuming Splittable domain) computable, the definitions of (+) and (∗) above
for the monoid semiring make for quite inefficient implementations, primarily due to naive backtracking. As
a simple example, consider the language single "pickles"+ single "pickled", and suppose that we want to
test the word “pickling” for membership. The (+) definition from Section 2.2 will first try “pickles”, fail near
the end, and then backtrack all the way to the beginning to try “pickled”. The second attempt redundantly
discovers that the prefix “pickl” is also a prefix of the candidate word and that “pickle” is not. Next consider
the language single "ca" ∗ single "ts" ∗ single "up", and suppose we want to test “catsup” for membership.
The (∗) implementation above will try all possible three-way splittings of the test string.

5 Finite maps
One representation of partial functions is the type of finite maps, Map a b from keys of type a to values
of type b, represented as a key-ordered balanced tree [Adams, 1993; Straka, 2012; Nievergelt and Reingold,



12 Conal Elliott

instance (Ord a,Additive b)⇒ Indexable a b (Map a b) where
m ! a = M.findWithDefault 0 a m

instance (Ord a,Additive b)⇒ HasSingle a b (Map a b) where
( 7→) = M.singleton

instance (Ord a,Additive b)⇒ Additive (Map a b) where
0 = M.empty
(+) = M.unionWith (+)

instance (Ord a,Additive b)⇒ IsZero (Map a b) where isZero = M.null

instance Semiring b ⇒ LeftSemimodule b (Map a b) where
(̂·) b = fmap (b ∗)

instance (Ord a,Monoid a,Semiring b)⇒ Semiring (Map a b) where
1 = ε 7→ 1
p ∗ q = sum [u � v 7→ p ! u ∗ q ! v | u ← M.keys p, v ← M.keys q ]

Figure 2: Finite maps

1973]. To model total functions instead, we can treat unassigned keys as denoting zero. Conversely, merging
two finite maps can yield a key collision, which can be resolved by addition. Both interpretations require b
to be an additive monoid. Given the definitions in Figure 2, (!) is a homomorphism with respect to each
instantiated class. (The “M .” module qualifier indicates names coming from the finite map library [Leijen,
2002].) The finiteness of finite maps prevents giving a useful StarSemiring instance.

6 Decomposing Functions from Lists
For functions from lists specifically, we can decompose in a way that lays the groundwork for more efficient
implementations than the ones in previous sections.

Lemma 9 (Proved in Appendix A.6). Any f :: [c ]→ b can be decomposed as follows:

f = atε f / D f

Moreover, for all b and h,

atε (b / h) = b
D (b / h) = h

where

atε :: ([c ]→ b)→ b
atε f = f ε

D :: ([c ]→ b)→ c → ([c ]→ b)
D f = λ c cs → f (c : cs)

infix 1 /
(/) :: b → (c → ([c ]→ b))→ ([c ]→ b)
b / h = λ case { [ ]→ b ; c : cs → h c cs }

Considering the isomorphism P [c ] ' [c ] → Bool , this decomposition generalizes the δ and D operations
used by Brzozowski [1964] mapping languages to languages (as sets of strings), the latter of which he referred



Generalized Convolution and Efficient Language Recognition (Extended version) 13

to as the “derivative”.2 Brzozowski used differentiation with respect to single symbols to implement a more
general form of language differentiation with respect to a string of symbols, where the derivative D∗ u p of a
language p with respect to a prefix string u is the set of u-suffixes of strings in p, i.e.,

D∗ p u = { v | u � v ∈ p }

so that

u ∈ p ⇐⇒ ε ∈ D∗ p u

Further, he noted that3

D∗ p ε = p
D∗ p (u � v) = D∗ (D∗ p u) v

Thanks to this decomposition property and the fact that D p c = D∗ p [c ], one can successively differentiate
with respect to single symbols.

Generalizing from sets to functions,

D∗ f u = λ v → f (u � v)

so that

f = λ u → D∗ f u ε
= λ u → atε (D∗ f u)
= atε ◦ D∗ f
= atε ◦ foldl D f

where foldl is the usual left fold on lists:

foldl :: (c → b → b)→ b → [c ]→ b
foldl h e [ ] = e
foldl h e (c : cs) = foldl h (h e c) cs

Intriguingly, atε and D∗ correspond to coreturn and cojoin for the function-from-monoid comonad, also called
the “exponent comonad” [Uustalu and Vene, 2008].

Understanding how atε and D relate to the semiring vocabulary will help us develop efficient implementa-
tions in later sections.

Lemma 10 (Proved in Appendix A.7). The atε function is a star semiring and left semimodule homomorphism,
i.e.,

atε 0 = 0

atε 1 = 1

atε (p + q) = atε p + atε q

atε (p ∗ q) = atε p ∗ atε q

atε (p
∗) = (atε p)∗

2 Brzozowski wrote “Dc p” instead of “D p c”, but the latter will prove more convenient below.
3 Here, Brzozowski’s notation makes for a prettier formulation:

D∗ε p = p
D∗u�v p = D∗v (D∗u p)

Equivalently,

D∗ε = id
D∗u�v = D∗v ◦ D∗u

where id is the identity function. In other words, D∗· is a contravariant monoid homomorphism (targeting the monoid of
endofunctions).



14 Conal Elliott

Moreover,4

atε (s · p) = s ∗ atε p

atε ( [ ] 7→ b) = b

atε (c : cs 7→ b) = 0

Lemma 11 (Proved in Appendix A.8, generalizing Lemma 3.1 of Brzozowski [1964]). Differentiation has the
following properties:

D 0 c = 0

D 1 c = 0

D (p + q) c = D p c +D q c

D (p ∗ q) c = atε p · D q c +D p c ∗ q

D (p∗) c = (atε p)∗ · D p c ∗ p∗

D (s · p) c = s · D p c

D ( [ ] 7→ b) = λ c → 0

D (c′ : cs ′ 7→ b) = c′ 7→ cs ′ 7→ b

Although D p is defined as a function from leading symbols, it could instead be another representation
with function-like semantics, such as as h b for an appropriate functor h. To relate h to the choice of alphabet
c, introduce a type family:

type family Key (h :: Type → Type) :: Type

type instance Key ((→) a) = a
type instance Key (Map a) = a

Generalizing in this way (with functions as a special case) enables convenient memoization, which has been
found to be quite useful in practice for derivative-based parsing [Might and Darais, 2010]. A few generalizations
to the equations in Lemma 11 suffice to generalize from c → ([c ]→ b) to h ([c ]→ b) (details in Appendix
A.8). We must assume that Key h = c and that h is an “additive functor”, i.e., ∀b.Additive b ⇒ Additive (h b)
with (!) for h being an additive monoid homomorphism.

D 0 = 0

D 1 = 0

D (p + q) = D p +D q

D (p ∗ q) = fmap (atε p ·) (D q) + fmap (∗q) (D p)

D (p∗) = fmap (λ d → (atε p)∗ · d ∗ Star p) (D p)

D (s · p) = fmap (s ·) (D p)

Theorem 12 (Proved in Appendix A.9). The following properties hold (in the generalized setting of a
functor h with Key h = c):

0 = 0 / 0

1 = 1 / 0

4 Mathematically, the (·) equation says that atε is a left b-semiring homomorphism as well, since every semiring is a (left and
right) semimodule over itself. Likewise, the ( 7→) equation might be written as “null w 7→ b” or even “atε w 7→ b”. Unfortunately,
these prettier formulations would lead to ambiguity during Haskell type inference.



Generalized Convolution and Efficient Language Recognition (Extended version) 15

(a / dp) + (b / dq) = a + b / dp + dq

(a / dp) ∗ q = a · q + (0 / fmap (∗ q) dp)

(a / dp)∗ = q where q = a∗ · (1 / fmap (∗ q) dp)

s · (a / dp) = s ∗ a / fmap (s ·) dp

w 7→ b = foldr (λ c t → 0 / c 7→ t) (b / 0) w

7 Regular Expressions
Lemmas 10 and 11 generalize and were inspired by a technique of Brzozowski [1964] for recognizing regular
languages. Figure 3 generalizes regular expressions in the same way that a → b generalizes P a, to yield a
value of type b (a star semiring). The constructor Value b generalizes 0 and 1 to yield a semiring value.

Theorem 13. Given the definitions in Figure 3, (!) is a homomorphism with respect to each instantiated
class.

The implementation in Figure 3 generalizes the regular expression matching algorithm of Brzozowski
[1964], adding customizable memoization, depending on choice of the indexable functor h. Note that the
definition of e ! w is exactly atε (D∗ e w) generalized to indexable h, performing syntactic differentiation with
respect to successive characters in w and applying atε to the final resulting regular expression.

For efficiency, and sometimes even termination (with recursively defined languages), we will need to add
some optimizations to the Additive and Semiring instances for RegExp in Figure 3:

p + q | isZero p = q
| isZero q = p
| otherwise = p :+ q

p ∗ q | isZero p = 0
| isOne p = q
| otherwise = p :∗ q

For p ∗q , we might also check whether q is 0 or 1, but doing so itself leads to non-termination in right-recursive
grammars.

As an alternative to repeated syntactic differentiation, we can reinterpret the original (syntactic) regular
expression in another semiring as follows:

regexp :: (StarSemiring x ,HasSingle [Key h ] b x ,Semiring b)⇒ RegExp h b → x
regexp (Char c) = single [c ]
regexp (Value b) = value b
regexp (u :+ v) = regexp u + regexp v
regexp (u :∗ v) = regexp u ∗ regexp v
regexp (Star u) = (regexp u)∗

Next, we will see a choice of h that eliminates the syntactic overhead.

8 Tries
Section 4 provided an implementation of language recognition and its generalization to the monoid semiring
(a → b for monoid a and semiring b), packaged as instances of a few common algebraic abstractions (Additive,
Semiring etc). While simple and correct, these implementations are quite inefficient, primarily due to naive
backtracking and redundant comparison. Section 6 explored the nature of functions on lists, identifying a
decomposition principle and its relationship to the vocabulary of semirings and related algebraic abstractions.
Applying this principle to a generalized form of regular expressions led to Brzozowski’s algorithm, generalized
from sets to functions in Section 7, providing an alternative to naive backtracking but still involving repeated
syntactic manipulation as each candidate string is matched. Nevertheless, with some syntactic optimizations
and memoization, recognition speed with this technique can be fairly good [Might and Darais, 2010; Adams
et al., 2016].



