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Abstract
Graphical user interfaces (GUIs) are usually programmed in an
“unnatural” style, in that implementation dependencies are in-
verted, relative to logical dependencies. We suggest that this re-
versal results directly from the imperative, data-driven orientation
of most GUI libraries. While outputs depend on inputs from a user
and semantic point of view, the data-driven approach imposes an
implementation dependence of inputs on outputs.

This paper presents simple, functional interfaces for data-driven
programming in general and GUI programming in particular, in
which program dependencies directly mirror logical dependencies.
The interfaces are structured as applicative functors (AFs), rather
than monads or arrows. Efficiency is retained while abstracting
the mechanics of data-driven computation out of client programs
and into reusable library code. The implementations of data-driven
computation and of GUIs are also quite simple, largely due to
structuring them as compositions of AFs.

This paper is in draft stage. I’d love to get your comments,
especially via the paper’s wiki “talk page”, where you can find
other comments as well.1

1. Simple data-driven computation
Imperative programs implement data-driven computation using two
mechanisms: value extraction and change notification. Value ex-
traction allows retrieval of a “current value” (e.g., via an input wid-
get’s access method). Notification allows various states (e.g., an
output widget) to be updated, making them consistent with newly
changed values. Our representation of data-driven computations
encapsulates these two mechanisms, building them in tandem us-
ing a familiar set of combinators.

1.1 Extractors
Value extractors is represented simply as IO values.

type Extractor = IO

For example, given a reference r :: IORef Int , define the extractor
rx = readIORef r . Or, given a slider widget s , define the
extractor sx = get selection s .2

We can combine extractors applicatively. For instance, the fol-
lowing function defines a “sum” of extractors, i.e., an extractor
whose current value is the sum of the current values of given ones.

plusX :: Num a ⇒
Extractor a → Extractor a → Extractor a

plusX rx sx = do r ≺— rx
s ≺— sx
return (r + s)

1 http://haskell.org/haskellwiki/Talk:Applicative_
data-driven_programming
2 The low-level GUI mechanisms are handled by wxHaskell [1].

This code is quite tedious to write, so we would prefer to use the
liftM2 higher-order function, defined for monads:

plusX = liftM2 (+)

Instead of this monad-based formulation, we use a more general
formulation in terms of “applicative functors” (AFs) [2]. 3 The AF
formulation of plusX looks much like the monadic formulation:

plusX = liftA2 (+)

It’s also easy to wrap up a regular value as an extractor. Formulated
monadically, we’d simply use return . The more general AF formu-
lation is “pure”. Thus, using AF methods, one can write arbitrarily
rich applicative expressions to denote extractors.4

1.2 Notifiers
For efficient data-driven computation, value extraction is not
enough; we also need to construct change notifiers. We will repre-
sent a notifier as the ability for clients to “subscribe” actions to be
invoked whenever an event occurs.

type Notifier = IO () → IO ()

The following function is handy for creating nontrivial sources. It
makes a notifier, given a “setNotify” function that (destructively)
assigns a single action to be executed upon some event. The sub-
scribing actions are accumulated into a single, sequenced action
held in a reference.5

mkNotifier :: Notifier → IO Notifier
mkNotifier setNotify =

do ref ≺— newIORef (return ()) -- subscribed actions
setNotify (join (readIORef ref ))
return $ modifyIORef ref ◦ (>>)

3 The Applicative interface has just two operations: injection of a pure
value and a form of function application.

class Functor f ⇒ Applicative f where
pure :: a → f a
(<∗>) :: f (a → b)→ f a → f b

These primitives are used to define generalizations of the monadic liftM ,
liftM2, etc.

liftA f a = pure f <∗> a
liftA2 f a b = liftA f a <∗> b

liftA3 f a b c = liftA2 f a b <∗> c
. . .