16 Conal Elliott

data RegExp h b = Char (Key h)
| Value b
| RegExp h b :+ RegExp h b
| RegExp h b :∗ RegExp h b
| Star (RegExp h b)

deriving Functor

instance Additive b ⇒ Additive (RegExp h b) where
0 = Value 0
(+) = (:+)

instance Semiring b ⇒ LeftSemimodule (RegExp h b) where
(̂·) b = fmap (b ∗)

instance Semiring b ⇒ Semiring (RegExp h b) where
1 = Value 1
(∗) = (:∗)

instance Semiring b ⇒ StarSemiring (RegExp h b) where
e∗ = Star e

type FR h b = (HasSingle (Key h) (RegExp h b) (h (RegExp h b))
,Additive (h (RegExp h b)),Functor h, IsZero b, IsOne b)

instance (FR h b,StarSemiring b, c ∼Key h,Eq c)⇒ Indexable [c ] b (RegExp h b) where
e ! w = atε (foldl ((!) ◦ D) e w)

instance (FR h b,StarSemiring b, c ∼Key h,Eq c)⇒ HasSingle [c ] b (RegExp h b) where
w 7→ b = b · product (map Char w)

atε :: StarSemiring b ⇒ RegExp h b → b
atε (Char ) = 0
atε (Value b) = b
atε (p :+ q) = atε p + atε q
atε (p :∗ q) = atε p ∗ atε q
atε (Star p) = (atε p)∗

D :: (FR h b,StarSemiring b)⇒ RegExp h b → h (RegExp h b)
D (Char c) = single c
D (Value ) = 0
D (p :+ q) = D p +D q
D (p :∗ q) = fmap (atε p ·) (D q) + fmap (∗ q) (D p)
D (Star p) = fmap (λ d → (atε p)∗ · d ∗ Star p) (D p)

Figure 3: Semiring-generalized regular expressions denoting [c ]→ b



Generalized Convolution and Efficient Language Recognition (Extended version) 17

As an alternative to regular expression differentiation, note that the problem of redundant comparison is
solved elegantly by the classic trie (“prefix tree”) data structure introduced by Thue in 1912 [Knuth, 1998,
Section 6.3]. This data structure was later generalized to arbitrary (regular) algebraic data types [Connelly
and Morris, 1995] and then from sets to functions [Hinze, 2000]. Restricting our attention to functions of lists
(“strings” over some alphabet), we can formulate a simple trie data type along the lines of (/) from Section 6,
with an entry for ε and a sub-trie for each possible character:

data LTrie c b = b :/ (c → LTrie c b) -- first guess

While this definition would work, we can get much better efficiency if we memoize the functions of c, e.g., as
a generalized trie or a finite map. Rather than commit to a particular representation for subtrie collections,
let’s replace the type parameter c with a functor h whose associated key type is c. The functor-parametrized
list trie is also known as the “cofree comonad” [Uustalu and Vene, 2005, 2008, 2011; Hinze et al., 2013; Kmett,
2015; Penner, 2017].

data Cofree h b = b :/ h (Cofree h b)

The similarity between Cofree h b and the function decomposition from Section 6 (motivating the
constructor name “:/”) makes for easy instance calculation. As with P a and Map a b, we can define a trie
counterpart to the free monoid semiring [c ]→ b.

Theorem 14 (Proved in Appendix A.10). Given the definitions in Figure 4, (!) is a homomorphism with
respect to each instantiated class.

Although the (/) decomposition in Section 6 was inspired by wanting to understand the essence of regular
expression derivatives, the application to tries is in retrospect more straightforward, since the representation
directly mirrors the decomposition. Applying the (/) decomposition to tries also appears to be more
streamlined than the application to regular expressions. During matching, the next character in the candidate
string is used to directly index to the relevant derivative (sub-trie), efficiently bypassing all other paths. As
one might hope, (!) on Cofree h is another homomorphism:

Theorem 15 (Proved in Appendix A.11). Given the definitions in Figures 4 and 5, if (!) on h behaves like
(→) (Key h), then Cofree h is a comonad homomorphism from Cofree h to (→) (Key h).

9 Performance

While the implementation has had no performance tuning and only rudimentary benchmarking, we can at
least get a sanity check on performance and functionality. Figure 6 shows the source code for a collection of
examples, all polymorphic in the choice of semiring. The atoz language contains single letters from ‘a’ to ‘z’.
The examples anbn and dyck are two classic, non-regular, context-free languages: { an bn | n ∈ N } and the
Dyck language of balanced brackets.

Figure 7 gives some execution times for these examples measured with the criterion library [O’Sullivan,
2014], compiled with GHC 8.6.3, and running on a late 2013 MacBook Pro. (Note milliseconds vs microseconds—
“ms” vs “µs”.) Each example is interpreted in four semirings: RegExp ((→) Char) N, RegExp (Map Char) N,
Cofree ((→) Char) N, and Cofree (Map Char) N. Each interpretation of each language is given a matching
input string of length 100; and matches are counted, thanks to use of the N semiring. (The a∗ ∗ a∗ example
matches in 101 ways, while the others match uniquely.) As the figure shows, memoization (via Map) is only
moderately helpful (and occasionally harmful) for RegExp. Cofree, on the other hand, performs terribly
without memoization and (in these examples) 2K to 230K times faster with memoization. Here, memoized
Cofree performs between 8.5 and 485 times faster than memoized RegExp and between 11.5 and 1075 times
faster than nonmemoized RegExp. The two recursively defined examples fail to terminate with RegExp Map,
perhaps because the implementation (Section 7) lacks one or more crucial tricks [Might and Darais, 2010].
Other RegExp improvements [Might and Darais, 2010; Adams et al., 2016] might narrow the gap further, and
careful study and optimization of the Cofree implementation (Figure 4) might widen it.



18 Conal Elliott

infix 1 :/
data Cofree h b = b :/ h (Cofree h b) deriving Functor

instance Indexable c (Cofree h b) (h (Cofree h b))⇒ Indexable [c ] b (Cofree h b) where
(!) (b :/ dp) = b / (!) ◦ (!) dp -- (b :/ dp) ! w = case w of { [ ]→ b; c : cs → dp ! c ! cs }

instance (Additive (h (Cofree h b)),Additive b)⇒ Additive (Cofree h b) where
0 = 0 :/ 0
(a :/ dp) + (b :/ dq) = a + b :/ dp + dq

instance (Functor h,Semiring b)⇒ LeftSemimodule b (Cofree h b) where
(̂·) s = fmap (s ∗)

instance (Functor h,Additive (h (Cofree h b)),Semiring b, IsZero b)⇒
Semiring (Cofree h b) where

1 = 1 :/ 0
(a :/ dp) ∗ q = a · q + (0 :/ fmap (∗ q) dp)

instance (Functor h,Additive (h (Cofree h b)),StarSemiring b, IsZero b)⇒
StarSemiring (Cofree h b) where

(a :/ dp)∗ = q where q = a∗ · (1 :/ fmap (∗ q) dp)

instance (HasSingle (Cofree h b) h,Additive (h (Cofree h b)),Additive b)⇒
HasSingle b (Cofree h) where

w 7→ b = foldr (λ c t → 0 :/ c 7→ t) (b :/ 0) w

instance (Additive (h (Cofree h b)), IsZero (h (Cofree h b)), IsZero b)⇒
IsZero (Cofree h b) where

isZero (a :/ dp) = isZero a ∧ isZero dp

instance (Functor h,Additive (h (Cofree h b)), IsZero b, IsZero (h (Cofree h b)), IsOne b)⇒
IsOne (Cofree h b) where

isOne (a :/ dp) = isOne a ∧ isZero dp

Figure 4: List tries denoting [c ]→ b

instance Functor w ⇒ Comonad w where
coreturn :: w b → b
cojoin :: w b → w (w b)

instance Monoid a ⇒ Comonad ((→) a) where
coreturn f = f ε
cojoin f = λ u → λ v → f (u � v)

instance Functor h ⇒ Functor (Cofree h) where
fmap f (a :/ ds) = f a :/ fmap (fmap f ) ds

instance Functor h ⇒ Comonad (Cofree h) where
coreturn (a :/ ) = a
cojoin t@( :/ ds) = t :/ fmap cojoin ds

Figure 5: Comonad class and instances



Generalized Convolution and Efficient Language Recognition (Extended version) 19

a = single "a"
b = single "b"

atoz = sum [single [c ] | c ← [’a’ . . ’z’]]

fishy = atoz ∗ ∗ single "fish" ∗ atoz ∗

anbn = 1 + a ∗ anbn ∗ b

dyck = (single "[" ∗ dyck ∗ single "]")∗

Figure 6: Examples

Example RegExp→ RegExpMap Cofree→ CofreeMap

a∗ 30.56 µs 22.45 µs 5.258 ms 2.624 µs
atoz ∗ 690.4 µs 690.9 µs 10.89 ms 3.574 µs

a∗ ∗ a∗ 2.818 ms 1.274 ms 601.6 ms 2.619 µs
a∗ ∗ b∗ 52.26 µs 36.59 µs 14.40 ms 2.789 µs

a∗ ∗ b ∗ a∗ 56.53 µs 49.21 µs 14.58 ms 2.798 µs
fishy 1.276 ms 2.528 ms 29.73 ms 4.233 µs
anbn 1.293 ms ∞ 12.12 ms 2.770 µs
dyck 254.9 µs ∞ 24.77 ms 3.062 µs

Figure 7: Running times for examples in Figure 6

10 Convolution
Consider again the definition of multiplication in the monoid semiring, on f , g :: a → b from Figure 1.

f ∗ g =
∑
u,v

u � v 7→ f u ∗ g v

As in Section 4, specializing the codomain to Bool , we get

f ∗ g =
∨
u,v

u � v 7→ f u ∧ g v

Using the set/predicate isomorphism from Section 3, we can translate this definition from predicates to
“languages” (sets of values in some monoid):

f ∗ g = { u � v | u ∈ f ∧ v ∈ g }

which is the definition of the concatenation of two languages from Section 4. Likewise, by specializing the
domain of the functions to sequences (from general monoids), we got efficient matching of semiring-generalized
“languages”, as in Sections 6 and 8, which translated to regular expressions (Section 7), generalizing work of
Brzozowski [1964].

Let’s now consider specializing the functions’ domains to integers rather than sequences, recalling that
integers (and numeric types in general) form a monoid under addition.

f ∗ g =
∑
u,v

u + v 7→ f u ∗ g v -- Figure 1 with (�) = (+)

= λw →
∑
u,v

u+v=w

f u ∗ g v -- equivalent definition



20 Conal Elliott

= λw →
∑
u,v

v=w−u

f u ∗ g v -- solve u + v = w for v

= λw →
∑
u

f u ∗ g (w − u) -- substitute w − u for v

This last form is the standard definition of one-dimensional, discrete convolution [Smith, 1997, Chapter 6].5
Therefore, just as monoid semiring multiplication generalizes language concatenation (via the predicate/set
isomorphism), it also generalizes the usual notion of discrete convolution. Moreover, if the domain is a
continuous type such as R or C, we can reinterpret summation as integration, resulting in continuous
convolution. Additionally, for multi-dimensional (discrete or continuous) convolution, we can simply use
tuples of scalar indices for w and u, defining tuple addition and subtraction componentwise. Alternatively,
curry, convolve, and uncurry, exploiting the fact that curry is a semiring homomorphism (Theorem 2).