4 [Consider adopting the AF sugar for this paper.]
5 Note that join :: Monad m ⇒ m (m a) → m a , so join here turns
an IO (IO ()) into an IO () that both reads the reference and executes the
contained value. The last line returns an action that modifies the contents of
the reference by sequencing its current action with a new one.
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For example, imperative GUI toolkits come with a way to specify
a “callback” action to invoke when a widget is modified. Provid-
ing the widget and abstracting over the action gives a setNotify
function suitable for passing to mkNotifier .

cmdNotifier :: Commanding wid ⇒ wid → IO Notifier
cmdNotifier wid =

mkNotifier (λact → set wid [on command := act ])

Given atomic notifiers (e.g., as constructed from a widget and
mkNotifier ), how do we build notifiers compositionally? From
notifiers rn and sn , we’d like to construct a composite notifier that
reports a change whenever rn or sn reports a change. Longhand,

orN :: Notifier → Notifier → Notifier
orN rn sn = λact → rn act >> sn act

We’ll also want to make a notifier for never-occurring events,
such as a pure (immutable) value changing. Longhand,

neverN :: Notifier
neverN = λact → return ()

Just as with extractors, we prefer to compose notifiers in terms
of a more generic interface. Instead of Monad or Applicative , we
use Monoid .

Exploiting the Monoid instances for functions, IO a , and (),
we have the following simple definitions.6

neverN = mempty
orN = mappend

We now abandon the names “neverN ” and “orN ”, and simply use
“mempty” and “mappend”.

1.3 Combining the pieces
Our representation of data-driven computations pairs the represen-
tations given above for extractors and notifiers, into a “source” of
values. A single set of combinators works on both representations
in tandem. For reasons explained below, we will place the notifier
first and apply a newtype constructor “O” to the pair. For in-
stance, a sum of two sources:

addS :: Num a ⇒ Source a → Source a → Source a
addS (O (rn, rx )) (O (sn, sx )) =

O (rn ‘mappend ‘ sn, liftA2 (+) rx sx )

To make a source from a value (unchanging) v ,

pureS :: a → Source a
pureS a = O (mempty , pure a)

There is, again, a much more succinct formulation, made possi-
ble by casting Source as another AF.

6 The instances:

instance Monoid b ⇒ Monoid (a → b) where

mempty = const mempty
f ‘mappend ‘ g = λx → f x ‘mappend ‘ g x

instance Monoid a ⇒ Monoid (IO a) where
mempty = pure mempty
mappend = liftA2 mappend

instance Monoid () where

mempty = ()
() ‘mappend ‘ () = ()

Note that the IO instance fits a more general pattern, in which IO may be
replaced by any AF. In particular, the function (a → b) instance is also an
example of this pattern, considering the meanings of pure and liftA2 for
functions.

addS = liftA2 (+)
pureS = pure

The key to these simple definitions is to define Source as a type
composition:

type Source = (, ) Notifier ◦ Extractor

where type composition is defined as follows.

newtype (g ◦ f ) a = O{unO :: g (f a)}
Using a newtype rather than a type synonym enables exploiting
some general properties of type composition. In particular, com-
positions of functors are functors, and compositions of AFs are
AFs [2, Section 5].

instance (Functor g ,Functor f ) ⇒ Functor (g ◦ f ) where
fmap h (O gf ) = O (fmap (fmap h) gf )

instance (Applicative g ,Applicative f )
⇒ Applicative (g ◦ f ) where
pure a = O (pure (pure a))
O getH <∗> O getX = O (liftA2 (<∗>) getH getX )

Sometimes we’ll want to apply a function h under the O con-
structor:

inO :: (g (f a) → g ′ (f ′ a ′)) → (O g f a → O g ′ f ′ a ′)
inO h = O ◦ h ◦ unO

These composition properties are applicable because pairing
with Notifier is an AF, which is the case exactly because Notifier
is a monoid.

instance Functor ((, ) u) where
fmap f (u, x ) = (u, f x )

instance Monoid u ⇒ Applicative ((, ) u) where
pure x = (mempty , x )
(u, f ) <∗> (v , x ) = (u ‘mappend ‘ v , f x )

By combining the instances for g ◦f with the instances for (, ) u
specialized to Notifier , it follows that, for sources,

fmap f (O (rn, rx )) ≡ O (rn, fmap f rx )

pure a ≡ O (mempty , pure a)

O (nf , xf ) <∗> O (nx , xz ) ≡
O (nf ‘mappend ‘ nx ) (xf <∗> xz )

Returning to the sum example above, the previous definitions of
addS and pureS can now be derived.