What if we use functions from N rather than from Z? Because N ' [()] (essentially, Peano numbers), we
can directly use the definitions in Section 6 for domain [c ], specialized to c = (). As a suitable indexable
functor, we can simply use the identity functor:

newtype Identity b = Identity b deriving
(Functor ,Additive, IsZero, IsOne,LeftSemimodule s,Semiring)

instance Indexable () b (Identity b) where Identity a ! () = a
instance HasSingle () b (Identity b) where () 7→ b = Identity b

The type Cofree Identity is isomorphic to streams (infinite-only lists). Inlining and simplification during
compilation might eliminate all of the run-time overhead of introducing the identity functor.

Just as Cofree Identity gives (necessarily infinite) streams, Cofree Maybe gives (possibly finite) nonempty
lists [Uustalu and Vene, 2008; Maguire, 2016]. As with finite maps, we can interpret absence (Nothing) as 0:

instance Additive b ⇒ Indexable () b (Maybe b) where
Nothing ! () = 0
Just b ! () = b

instance (IsZero b,Additive b)⇒ HasSingle () b (Maybe b) where
() 7→ b | isZero b = Nothing

| otherwise = Just b

Alternatively, define instances directly for lists, specified by a denotation of [b ] as N→ b. The instances
resemble those in Figure 4, but have an extra case for the empty list:

instance Additive b ⇒ Indexable N b [b ] where
[ ] ! = 0
(b : ) ! 0 = b
( : bs) ! n = bs ! (n − 1)

instance Additive b ⇒ Additive [b ] where
0 = [ ]
[ ] + bs = bs
as + [ ] = as
(a : as) + (b : bs) = a + b : as + bs

instance (Semiring b, IsZero b, IsOne b)⇒ Semiring [b ] where
1 = 1 : 0
[ ] ∗ = [ ] -- 0 ∗ q = 0
(a : dp) ∗ q = a · q + (0 : dp ∗ q)

This last definition is reminiscent of long multiplication, which is convolution in disguise.
5 Note that this reasoning applies to any group (monoid with inverses).



Generalized Convolution and Efficient Language Recognition (Extended version) 21

11 Beyond Convolution
Many uses of discrete convolution (including convolutional neural networks [Lecun et al., 2015, Chapter 9])
involve functions having finite support, i.e., nonzero on only a finite subset of their domains. In many cases,
these domain subsets may be defined by finite intervals. For instance, such a 2D operation would be given by
intervals in each dimension, together specifying lower left and upper right corners of a 2D interval (rectangle)
outside of which the functions are guaranteed to be zero. The two input intervals needn’t have the same size,
and the result’s interval of support is typically larger than both inputs, with size equaling the sum of the sizes
in each dimension (minus one for the discrete case). Since the result’s support size is entirely predictable
and based only on the arguments’ sizes, it is appealing to track sizes statically via types. For instance, a 1D
convolution might have the following type:

(∗) :: Semiring s ⇒ Arraym+1 s → Arrayn+1 s → Arraym+n+1 s

Unfortunately, this signature is incompatible with semiring multiplication, in which arguments and result all
have the same type.

From the perspective of functions, an array of size n is a memoized function from Finn , a type representing
the finite set { 0, . . . , n−1 }. We can still define convolution in the customary sense in terms of index addition:

f ∗ g =
∑
u,v

u + v 7→ f u ∗ g v

where now

(+) :: Finm+1 → Finn+1 → Finm+n+1

Indices can no longer form a monoid under addition, however, due to the nonuniformity of types.
The inability to support convolution on statically sized arrays (or other memoized forms of functions over

finite domains) as semiring multiplication came from the expectation that indices/arguments combine via
a monoid. Fortunately, this expectation can be dropped by generalizing from monoidal combination to an
arbitrary binary operation h :: a → b → c. For now, let’s call this more general operation “ lift2 h”.

lift2 :: Semiring s ⇒ (a → b → c)→ (a → s)→ (b → s)→ (c → s)

lift2 h f g =
∑
u,v

h u v 7→ f u ∗ g v

We can similarly lift functions of any arity:

liftn :: Semiring s ⇒ (a1 → · · · → an → b)→ (a1 → s)→ · · · → (an → s)→ (b → s)

liftn h f1 · · · fn =
∑

u1,...,un

h u1 · · · un 7→ f1 u1 ∗ · · · ∗ fn un

Here we are summing over the set-valued preimage of w under h. Now consider two specific instances of liftn:

lift1 :: Semiring s ⇒ (a → b)→ (a → s)→ (b → s)

lift1 h f =
∑
u

h u 7→ f u

lift0 :: Semiring s ⇒ b → (b → s)
lift0 b = b 7→ 1

= single b

The signatures of lift2, lift1, and lift0 almost generalize to those of liftA2, fmap, and pure from the Functor
and Applicative type classes [McBride and Paterson, 2008; Yorgey, 2017]. In type systems like Haskell’s,
however, a → s is the functor (a →) applied to s, while we would need it to be (→ s) applied to a. To fix
this problem, define a type wrapper that swaps domain and codomain type parameters:

newtype s ← a = F (a → s)



22 Conal Elliott

class Functor f where
type Ok f a :: Constraint
type Ok f a = () -- default
fmap :: (Ok f a,Ok f b)⇒ (a → b)→ f a → f b

class Functor f ⇒ Applicative f where
pure :: Ok f a ⇒ a → f a
liftA2 :: (Ok f a,Ok f b,Ok f c)⇒ (a → b → c)→ f a → f b → f c

infixl 1>>=
class Applicative f ⇒ Monad f where
(>>=) :: (Ok f a,Ok f b)⇒ f a → (a → f b)→ f b

instance Functor ((→) a) where instance Semiring b ⇒ Functor ((←) b) where
type Ok ((←) b) a = Eq a

fmap h f = λ a → h (f a) fmap h (F f ) =
∑
u

h u 7→ f u

= F (λ z →
∑
u

h u=z

f u)

instance Applicative ((→) a) where instance Semiring b ⇒ Applicative ((←) b) where
pure b = λ a → b pure a = single a

liftA2 h f g = λ a → h (f a) (g a) liftA2 h (F f ) (F g) =
∑
u,v

h u v 7→ f u ∗ g v

= F (λ z →
∑
u,v

h u v=z

f u ∗ g v)

instance Monad ((→) a) where
m >>= f = λ a → f (m a) a

instance Ord a ⇒ Functor (Map a) where . . .
instance Ord a ⇒ Applicative (Map a) where . . .

newtype Map′ b a = M (Map a b)

instance IsZero b ⇒ Functor (Map′ b) where
type Ok (Map′ b) a = Ord a

fmap h (M p) =
∑

a∈M.keys p

h a 7→ p ! a

instance IsZero b ⇒ Applicative (Map′ b) where
pure a = single a

liftA2 h (M p) (M q) =
∑

a∈M.keys p
b∈M.keys q

h a b 7→ (p ! a) ∗ (q ! b)

Figure 8: Functor and Applicative classes and some instances



Generalized Convolution and Efficient Language Recognition (Extended version) 23

instance Semiring b ⇒ Semiring (a → b) where
1 = pure 1 -- i.e., 1 = λ a → 1
(∗) = liftA2 (∗) -- i.e., f ∗ g = λ a → f a ∗ g a

newtype b ← a = F (a → b) deriving (Additive,HasSingle b,LeftSemimodule b, Indexable a b)

instance (Semiring b,Monoid a)⇒ Semiring (b ← a) where
1 = pure ε
(∗) = liftA2 (�)

instance Semiring (P a) where
1 = { a | True }
(∗) = ∩

newtype P ′ a = P (P a) deriving (Additive,HasSingle b,LeftSemimodule b, Indexable a Bool)

instance Semiring (P ′ a) where
1 = pure ε -- 1 = { ε } = single empty = value 1
(∗) = liftA2 (�) -- p ∗ q = { u � v | u ∈ p ∧ v ∈ q }

Figure 9: The a → b and b ← a semirings

The use of s ← a as an alternative to a → s allows us to give instances for both and to stay within Haskell’s
type system (and ability to infer types via first-order unification).

With this change, we can replace the specialized liftn operations with standard ones. An enhanced version
of the Functor , Applicative, and Monad classes (similar to those by Kidney [2017a]) appear in Figure 8,
along with instances for functions and finite maps. Other representations would need similar reversal of type
arguments. 6,7 Higher-arity liftings can be defined via these three. For b ← a, these definitions are not really
executable code, since they involve potentially infinite summations, but they serve as specifications for other
representations such as finite maps, regular expressions, and tries.

Theorem 16. For each instance defined in Figure 8, 1 = pure ε, and (∗) = liftA2 (�).

Proof. Immediate from the instance definitions.

Given the type distinction between a → b and b ← a, let’s now reconsider the Semiring instances for
functions in Figure 1 and for sets in Section 4. Each has an alternative choice that is in some ways more
compelling, as shown in Figure 9, along with a the old a → b instance reexpressed and reassigned to b ← a.
Just as the Additive and Semiring instances for Bool ← a give us four important languages operations (union,
concatenation and their identities), now the Semiring (a → Bool) gives us two more: the intersection of
languages and its identity (the set of all “strings”). These two semirings share several instances in common,
expressed in Figure 9 via GHC-Haskell’s GeneralizedNewtypeDeriving language extension (present since
GHC 6.8.1 and later made safe by Breitner et al. [2016]). All six of these operations are also useful in their
generalized form (i.e., for a → b and b ← a for semirings b). As with Additive, this Semiring (a → b)
instance implies that curried functions (of any number and type of arguments and with semiring result type)
are semirings, with curry and uncurry being semiring homomorphisms. (The proof is very similar to that of
Theorem 1.)

The a → b and b ← a semirings have another deep relationship:

Theorem 17. The Fourier transform is a semiring and left semimodule homomorphism from b ← a to
a → b.
6 The enhancement is the associated constraint [Bolingbroke, 2011] Ok , limiting the types that the class methods must support.
The line “type Ok f a = ()” means that the constraint on a defaults to (), which holds vacuously for all a.

7 Originally, Applicative had a (<∗>) method from which one can easily define liftA2. Since the base library version 4.10, liftA2
was added as a method (along with a default definition of (<∗>)) to allow for more efficient implementation [GHC Team, 2017,
Section 3.2.2].



24 Conal Elliott

This theorem is more often expressed by saying that (a) the Fourier transform is linear (i.e., an additive-
monoid and left-semimodule homomorphism), and (b) the Fourier transform of a convolution (i.e., (∗) on
b ← a) of two functions is the pointwise product (i.e., (∗) on a → b) of the Fourier transforms of the two
functions. The latter property is known as “the convolution theorem” [Bracewell, 2000, Chapter 6].

There is also an important relationship between a → b and P a ← b. Given a function f :: a → b, the
preimage under f of a codomain value b is the set of all values that get mapped to b:

pre :: (a → b)→ (P a ← b)
pre f = F (λ b → { a | f a = b })

Theorem 18 (Proved in Appendix A.12). The pre operation is a Functor and Applicative homomorphism.

12 The Free Semimodule Monad
Where there’s an applicative, there’s often a compatible monad. For b ← a, the monad is known as the “free
semimodule monad” (or sometimes the “free vector space monad”) [Piponi, 2007; Kmett, 2011; Gehrke et al.,
2017]. The semimodule’s dimension is the cardinality of a. Basis vectors have the form single u = u 7→ 1 for
u :: a (mapping u to 1 and every other value to 0 as in Figure 1).

The monad instances for (←) b and Map′ b are defined as follows:8

instance Semiring s ⇒ Monad ((←) s) where
(>>=) :: (s ← a)→ (a → (s ← b)))→ (s ← b)

F f >>= h =
∑
a

f a · h a

instance (Semiring b, IsZero b)⇒ Monad (Map′ b) where

M m >>= h =
∑

a∈M.keys m

m ! a · h a

Theorem 19 (Proved in Appendix A.13). The definitions of fmap and liftA2 on (←) b in Figure 8 satisfy
the following standard equations for monads:

fmap h p = p >>= pure ◦ h

liftA2 h p q = p >>= λ u → fmap (h u) q
= p >>= λ u → q >>= λ v → pure (h u v)

13 Other Applications

13.1 Polynomials
As is well known, univariate polynomials form a semiring and can be multiplied by convolving their coefficients.
Perhaps less known is that this trick extends naturally to power series and to multivariate polynomials.

Looking more closely, univariate polynomials (and even power series) can be represented by a collection of
coefficients indexed by exponents, or conversely as a collection of exponents weighted by coefficients. For a
polynomial in a variable x , an association i 7→ c of coefficient c with exponent i represents the monomial
(polynomial term) c ∗ x i . One can use a variety of representations for these indexed collections. We’ll consider
efficient representations below, but let’s begin as b ← N along with a denotation as a (polynomial) function
of type b → b:

poly1 :: Semiring b ⇒ (b ← N)→ (b → b)

poly1 (F f ) = λ x →
∑
i

f i ∗ x i

Polynomial multiplication via convolution follows from the following property:
8 The return method does not appear here, since it is equivalent to pure from Applicative.



Generalized Convolution and Efficient Language Recognition (Extended version) 25

Theorem 20 (Proved in Appendix A.14). The function poly1 is a semiring homomorphism when multiplica-
tion on b commutes.

Pragmatically, Theorem 20 says that the b ← N semiring (in which (∗) is convolution) correctly implements
arithmetic on univariate polynomials. More usefully, we can adopt other representations of b ← N, such as
Map N b. For viewing results, wrap these representations in a new type, and provide a Show instance:

newtype Poly1 z = Poly1 z deriving (Additive,Semiring , Indexable n b,HasSingle n b)

instance (. . .)⇒ Show (Poly1 z ) where . . .

Try it out (with prompts indicated by “λ〉 ”):

λ〉 let p = single 1 + value 3 :: Poly1 (Map N Z)
λ〉 p
x + 3

λ〉 p3

x 3 + 9x 2 + 27x + 27

λ〉 p7

2187 + 5103x + 5103x 2 + 2835x 3 + 945x 4 + 189x 5 + 21x 6 + x 7

λ〉 poly1 (p5) 17 = (poly1 p 17)5

True

We can also use [ ] in place of Map N. The example above yields identical results. Since lists are potentially
infinite (unlike finite maps), however, this simple change enables power series. Following McIlroy [1999, 2001],
define integration and differentiation as follows:

integral :: Fractional b ⇒ Poly1 [b ]→ Poly1 [b ]
integral (Poly1 bs0) = Poly1 (0 : go 1 bs0)

where
go [ ] = [ ]
go n (b : d) = b / n : go (n + 1) d

derivative :: (Additive b,Fractional b)⇒ Poly1 [b ]→ Poly1 [b ]
derivative (Poly1 [ ] ) = 0
derivative (Poly1 ( : bs0)) = Poly1 (go 1 bs0)

where
go [ ] = [ ]
go n (b : bs) = n ∗ b : go (n + 1) bs

Then define sin, cos, and exp via simple ordinary differential equations (ODEs):

sinp, cosp, expp :: Poly1 [Rational ]

sinp = integral cosp
cosp = 1− integral sinp
expp = 1 + integral expp

Try it out:

λ〉 sinp
x − 1/6 ∗ x 3 + 1/120 ∗ x 5 − 1/5040 ∗ x 7 + 1/362880 ∗ x 9 − 1/39916800 ∗ x 11 + 1/6227020800 ∗ x 13 − . . .
λ〉 cosp
1/1− 1/2 ∗ x 2 + 1/24 ∗ x 4 − 1/720 ∗ x 6 + 1/40320 ∗ x 8 − 1/3628800 ∗ x 10 + 1/479001600 ∗ x 12 − . . .
λ〉 expp
1/1 + x + 1/2 ∗ x 2 + 1/6 ∗ x 3 + 1/24 ∗ x 4 + 1/120 ∗ x 5 + 1/720 ∗ x 6 + 1/5040 ∗ x 7 + 1/40320 ∗ x 8 . . .



26 Conal Elliott

As expected, derivative sinp = cosp, derivative cosp = −sinp, and derivative expp = expp:

λ〉 derivative sinp -- = cosp
1/1− 1/2 ∗ x 2 + 1/24 ∗ x 4 − 1/720 ∗ x 6 + 1/40320 ∗ x 8 − 1/3628800 ∗ x 10 + 1/479001600 ∗ x 12 − . . .
λ〉 derivative cosp -- = −sinp
(−1)/1 ∗ x + 1/6 ∗ x 3 − 1/120 ∗ x 5 + 1/5040 ∗ x 7 − 1/362880 ∗ x 9 + 1/39916800 ∗ x 11 − . . .
λ〉 derivative expp -- = expp
1/1 + x + 1/2 ∗ x 2 + 1/6 ∗ x 3 + 1/24 ∗ x 4 + 1/120 ∗ x 5 + 1/720 ∗ x 6 + 1/5040 ∗ x 7 + 1/40320 ∗ x 8 . . .

Crucially for termination of ODEs such as these, integral is nonstrict, yielding its result’s first coefficient
before examining its argument. In particular, the definition of integral does not optimize for Poly1 [ ].

What about multivariate polynomials, i.e., polynomial functions over higher-dimensional domains?
Consider a 2D domain:

poly2 :: Semiring b ⇒ (b ← N× N)→ (b ∗ b → b)

poly2 (F f ) = λ (x , y)→
∑
i,j

f (i , j ) ∗ x i ∗ y j

Then

poly2 (F f ) (x , y)

=
∑
i,j

f (i , j ) ∗ x i ∗ y j -- poly2 definition

=
∑
i,j

curry f i j ∗ x i ∗ y j -- curry definition

=
∑
i

(
∑
j

curry f i j ∗ y j ) ∗ x i -- linearity and commutativity assumption

=
∑
i

poly (curry f i) y ∗ x i -- poly definition

= poly (λ i → poly (curry f i) y) x -- poly definition

The essential idea here is that a polynomial with a pair-valued domain can be viewed as a polynomial over
polynomials.

We can do much better, however, generalizing from two dimensions to n dimensions for any n:

poly :: (b ← Nn)→ (bn → b)

poly (F f ) (x :: bn) =
∑
p::Nn

f p ∗ xˆp

infixr 8 ˆ
(ˆ) :: bn → Nn → b

xˆp =
∏
i<n

xpi

i

For instance, for n = 3, (x , y , z )̂ (i,j ,k) = x i ∗ y j ∗ z k . Generalizing further, let n be any type, and interpret
bn and Nn as n → b and n → N:

poly :: (b ← (n → N))→ ((n → b)→ b)

poly (F f ) (x :: n → b) =
∑

p::n→N
f p ∗ xˆp

infixr 8
(ˆ) :: (n → b)→ (n → N)→ b

xˆp =
∏
i

(x i)(p i)

Lemma 21 (Proved in Appendix A.15). When (∗) commutes, (ˆ) satisfies the following exponentiation
laws:

xˆ0 = 1
xˆp+q = xˆp ∗ xˆq

In other words, x ·̂ is a (commutative) monoid homomorphism from the sum monoid to the product monoid.



Generalized Convolution and Efficient Language Recognition (Extended version) 27

original blur sharpen edge-detect

Figure 10: Image convolution

Theorem 22. The generalized poly function is a semiring homomorphism when multiplication on b commutes.

Proof. Just like the proof of Theorem 20, given Lemma 21.

Theorem 22 says that the b ← (n → N) semiring (in which (∗) is higher-dimensional convolution) correctly
implements arithmetic on multivariate polynomials. We can instead use Map (f N) b to denote b ← (n → N),
where f is indexable with Key f = n. One convenient choice is to let n = String for variable names, and
f = Map String .9 As with Poly1, wrap this representation in a new type, and add a Show instance:

newtype PolyM b = PolyM (Map (Map String N) b)
deriving (Additive,Semiring , Indexable n,HasSingle n,Functor)

instance (. . .)⇒ Show (PolyM b) where . . .

var :: Semiring b ⇒ String → PolyM b
var = single ◦ single

Try it out:

λ〉 let p = var "x"+ var "y"+ var "z" :: PolyM Z
λ〉 p
x + y + z

λ〉 p2

x 2 + 2xy + 2xz + y2 + 2yz + z 2

λ〉 p3

x 3 + 3x 2y + 3xy2 + 6xyz + 3x 2z + 3xz 2 + y3 + 3y2z + 3yz 2 + z 3

13.2 Image Convolution
Figure 10 shows examples of image convolution with some commonly used kernels [Petrick, 2016; Young
et al., 1995]. The source image (left) and convolution kernels are all represented as lists of lists of floating
point grayscale values. Because (semiring) multiplication on [b ] is defined via multiplication on b, one can
nest representations arbitrarily. Other more efficient representations can work similarly.

14 Related Work
This paper began with a desire to understand regular expression matching via “derivatives” by Brzozowski
[1964] more fundamentally and generally. Brzozowski’s method spurred much follow-up investigation in
recent years. Owens et al. [2009] dusted off regular expression derivatives after years of neglect with a
9 Unfortunately, the Monoid instance for the standard Map type defines m �m ′ so that keys present in m ′ replace those in
m. This behavior is problematic for our use (and many others), so we must use a Map variant that wraps the standard type,
changing the Monoid instance so that m �m ′ combines values (via (�)) associated with the same keys in m and m ′.



28 Conal Elliott

new exposition and experience report. Might and Darais [2010] considerably extended expressiveness to
context-free grammars (recursively defined regular expressions) as well as addressing some efficiency issues,
including memoization, with further performance analysis given later [Adams et al., 2016]. Fischer et al.
[2010] also extended regular language membership from boolean to “weighted” by an arbitrary semiring,
relating them to weighted finite automata. Piponi and Yorgey [2015] investigated regular expressions and
their relationship to the semiring of polynomial functors, as well as data type derivatives and dissections.
Radanne and Thiemann [2018] explored regular expressions extended to include intersection and complement
(as did Brzozowski) with an emphasis on testing.