pureS a
≡ pure a
≡ O (pure (pure a))
≡ O (mempty , pure a)

and

addS (O (rn, rx )) (O (sn, sx ))
≡ liftA2 (+) (O (rn, rx )) (O (sn, sx ))
≡ fmap (+) (O (rn, rx )) <∗> O (sn, sx )
≡ O (fmap (fmap (+)) (rn, rx )) <∗> O (sn, sx )
≡ O (rn, fmap (+) rx ) <∗> O (sn, sx )
≡ O (liftA2 (<∗>) (rn, fmap (+) rx ) (sn, sx ))
≡ O (rn ‘mappend ‘ sn, fmap (+) rx <∗> sx )
≡ O (rn ‘mappend ‘ sn, liftA2 (+) rx sx )

Beside pure and (<∗>), we can also construct sources explic-
itly. For example, the following function presents a widget and in-
put attribute as a source.

attrSource :: Commanding wid ⇒
wid → Attr wid a → IO (Source a)
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attrSource wid attr =
do nfy ≺— cmdNotifier wid

return (O (nfy , get wid attr))

1.4 Generalizing
In fact, the Functor and Applicative instances for Source rely
on very little about the choice of IO and Notifier , so they can be
stated much more generally.

type DataDriven nfr xtr = (, ) nfr ◦ xtr

type Source = DataDriven Notifier Extractor

With this refactoring, DataDriven nfr xtr is an AF for any
monoid nfr and applicative functor xtr .

1.5 Running a data-driven computation
We can “run” a source of actions by executing its current value
whenever it changes.

runDD :: Source (IO ()) → IO ()
runDD (O (nfr , xtr)) = nfr act >> act

where act = join xtr

Again, join here turns an IO (IO ()) into act :: IO (). Executing
act retrieves and executes the current value of xtr . The body of
the definition subscribes act and executes it once up front, as
initialization.

1.6 Unique notification
As defined above, notifiers can get invoked redundantly. Consider
a + a , where the source a = O (na, xa). The notifier would be
na ‘mappend ‘ na , which is equivalent to λact → na act >>
na act . That is, any subscribing action act would get invoked
twice.

To eliminate redundant unification, represent notifiers as maps
from unique tags to simple notifiers.

type UNotifier = Map Int Notifier

type USource = DataDriven UNotifier Extractor

Since Map k v is a monoid whenever Ord k (e.g., k ≡ Int),
USource is an AF. (The mappend operation for maps is a left-
biased union.)

To convert from Notifier to UNotifier , make a singleton
map with a given tag. Conversely, to convert from UNotifier to
Notifier , just forget the tags and combine the individual notifiers,
which corresponds to the fold operation in the Map k v instance
of Foldable type class (when v is a monoid). Using these simple
conversions, define conversions between Source and USource as
follows.7

toUSource :: Int → Source a → USource a
toUSource tag = inO (first (singleton tag))

fromUSource :: USource a → Source a
fromUSource = inO (first fold)

We’ll need a way to generate generators of new tags:

type NewTag = IO Int

newNewTag :: IO NewTag
newNewTag =

do symRef ≺— newIORef 0
return (do modifyIORef symRef (+1)

readIORef symRef )

7 The first function applies a given function to the first member of a pair:
first f (x , y) = (f x , y). More generally, it applies to any arrow, not just
to functions.

1.7 Revisiting extractors
We’ve used Extractor ≡ IO , but extractors only read state, they
do not write it. As such, fx <∗> ax is insensitive to order of
extraction of fx vs ax . Is there an alternative to IO that captures
this property?nnnnn

2. GUIs, first version
We represent GUIs as functions that take a container sub-window
and produce a layout and a value source.

type Win = Panel () -- widget container
type UI ′ a = Win → IO (Layout ,Source a)

From the first definition, we can see that UI ′ is a composition of
four simpler components: sources, pairing with a layout, IO , and
function from Win . Writing this composition explicitly will make
it easy to define UI operations.

type UI = (→) Win ◦ IO ◦ (, ) Layout ◦ Source

These two types are isomorphic:

ui :: UI ′ a → UI a
unUI :: UI a → UI ′ a

ui = O ◦O ◦O
unUI = unO ◦ unO ◦ unO

Recall from Section 1.3 that UI is an AF if the composed
pieces are. All four pieces are indeed AFs, assuming Layout is
a monoid. For now we’ll provide a simple Monoid instance for
Layout , stacking vertically:

instance Monoid Layout where
mempty = empty
mappend = above

above, leftOf :: Layout → Layout → Layout
la ‘above‘ lb = fill (column 0 [ la, lb ])
la ‘leftOf ‘ lb = fill (row 0 [ la, lb ])