McIlroy [1999, 2001] formulated power series as a small and beautiful collection of operations on infinite
coefficient streams, including not only the arithmetic operations, but also inversion and composition, as
well as differentiation and integration. He also defined transcendental operations by simple recursion and
integration, such as sin = integral cos and cos = 1− integral sin.

Dongol et al. [2016] investigated convolution in a general algebraic setting that includes formal language
concatenation. Kmett [2015] observed that Moore machines are a special case of the cofree comonad. The
connections between parsing and semirings have been explored deeply by Goodman [1998, 1999] and by Liu
[2004], building on the foundational work of Chomsky and Schützenberger [1959]. Kmett [2011] also explored
some issues similar to those in the present paper, building on semirings and free semimodules, pointing out
that the classic continuation monad can neatly represent linear functionals.

Kidney [2016a,b] implemented a Haskell semiring library that helped with early implementations leading
to the present paper, with a particular leaning toward convolution [Kidney, 2017b]. Several of the class
instances given above, though independently encountered, also appear in that library.

A Proofs

A.1 Theorem 1

curry 0
= curry (λ (x , y)→ 0) -- 0 on functions
= λ x → λ y → 0 -- curry definition
= λ x → 0 -- 0 on functions
= 0 -- 0 on functions

curry (f + g)
= curry (λ (x , y)→ f (x , y) + g (x , y)) -- (+) on functions
= λ x → λ y → f (x , y) + g (x , y) -- curry definition
= λ x → λ y → curry f x y + curry g x y -- curry definition (twice)
= λ x → curry f x + curry g x -- (+) on functions
= curry f + curry g -- (+) on functions

Likewise for uncurry , or because curry and uncurry are inverses.

A.2 Theorem 2

For 1 :: u × v → b,

curry 1
= curry (ε 7→ 1) -- 1 on functions
= curry ((ε, ε) 7→ 1) -- ε on pairs
= ε 7→ ε 7→ 1 -- Lemma 6
= ε 7→ 1 -- 1 on functions
= 1 -- 1 on functions

For f , g :: u × v → b,



Generalized Convolution and Efficient Language Recognition (Extended version) 29

curry (f ∗ g)

= curry (
∑

(u,v),(s,t)

(u, s) � (v , t) 7→ f (u, s) ∗ g (v , t)) -- (∗) on functions (monoid semiring)

= curry (
∑

(u,v),(s,t)

(u � v , s � t) 7→ f (u, s) ∗ g (v , t)) -- (�) on pairs

=
∑

(u,v),(s,t)

u � v 7→ s � t 7→ f (u, s) ∗ g (v , t) -- Lemma 6

=
∑
u,v

∑
s,t

u � v 7→ s � t 7→ f (u, s) ∗ g (v , t) -- summation mechanics

=
∑
u,v

u � v 7→
∑
s,t

s � t 7→ f (u, s) ∗ g (v , t) -- Lemma 7

=
∑
u,v

u � v 7→
∑
s,t

s � t 7→ curry f u s ∗ curry g v t -- curry definition

=
∑
u,v

u � v 7→ curry f u ∗ curry g v -- ( 7→) on functions

= curry f ∗ curry g -- ( 7→) on functions

A.3 Lemma 5∑
a

a 7→ f a

=
∑
a

(λ a ′ → if a ′ = a then f a else 0) -- (7→) on a → b

= λ a ′ →
∑
a

if a ′ = a then f a else 0 -- (+) on a → b

= λ a ′ → f a ′ -- other addends vanish
= f -- η reduction

A.4 Lemma 6

curry ((a, b) 7→ c)
= curry (λ (u, v)→ if (u, v) = (a, b) then c else 0) -- ( 7→) on functions
= curry (λ (u, v)→ if u = a ∧ v = b then c else 0) -- pairing is injective
= λ u → λ v → if u = a ∧ v = b then c else 0 -- curry definition
= λ u → λ v → if u = a then (if v = b then c else 0) else 0 -- property of if and (∧)
= λ u → if u = a then (λ v → if v = b then c else 0) else 0 -- (u = a) is independent of v
= λ u → if u = a then b 7→ c else 0 -- ( 7→) on functions
= a 7→ b 7→ c -- ( 7→) on functions

A.5 Theorem 8

pred 1
= pred { ε } -- 1 on sets
= λw → w ∈ { ε } -- pred definition
= λw → w = ε -- property of sets
= λw → if w = ε then True else False -- property of if
= λw → if w = ε then 1 else 0 -- 1 and 0 on Bool
= ε 7→ 1 -- (7→) definition
= 1 -- 1 on functions



30 Conal Elliott

pred−1 (pred p ∗ pred q)

= pred−1 (λw →
∑
u,v

w=u�v

pred p u ∗ pred q v) -- (∗) on functions

= pred−1 (λw →
∑
u,v

w=u�v

(u ∈ p) ∗ (v ∈ q)) -- pred definition (twice)

= pred−1 (λw →
∨
u,v

w=u�v

u ∈ p ∧ v ∈ q) -- (+) and (∗) on Bool

= {w |
∨
u,v

w = u � v ∧ u ∈ p ∧ v ∈ q } -- pred−1 definition

= { u � v | u ∈ p ∧ v ∈ q } -- set notation
= p ∗ q -- (∗) on sets

For StarSemiring the default recursive definition embodies the star semiring law.

A.6 Lemma 9
Any argument to f must be either [ ] or c : cs for some value c and list cs. Consider each case:

(atε f / D f ) [ ]
= atε f [ ] -- b / h definition
= f [ ] -- atε definition

(atε f / D f ) (c : cs)
= D f (c : cs) -- b / h definition
= f (c : cs) -- D definition

Thus, for all w :: [c ], f w = (atε f / D f ) w , from which the lemma follows by extensionality.
For the other two equations:

atε (b / h)
= atε (λ case { [ ]→ b ; c : cs → h c cs }) -- (/) definition
= (λ case { [ ]→ b ; c : cs → h c cs }) [ ] -- atε definition
= b -- semantics of case

D (b / h)
= D (λ case { [ ]→ b ; c : cs → h c cs }) -- (/) definition
= λ c → λ cs → (λ case { [ ]→ b ; c : cs → h c cs }) (c : cs) -- D definition
= λ c → λ cs → h c cs -- semantics of case
= h -- η reduction (twice)

A.7 Lemma 10

atε 0
= atε (λ a → 0) -- 0 on functions
= (λ a → 0) [ ] -- atε definition
= 0 -- β reduction

atε 1
= atε (ε 7→ 1) -- 1 on functions
= atε (λ b → if b = ε then 1 else 0) -- (7→) on functions
= atε (λ b → if b = ε then True else False) -- 1 and 0 on Bool
= atε (λ b → b = ε) -- property of if



Generalized Convolution and Efficient Language Recognition (Extended version) 31

= ε = ε -- atε definition
= 1

atε (f + g)
= atε (λ a → f a + g a) -- (+) on functions
= (λ a → f a + g a) [ ] -- atε definition
= f [ ] + g [ ] -- β reduction
= atε f + atε g -- atε definition

atε (f ∗ g)

= atε (
∑
u,v

u � v 7→ f u ∗ g v) -- (∗) on functions

= atε (λw →
∑
u,v

u�v=[ ]

f u ∗ g v) -- alternative definition from Figure 1

=
∑
u,v

u=[ ]∧v=[ ]

f u ∗ g v -- u � v = [ ]⇐⇒ u = [ ] ∧ v = [ ]

= f [ ] ∗ g [ ] -- singleton sum
= atε f ∗ atε g -- atε definition

atε (p
∗)

= atε (
∑
i

pi) -- alternative p∗ formulation

=
∑
i

(atε p)i -- atε is a semiring homomorphism (above)

= (atε p)∗ -- defining property of ·∗

atε (s · f )
= atε (λ a → s ∗ f a) -- (·) on functions
= (λ a → s ∗ f a) [ ] -- atε definition
= s ∗ f [ ] -- β reduction
= s ∗ atε f -- atε definition

atε ([ ] 7→ b)
= atε (λw → if w = [ ] then b else 0) -- ( 7→) on [c ]→ b
= (λw → if w = [ ] then b else 0) [ ] -- atε definition
= if [ ] = [ ] then b else 0 -- β reduction
= b -- if True

atε (c
′ : cs ′ 7→ b)

= atε (λw → if w = c′ : cs ′ then b else 0) -- ( 7→) on [c ]→ b
= (λw → if w = c′ : cs ′ then b else 0) [ ] -- atε definition
= if [ ] = c′ : cs ′ then b else 0 -- β reduction
= 0 -- if False

A.8 Lemma 11

D 0
= D (λw → 0) -- 0 on functions
= λ c → λ cs → (λw → 0) (c : cs) -- D on functions



32 Conal Elliott

= λ c → λ cs → 0 -- β reduction
= λ c → 0 -- 0 on functions
= 0 -- 0 on a → b

D 1
= D (single ε) -- 1 on functions
= λ c → λ cs → single ε (c : cs) -- D on functions
= λ c → λ cs → 0 -- c : cs 6= ε
= λ c → 0 -- 0 on functions
= 0 -- 0 on a → b

D (f + g)
= D (λw → f w + g w) -- (+) on functions
= λ c → λ cs → (λw → f w + g w) (c : cs) -- D on functions
= λ c → λ cs → f (c : cs) + g (c : cs) -- β reduction
= λ c → (λ cs → f (c : cs)) + (λ cs → g (c : cs)) -- (+) on functions
= λ c → D f c +D g c -- D on functions
= D f +D g -- (+) on a → b

D (f ∗ g)

= D (
∑
u,v

u � v 7→ f u ∗ g v) -- (∗) on functions

= D (
∑
v

(ε � v 7→ f ε ∗ g v) +
∑

c′,u′,v

((c′ : u ′) � v 7→ f (c′ : u ′) ∗ g v)) -- empty vs nonempty u

= D (
∑
v

(ε � v 7→ f ε ∗ g v)) +D (
∑

c′,u′,v

((c′ : u ′) � v 7→ f (c′ : u ′) ∗ g v)) -- additivity of D (above)

First addend:

D (
∑
v

(ε � v 7→ f ε ∗ g v))

= D (
∑
v

(v 7→ f ε ∗ g v)) -- monoid law

= D (f ε ·
∑
v

(v 7→ g v)) -- distributivity (semiring law)

= λ c → D (f ε ·
∑
v

(v 7→ g v)) c -- η expansion

= λ c → f ε · D (
∑
v

v 7→ g v) c -- additivity of D (above)

= λ c → f ε · D g c -- Lemma 5
= λ c → atε f · D g -- atε on functions
= fmap (atε f ·) (D g c) -- fmap on functions

Second addend:

D (
∑

c′,u′,v

((c′ : u ′) � v 7→ f (c′ : u ′) ∗ g v))

=
∑

c′,u′,v

D ((c′ : u ′) � v 7→ f (c′ : u ′) ∗ g v) -- additivity of D

=
∑

c′,u′,v

D (c′ : (u ′ � v) 7→ f (c′ : u ′) ∗ g v) -- (�) on lists

= λ c →
∑
u′,v

u ′ � v 7→ f (c : u ′) ∗ g v -- D on ( 7→) below



Generalized Convolution and Efficient Language Recognition (Extended version) 33

= λ c →
∑
u′,v

u ′ � v 7→ (λ cs → f (c : cs)) u ′ ∗ g v -- β expansion

= λ c → λ cs → f (c : cs) ∗ g -- (∗) on functions
= λ c → D f c ∗ g -- D on functions
= fmap (∗ g) (D f ) -- fmap on functions

Combining addends,

D (f ∗ g) = fmap (atε f ) (D g) + fmap (∗ g) (D f )

Continuing with the other equations in Lemma 11,

D (p∗)
= D (1 + p ∗ p∗) -- star semiring law
= D 1 +D (p ∗ p∗) -- additivity of D (above)
= D (p ∗ p∗) -- D 1 = 0 (above)
= λ c → atε p · D (p∗) c +D p c ∗ p∗ -- D (p ∗ q) above
= λ c → (atε p)∗ · D p c ∗ p∗ -- Lemma 4
= fmap (λ d → (atε p)∗ · d ∗ Star p) (D p) -- fmap on functions

D (s · f )
= D (λw → s ∗ f w) -- (·) on functions
= λ c → λ cs → (λw → s ∗ f w) (c : cs) -- D definition
= λ c → λ cs → s ∗ f (c : cs) -- β reduction
= λ c → s · (λ cs → f (c : cs)) -- (·) on functions
= λ c → s · D f c -- D definition
= fmap (s ·) (D f ) -- fmap on functions

D ([ ] 7→ b) c
= D (λw → if w = [ ] then b else 0) -- ( 7→) on functions
= λ cs → (λw → if w = [ ] then b else 0) (c : cs) -- D definition
= λ cs → if c : cs = [ ] then b else 0 -- β reduction
= λ cs → 0 -- c : cs 6= [ ]
= 0 -- 0 on functions

D (c′ : cs ′ 7→ b)
= D (λw → if w = c′ : cs ′ then b else 0) -- ( 7→) on functions
= λ c → λ cs → (λw → if w = c′ : cs ′ then b else 0) (c : cs) -- ( 7→) on functions
= λ c → λ cs → if c : cs = c′ : cs ′ then b else 0 -- β reduction
= λ c → λ cs → if c = c′ ∧ cs = cs ′ then b else 0 -- (:) injectivity
= λ c → λ cs → if c = c′ then (if cs = cs ′ then b else 0) else 0 -- property of if and (∧)
= λ c → if c = c′ then (λ cs → if cs = cs ′ then b else 0 else 0) -- property of if
= λ c → if c = c′ then cs ′ 7→ b else 0 -- ( 7→) on functions
= c′ 7→ cs ′ 7→ b -- ( 7→) on s → t

A.9 Theorem 12

0
= atε 0 / D 0 -- Lemma 9
= 0 / λ c → 0 -- Lemmas 10 and 11
= 0 / 0 -- 0 on functions

1
= atε 1 / D 1 -- Lemma 9



34 Conal Elliott

= 1 / λ c → 0 -- Lemmas 10 and 11
= 1 / 0 -- 0 on functions

(a / dp) + (b / dp)
= atε ((a / dp) + (b / dq)) / D ((a / dp) + (b / dq)) -- Lemma 9
= a + b / dp + dq -- Lemma 23 below

(a / dp) ∗ (b / dq)
= atε ((a / dp) ∗ (b / dq)) / D ((a / dp) ∗ (b / dq)) -- Lemma 9
= a ∗ b / λ c → a · dq c + dp c ∗ (b / dq) -- Lemma 23 below
= (a ∗ b + 0) / (λ c → a · dq c) + (λ c → dp c ∗ (b / dq)) -- additive identity; (+) on functions
= (a ∗ b / λ c → a · dq c) + (0 / λ c → dp c ∗ (b / dq)) -- previous result
= a · (b / dq) + (0 / λ c → dp c ∗ (b / dq)) -- (·) case below
= a · (b / dq) + (0 / (∗ (b / dq)) ◦ dp) -- (◦) definition
= a · (b / dq) + (0 / fmap (∗ (b / dq)) dp) -- fmap on functions

(a / dp)∗

= atε ((a / dp)∗) / D ((a / dp)∗) -- Lemma 9
= a∗ / λ c → a∗ · dp c ∗ (a / dp)∗ -- Lemma 23 below
= a∗ · (1 / λ c → dp c ∗ (a / dp)∗) -- (·) case below
= a∗ · (1 / fmap (∗ (a / dp)∗) dp) -- fmap on functions

s · (b / h)
= atε (s · (b / h)) / D (s · (b / h)) -- Lemma 9
= s ∗ b / λ c → s · dp c -- Lemma 23 below
= s ∗ b / (s·) ◦ dp -- (◦) definition
= s ∗ b / fmap (s ·) dp -- fmap on functions

[ ] 7→ b
= atε ([ ] 7→ b) / D ([ ] 7→ b) -- Lemma 9
= b / λ c → 0 -- Lemmas 10 and 11
= b / 0 -- 0 on functions

c′ : cs ′ 7→ b
= atε (c

′ : cs ′ 7→ b) / D (c′ : cs ′ 7→ b) -- Lemma 9
= 0 / λ c → if c = c′ then cs ′ 7→ b else 0 -- Lemmas 10 and 11
= 0 / c′ 7→ cs ′ 7→ b -- (7→) on functions

Expressed via foldr ,

w 7→ b = foldr (λ c t → 0 / c 7→ t) (b / 0) w

Lemma 23. The atε and D functions satisfy the following properties in terms of (/)-decompositions:

atε ((a / dp) + (b / dq)) = a + b

atε ((a / dp) ∗ (b / dq)) = a ∗ b

atε ((a / dp)∗) = a∗

atε (s · (a / dp)) = s ∗ a

D ((a / dp) + (b / dq)) c = dp c + dq c

D ((a / dp) ∗ (b / dq)) c = a · dq c + dp c ∗ (b / dq)

D ((a / dp)∗) c = a∗ · dp c ∗ (a / dp)∗

D (s · (a / dp)) c = s · dp c

Proof. Substitute into Lemmas 10 and 11, and simplify, using Lemma 9.



Generalized Convolution and Efficient Language Recognition (Extended version) 35

A.10 Theorem 14

The theorem follows from Theorem 12. A few details:

(!) 0

= (!) (0 :/ 0) -- 0 for Cofree c b

= 0 / (!) ◦ (!) 0 -- (!) for Cofree c b

= 0 / (!) ◦ 0 -- Additive functor assumption
= 0 / 0 -- coinduction
= 0 -- Theorem 12

(!) ((a :/ dp) + (b :/ dq))

= (!) (a + b :/ dp + dq) -- (+) on Cofree c b

= a + b / (!) ◦ (!) (dp + dq) -- (!) on Cofree c b

= a + b / (!) ◦ ((!) dp + (!) dq) -- Indexable law
= a + b / (!) ◦ (λ cs → dp ! cs + dq ! cs) -- (+) on functions
= a + b / λ cs → (!) (dp ! cs + dq ! cs) -- (◦) definition
= a + b / λ cs → (!) (dp ! cs) + (!) (dq ! cs) -- Indexable law
= a + b / λ cs → ((!) ◦ (!) dp) cs + ((!) ◦ (!) dq) cs -- (◦) definition
= a + b / ((!) ◦ (!) dp) + ((!) ◦ (!) dq) -- (+) on functions
= (a :/ (!) ◦ (!) dp) + (b :/ (!) ◦ (!) dq) -- (+) on Cofree c b

= (!) (a :/ dp) + (!) (b :/ dq) -- (!) on Cofree c b

A.11 Theorem 15

First show that (!) is natural (a functor homomorphism):

(!) (fmap f (a :/ ds)) = fmap f ((!) (a :/ ds))

i.e.,

fmap f (a :/ ds) ! cs = fmap f ((!) (a :/ ds)) cs

Consider cases for cs:

fmap f (a :/ ds) ! [ ]
= f a :/ (fmap (fmap f ) ds) ! [ ] -- fmap on Cofree h
= f a -- (!) on Cofree h

fmap f ((!) (a :/ ds)) [ ]
= (f ◦ (!) (a :/ ds)) [ ] -- fmap on functions
= f ((a :/ ds) ! [ ]) -- (◦) definition
= f a -- (!) on Cofree h

fmap f (a :/ ds) ! (c : cs ′)
= f a :/ fmap (fmap f ) ds ! (c : cs ′) -- fmap on Cofree h
= fmap (fmap f ) ds ! c ! cs -- (!) on Cofree h
= fmap f (ds ! c) ! cs -- (!) on h is natural
= f (ds ! c ! cs) -- (!) on h is natural

fmap f ((!) (a :/ ds)) (c : cs ′)



36 Conal Elliott

= (f ◦ (!) (a :/ ds)) (c : cs ′) -- fmap on functions
= f ((a :/ ds) ! (c : cs ′)) -- (◦) definition
= f (ds ! c ! cs ′) -- (!) on Cofree h

Next show that

coreturn (a :/ ds) = coreturn ((!) (a :/ ds))

coreturn ((!) (a :/ ds))
= ((!) (a :/ ds)) ε
= (a :/ ds) ! ε
= a
= coreturn (a :/ ds)

Finally,

(!) ◦ fmap (!) ◦ cojoin = cojoin ◦ (!)

i.e.,

fmap (!) (cojoin (a :/ ds)) ! cs = cojoin ((!) (a :/ ds)) cs

fmap (!) (cojoin (a :/ ds)) ! [ ]
= fmap (!) ((a :/ ds) :/ fmap cojoin ds) ! [ ] -- cojoin on Cofree h
= ((!) (a :/ ds) :/ fmap (fmap (!)) (fmap cojoin ds)) ! [ ] -- fmap on Cofree h
= (!) (a :/ ds) -- (!) on Cofree h

cojoin ((!) (a :/ ds)) [ ]
= (λ u → λ v → (a :/ ds) ! (u � v)) [ ] -- cojoin on functions
= λ v → (a :/ ds) ! ([ ] � v) -- β reduction
= λ v → (a :/ ds) ! v -- Monoid law (with ε = [ ])
= (!) (a :/ ds) -- η reduction

fmap (!) (cojoin (a :/ ds)) ! (c : cs ′)
= fmap (!) ((a :/ ds) :/ fmap cojoin ds) ! (c : cs ′) -- cojoin on Cofree h
= ((!) (a :/ ds) :/ fmap (fmap (!)) (fmap cojoin ds)) ! (c : cs ′) -- fmap on Cofree h
= fmap (fmap (!)) (fmap cojoin ds) ! c ! cs ′ -- (!) on Cofree h
= fmap (fmap (!) ◦ cojoin) ds ! c ! cs ′ -- Functor law
= (fmap (!) ◦ cojoin) ((!) ds) c ! cs ′ -- Naturality of (!)
= fmap (!) (cojoin ((!) ds) c) ! cs ′ -- (◦) definition
= cojoin ((!) (ds ! c)) cs ′ -- coinduction
= λ v → cojoin ((!) (ds ! c)) cs ′ v -- η expansion
= λ v → (!) (ds ! c) (cs ′ � v) -- cojoin for functions
= λ v → ds ! c ! (cs ′ � v) -- infix (!)
= λ v → (a :/ ds) ! (c : (cs ′ � v)) -- (!) on Cofree h
= λ v → (a :/ ds) ! ((c : cs ′) � v) -- (�) on [c ]
= (λ u → λ v → (a :/ ds) ! (u � v)) (c : cs ′) -- β reduction
= cojoin ((!) (a :/ ds)) (c : cs ′) -- cojoin on functions

A.12 Theorem 18

pre (pure b)

= pre (λ a → b) -- pure on a → b



Generalized Convolution and Efficient Language Recognition (Extended version) 37

= F (λ b′ → { a | b = b′ }) -- pre definition
= F (λ b′ → if b′ = b then { a | True } else { a | False }) -- case split
= F (λ b′ → if b′ = b then 1 else 0) -- 1 and 0 for P a (revised in Figure 9)
= b 7→ 1 -- (7→) definition
= pure b -- pure for P a ← b

pre (fmap h f )

= pre (λ a → h (f a)) -- fmap on a → b

= F (λ c → { a | h (f a) = c }) -- pre definition
= F (λ c → { a | ∃b. f a = b ∧ h b = c }) -- intermediate variable

= F (λ c →
⋃
b

h b=c

{ a | f a = b }) -- logic/sets

= F (λ c →
⋃
b

h b=c

pre f b) -- pre definition

= F (λ c →
∑
b

h b=c

pre f b) -- (+) on P a

= fmap h (pre f ) -- fmap on P a ← b

pre (liftA2 h f g)

= pre (λ a → h (f a) (g a)) -- liftA2 on a → b

= λ c → {a | h (f a) (g a) = c} -- pre definition
= λ c → {a | ∃x y . x = f a ∧ y = g a ∧ h x y = c} -- intermediate variables
= λ c → {a | ∃x y . a ∈ pre f x ∧ a ∈ pre g y ∧ h x y = c} -- pre definition (twice)
= λ c → {a | ∃x y . a ∈ (pre f x ∩ pre g y) ∧ h x y = c} -- ∩ definition

=
⋃
x ,y

h x y 7→ pre f x ∩ pre g y -- logic/sets

=
⋃
x ,y

h x y 7→ pre f x ∗ pre g y -- (∗) on P a (revised in Figure 9)

=
∑
x ,y

h x y 7→ pre f x ∗ pre g y -- (+) on P a ← b

= liftA2 h (pre f ) (pre g)

A.13 Theorem 19

First consider fmap, as defined in Figure 8.

fmap h (F f )

=
∑
u

h u 7→ f u -- definition of fmap on (←) b

=
∑
u

h u 7→ f u ∗ 1 -- multiplicative identity

=
∑
u

f u · (h u 7→ 1) -- Lemma 7

=
∑
u

f u · single (h u) -- definition of single



38 Conal Elliott

=
∑
u

f u · pure (h u) -- single = pure

= F f >>= pure ◦ h -- definition of (>>=)

Similarly for liftA2:

liftA2 h (F f ) (F g)

=
∑
u,v

h u v 7→ f u ∗ g v -- definition of liftA2

=
∑
u,v

(f u ∗ g v) · single (h u v) -- as above

=
∑
u,v

f u · (g v · single (h u v)) -- associativity

=
∑
u

f u ·
∑
v

g v · single (h u v) -- linearity

=
∑
u

f u ·
∑
v

h u v 7→ g v -- as above

=
∑
u

f u · fmap (h u) (F g) -- definition of fmap

= F f >>= λ u → fmap (h u) (F g) -- definition of (>>=)

= F f >>= λ u → F g >>= λ v → pure (h u v) -- above

A.14 Theorem 20

poly 0
= poly (F (λ i → 0)) -- 0 on b ← a (derived)
= λ x →

∑
i

0 ∗ x i -- poly definition

= λ x →
∑
i

0 -- 0 as annihilator

= λ x → 0 -- 0 as additive identity
= 0 -- 0 on functions

poly 1
= poly (pure ε) -- 1 on b ← a
= poly (F (λ i → if i = ε then 1 else 0)) -- pure on (←) b
= poly (F (λ i → if i = 0 then 1 else 0)) -- ε on N
= λ x →

∑
i

(if i = 0 then 1 else 0) ∗ x i -- poly definition

= λ x →
∑
i

(if i = 0 then x i else 0) -- simplify

= λ x → x 0 -- other terms vanish
= λ x → 1 -- multiplicative identity
= 1 -- 1 on a → b

poly (F f + F g)
= poly (F (λ i → f i + g i)) -- (+) on b ← a (derived)
= λ x →

∑
i

(f i + g i) ∗ x i -- poly definition



Generalized Convolution and Efficient Language Recognition (Extended version) 39

= λ x →
∑
i

f i ∗ x i + g i ∗ x i -- distributivity

= λ x → (
∑
i

f i ∗ x i) + (
∑
i

g i ∗ x i) -- summation property

= λ x → poly (F f ) x + poly (F g) x -- poly definition
= poly (F f ) + poly (F g) -- (+) on a → b

poly (F f ∗ F g)
= poly (liftA2 (�) (F f ) (F g)) -- (∗) on b ← a

= poly (
∑
i,j

i � j 7→ f i ∗ g j ) -- liftA2 on b ← a

= poly (
∑
i,j

i + j 7→ f i ∗ g j ) -- (�) on N

=
∑
i,j

poly (i + j 7→ f i ∗ g j ) -- additivity of poly (previous property)

=
∑
i,j

(λ x → (f i ∗ g j ) ∗ x i+j ) -- Lemma 24 below

= λ x →
∑
i,j

(f i ∗ g j ) ∗ x i+j -- (+) on functions

= λ x →
∑
i,j

(f i ∗ g j ) ∗ (x i ∗ x j ) -- exponentiation property

= λ x →
∑
i,j

(f i ∗ x i) ∗ (g j ∗ x j ) -- commutativity assumption

= λ x → (
∑
i

f i ∗ x i) ∗ (
∑
j

g j ∗ x j ) -- summation property

= λ x → poly (F f ) x ∗ poly F g) x -- poly definition
= poly (F f ) ∗ poly F g) -- (∗) on functions

Lemma 24.

poly (n 7→ b) = λ x → b ∗ xn

Proof.

poly (n 7→ b)
poly (F (λ i → if i = n then b else 0)) -- (7→) on b ← a (derived)
λ x →

∑
i

(if i = n then b else 0) ∗ xn -- poly definition

λ x → b ∗ xn -- other terms vanish

A.15 Lemma 21

xˆ0

=
∏
i

(x i)0 i -- (ˆ) definition

=
∏
i

(x i)0 -- 0 on functions

=
∏
i

1 -- exponentiation law

= 1 -- multiplicative identity



40 Conal Elliott

xˆp+q

=
∏
i

(x i)(p+q) i -- (ˆ) definition

=
∏
i

(x i)p i+q i -- (+) on functions

=
∏
i

((x i)p i) ∗ ((x i)q i) -- exponentiation law (with commutative (∗))

=

(∏
i

(x i)p i

)
∗

(∏
i

(x i)q i

)
-- product property (with commutative (∗))

= xˆp ∗ xˆq -- (ˆ) definition

References
Michael D. Adams, Celeste Hollenbeck, and Matthew Might. On the complexity and performance of parsing
with derivatives. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’16, pages 224–236, 2016.

Stephen Adams. Efficient sets—a balancing act. Journal of Functional Programming, 3(4):553–561, 1993.

Guillaume Boisseau and Jeremy Gibbons. What you needa know about Yoneda: Profunctor optics and the
Yoneda lemma (functional pearl). Proceedings of the ACM on Programming Languages, 2(ICFP):84:1–84:27,
July 2018.

Max Bolingbroke. Constraint kinds for GHC. Blog post, September 2011. http://blog.omega-prime.co.
uk/2011/09/10/constraint-kinds-for-ghc/.

Ronald N. Bracewell. The Fourier Transform and its Applications. McGraw Hill, 3rd ed. edition, 2000.

Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and Stephanie Weirich. Safe zero-cost coercions
for Haskell. Journal of Functional Programming, 26:e15, 2016.

Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11:481–494, 1964.

N. Chomsky and M.P. Schützenberger. The algebraic theory of context-free languages. In P. Braffort and
D. Hirschberg, editors, Computer Programming and Formal Systems, volume 26 of Studies in Logic and the
Foundations of Mathematics, pages 118–161. Elsevier, 1959.

Richard H. Connelly and F. Lockwood Morris. A generalization of the trie data structure. Mathematical
Structures in Computer Science, 5(3), 1995.

Stephen Dolan. Fun with semirings: A functional pearl on the abuse of linear algebra. In Proceedings of
the 18th ACM SIGPLAN International Conference on Functional Programming, ICFP ’13, pages 101–110,
2013.

Brijesh Dongol, Ian J. Hayes, and Georg Struth. Convolution as a unifying concept: Applications in separation
logic, interval calculi, and concurrency. ACM Transactions on Computational Logic, pages 15:1–15:25,
February 2016.

Sebastian Fischer, Frank Huch, and Thomas Wilke. A play on regular expressions: Functional pearl. In
Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming, ICFP ’10,
pages 357–368, 2010.

Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern recognition.
Neural Networks, 1(2):119–130, 1988.

Mai Gehrke, Daniela Petrisan, and Luca Reggio. Quantifiers on languages and codensity monads. CoRR,
abs/1702.08841, 2017.

https://arxiv.org/abs/1604.04695
https://arxiv.org/abs/1604.04695
https://www.cs.ox.ac.uk/jeremy.gibbons/publications/proyo.pdf
https://www.cs.ox.ac.uk/jeremy.gibbons/publications/proyo.pdf
http://blog.omega-prime.co.uk/2011/09/10/constraint-kinds-for-ghc/
http://blog.omega-prime.co.uk/2011/09/10/constraint-kinds-for-ghc/
https://www.microsoft.com/en-us/research/publication/safe-zero-cost-coercions-haskell/
https://www.microsoft.com/en-us/research/publication/safe-zero-cost-coercions-haskell/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.902.7768
http://stedolan.net/research/semirings.pdf
https://bura.brunel.ac.uk/bitstream/2438/12133/1/Fulltext.pdf
https://bura.brunel.ac.uk/bitstream/2438/12133/1/Fulltext.pdf
https://sebfisch.github.io/haskell-regexp/regexp-play.pdf
http://www.sciencedirect.com/science/article/pii/0893608088900147
http://arxiv.org/abs/1702.08841


Generalized Convolution and Efficient Language Recognition (Extended version) 41

GHC Team. Glasgow Haskell Compiler user’s guide—Release notes for version 8.2.1, July 2017. https:
//downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/8.2.1-notes.html.

Jonathan S. Golan. Some recent applications of semiring theory. In International Conference on Algebra in
Memory of Kostia Beidar, 2005.

Joshua Goodman. Parsing Inside-Out. PhD thesis, Harvard University, May 1998.

Joshua Goodman. Semiring parsing. Computational Linguistics, 25(4):573–605, December 1999.

Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. AMS, 2003.

Jeffrey Hass. Introduction to computer music: Volume one, 2013. http://www.indiana.edu/~emusic/
etext/toc.shtml.

Ralf Hinze. Generalizing generalized tries. Journal of Functional Programming, 10(4):327–351, July 2000.

Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Unifying structured recursion schemes. In Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming, ICFP ’13, pages 209–220,
2013.

Sneha H.L. Better insight into DSP: 10 applications of convolution in various fields, July 2017. https:
//www.allaboutcircuits.com/technical-articles/dsp-applications-of-convolution-part-2/.

John Hughes. A novel representation of lists and its application to the function "reverse". Information
Processing Letters, 22(3):141–144, March 1986.

Donnacha Oisín Kidney. Semirings. Blog post, November 2016a. https://doisinkidney.com/posts/
2016-11-17-semirings-lhs.html.

Donnacha Oisín Kidney. The semiring-num package. http://hackage.haskell.org/package/
semiring-num, 2016b. Haskell library.

Donnacha Oisín Kidney. Constrained applicatives. Blog post, March 2017a. https://doisinkidney.com/
posts/2017-03-08-constrained-applicatives.html.

Donnacha Oisín Kidney. Convolutions and semirings. Blog post, October 2017b. https://doisinkidney.
com/posts/2017-10-13-convolutions-and-semirings.html.

Edward Kmett. Free modules and functional linear functionals. Blog post, July 2011. http://comonad.com/
reader/2011/free-modules-and-functional-linear-functionals/.

Edward Kmett. Moore for less. Blog post, May 2015. https://www.schoolofhaskell.com/user/edwardk/
moore/for-less.

Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc., 1998.

Yann LeCun, Léon Bottou, and Patrick Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, November 1998.

Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, May 2015.

Daniel J. Lehmann. Algebraic structures for transitive closure. Theoretical Computer Science, 4(1):59–76,
1977.

Daan Leijen. Data.Map. http://hackage.haskell.org/package/containers/docs/Data-Map.html, 2002.
Haskell library.

Yudong Liu. Algebraic Foundation of Statistical Parsing Semiring Parsing. PhD thesis, Simon Fraser
University, November 2004.

https://downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/8.2.1-notes.html
https://downloads.haskell.org/~ghc/8.2.1/docs/html/users_guide/8.2.1-notes.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.318.6696
https://arxiv.org/abs/cmp-lg/9805007
http://www.aclweb.org/anthology/J99-4004
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
http://www.indiana.edu/~emusic/etext/toc.shtml
http://www.indiana.edu/~emusic/etext/toc.shtml
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.4069
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/urs.pdf
https://www.allaboutcircuits.com/technical-articles/dsp-applications-of-convolution-part-2/
https://www.allaboutcircuits.com/technical-articles/dsp-applications-of-convolution-part-2/
https://www.cs.tufts.edu/~nr/cs257/archive/john-hughes/lists.pdf
https://doisinkidney.com/posts/2016-11-17-semirings-lhs.html
https://doisinkidney.com/posts/2016-11-17-semirings-lhs.html
http://hackage.haskell.org/package/semiring-num
http://hackage.haskell.org/package/semiring-num
https://doisinkidney.com/posts/2017-03-08-constrained-applicatives.html
https://doisinkidney.com/posts/2017-03-08-constrained-applicatives.html
https://doisinkidney.com/posts/2017-10-13-convolutions-and-semirings.html
https://doisinkidney.com/posts/2017-10-13-convolutions-and-semirings.html
http://comonad.com/reader/2011/free-modules-and-functional-linear-functionals/
http://comonad.com/reader/2011/free-modules-and-functional-linear-functionals/
https://www.schoolofhaskell.com/user/edwardk/moore/for-less
https://www.schoolofhaskell.com/user/edwardk/moore/for-less
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
https://www.sciencedirect.com/science/article/pii/0304397577900561
http://hackage.haskell.org/package/containers/docs/Data-Map.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.6977


42 Conal Elliott

Sandy Maguire. Wake up and smell the cofree comonads. Blog post, June 2016. https://
reasonablypolymorphic.com/blog/cofree-comonads/.

Conor McBride and Ross Paterson. Applicative programming with effects. Journal of Functional Programming,
18(1):1–13, January 2008.

M. Douglas McIlroy. Power series, power serious. Journal of Functional Programming, 9(3):325–337, May
1999.

M. Douglas McIlroy. The music of streams. Information Processing Letters, 77(2-4):189–195, February 2001.

Matthew Might and David Darais. Yacc is dead. CoRR, abs/1010.5023, 2010.

Jürg Nievergelt and Edward M. Reingold. Binary search trees of bounded balance. SIAM Journal of
Computing, 2(1):33–43, 1973.

Bryan O’Sullivan. criterion: a haskell microbenchmarking library, 2014. http://www.serpentine.com/
criterion/.

Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives reexamined. Journal of Functional
Programming, 19(2):173–190, 2009.

Chris Penner. Radix sort, trie trees, and maps from representable functors. Blog post, July 2017. https:
//chrispenner.ca/posts/representable-discrimination.

Taylor Petrick. Convolution part three: Common kernels, January 2016. https://www.taylorpetrick.com/
blog/post/convolution-part3.

Dan Piponi. Monads for vector spaces, probability and quantum mechanics pt. i. Blog post, February 2007.
http://blog.sigfpe.com/2007/02/monads-for-vector-spaces-probability.html.

Dan Piponi and Brent A. Yorgey. Polynomial functors constrained by regular expressions. In MPC, volume
9129 of Lecture Notes in Computer Science, pages 113–136. Springer, 2015.

Fatemeh Pishdadian. Filters, reverberation & convolution. http://www.cs.northwestern.edu/~pardo/
courses/eecs352/lectures/MPM16-topic9-Filtering.pdf, 2017. Lecture notes.

Gabriel Radanne and Peter Thiemann. Regenerate: A language generator for extended regular expressions. In
Proceedings of the 17th ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2018, pages 202–214, 2018.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.

Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical
Publishing, 1997.

Milan Straka. Adams’ trees revisited. In Trends in Functional Programming, pages 130–145, 2012.

Tarmo Uustalu and Varmo Vene. The essence of dataflow programming. In Proceedings of the Third Asian
Conference on Programming Languages and Systems, APLAS’05, pages 2–18, 2005.

Tarmo Uustalu and Varmo Vene. Comonadic notions of computation. Electronic Notes in Theoretical
Computer Science (ENTCS), 203(5):263–284, June 2008.

Tarmo Uustalu and Varmo Vene. The recursion scheme from the cofree recursive comonad. Electronic
Notes in Theoretical Computer Science, 229(5):135 – 157, 2011. Proceedings of the Second Workshop on
Mathematically Structured Functional Programming (MSFP 2008).

Janis Voigtländer. Asymptotic improvement of computations over free monads. In Philippe Audebaud and
Christine Paulin-Mohring, editors, Mathematics of Program Construction, pages 388–403, July 2008.

https://reasonablypolymorphic.com/blog/cofree-comonads/
https://reasonablypolymorphic.com/blog/cofree-comonads/
http://www.staff.city.ac.uk/~ross/papers/Applicative.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9450
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.2313
https://arxiv.org/abs/1010.5023
http://www.serpentine.com/criterion/
http://www.serpentine.com/criterion/
https://chrispenner.ca/posts/representable-discrimination
https://chrispenner.ca/posts/representable-discrimination
https://www.taylorpetrick.com/blog/post/convolution-part3
https://www.taylorpetrick.com/blog/post/convolution-part3
http://blog.sigfpe.com/2007/02/monads-for-vector-spaces-probability.html
https://www.semanticscholar.org/paper/Polynomial-Functors-Constrained-by-Regular-Piponi-Yorgey/218c8e27a6cb53f9983e40789ab530e446a81a05
http://www.cs.northwestern.edu/~pardo/courses/eecs352/lectures/MPM16-topic9-Filtering.pdf
http://www.cs.northwestern.edu/~pardo/courses/eecs352/lectures/MPM16-topic9-Filtering.pdf
https://hal.archives-ouvertes.fr/hal-01788827/document
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.dspguide.com/
https://www.researchgate.net/publication/221540984_The_Essence_of_Dataflow_Programming
https://www.sciencedirect.com/science/article/pii/S1571066108003435
https://www.sciencedirect.com/science/article/pii/S1571066111000570
http://www.janis-voigtlaender.eu/Voi08d.html


Generalized Convolution and Efficient Language Recognition (Extended version) 43

David Wilding. Linear Algebra Over Semirings. PhD thesis, University of Manchester, 2015.

Brent Yorgey. Monoids: Theme and variations (functional pearl). In Proceedings of the 2012 Haskell
Symposium, pages 105–116, 2012.

Brent Yorgey. Typeclassopedia, April 2017. https://wiki.haskell.org/Typeclassopedia. Updated from
original version in The Monad Reader, March 2009.

Ian T. Young, Jan J. Gerbrands, and Lucas J. van Vliet. Fundamentals Of Image Processing, 1995.

https://www.escholar.manchester.ac.uk/uk-ac-man-scw:246131
https://wiki.haskell.org/Typeclassopedia
https://wiki.haskell.org/wikiupload/8/85/TMR-Issue13.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.6400

	Introduction
	Monoids, Semirings and Semimodules
	Monoids
	Additive Monoids
	Semirings
	Star Semirings
	Semimodules
	Function-like Types and Singletons

	Calculating Instances from Homomorphisms
	Languages and the Monoid Semiring
	Finite maps
	Decomposing Functions from Lists
	Regular Expressions
	Tries
	Performance
	Convolution
	Beyond Convolution
	The Free Semimodule Monad
	Other Applications
	Polynomials
	Image Convolution

	Related Work
	Proofs
	Theorem 1
	Theorem 2
	Lemma 5
	Lemma 6
	Theorem 8
	Lemma 9
	Lemma 10
	Lemma 11
	Theorem 12
	Theorem 14
	Theorem 15
	Theorem 18
	Theorem 19
	Theorem 20
	Lemma 21