2.1 Widgets
Input widget construction takes an initial value and makes a UI

type IWidget a = a → UI a

For instance, a string entry widget:

stringEntry :: IWidget String

Other parameters may be necessary as well, such as the value
bounds for a slider.

islider :: (Int , Int) → IWidget Int

The definitions are easy, given an auxiliary function iwidget .

stringEntry = iwidget textEntry text

islider (lo, hi) =
iwidget (λwin → hslider win True lo hi) selection

Beside the initial value, the function iwidget takes a widget-
making function and a choice of attribute. Output widgets are
created similarly, and the following type definition captures the
commonality.

type MkWidget wid a b =
(Win → [Prop wid ] → IO wid) → Attr wid a → b

Creation of input widgets is straightforward, using attrSource ,
from Section 1.3.
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iwidget :: (Commanding wid ,Widget wid) ⇒
MkWidget wid a (IWidget a)

iwidget mkWid attr initial = ui $ λwin →
do wid ≺— mkWid win [attr := initial ]

src ≺— attrSource wid attr
return (hwidget wid , src)

hwidget :: Widget w ⇒ w → Layout
hwidget = hfill ◦ widget

While input widgets produce values, output widgets consume
them.

type OWidget a = UI (a → IO ())

owidget :: Widget wid ⇒ MkWidget wid a (OWidget a)
owidget mkWid attr = ui $ λwin →

do wid ≺— mkWid win [ ]
return (hwidget wid

, pure (λa → set wid [attr := a ]))

The beauty of this definition of OWidget is that outputs (con-
sumers) can simply be applied to inputs (producers), using the cen-
tral applicative functor operator, “<∗>”.

For instance, we can display a string or any showable value.

stringDisplay :: OWidget String
stringDisplay = owidget textEntry text

showDisplay :: Show a ⇒ OWidget a
showDisplay = fmap (◦show) stringDisplay

2.2 Titling
Adding a title to a GUI requires altering the layout produced. The
function onLayout , below, applies a given function to the layout
part of a UI.

type Unop a = a → a

onLayout :: Unop Layout → Unop (UI a)
onLayout f = ui ◦ (fmap ◦ fmap ◦ first) f ◦ unUI

The fmaps correspond to the the functors (→) Win and IO , and
first to (, ) Layout .8

Adding a title then is easy, using wxHaskell’s function boxed ::
String → Layout → Layout .

title :: String → Unop (UI a)
title str = onLayout (boxed str)

2.3 Examples
As an example, Figure 1 is a simple shopping list GUI. The total
displayed at the bottom of the window always shows the sum of the
values of the apples and bananas input sliders. When a user changes
the inputs, the output updates accordingly.

In the code below, note that shopping uses the reverse appli-
cation operator (<∗∗>). This reversal causes the function to appear
after (below) the argument.

apples, bananas, fruit :: UI Int
apples = title "apples" $ islider (0, 10) 3
bananas = title "bananas" $ islider (0, 10) 7
fruit = title "fruit" $ liftA2 (+) apples bananas

total :: Show a ⇒ OWidget a
total = title "total" showDisplay

8 If we wanted to alter the value source, we would have used second or
another fmap in place of first .

Figure 1. Simple GUI

shopping :: UI (IO ())
shopping = title "Shopping List" $ fruit <∗∗> total

3. Flexible layout
So far, our generated GUIs are all laid out from top to bottom. Next
we add choice of layout with the ability to mix different layouts in
a GUI. The vital change is in the layout information generated for
each GUI. Rather than using a fixed Layout monoid (empty and
above), GUIs will take the monoid specification from context.

type UI ′ a = Win → IO (CxLayout ,Source a)

type UI = (→) Win ◦ IO ◦ (, ) CxLayout ◦ Source

type CxLayout = CxMonoid Layout

newtype CxMonoid a =
CxMonoid{unCxMonoid :: MonoidDict a → a }

type MonoidDict a = (a, a → a → a)

instance Monoid (CxMonoid a) where
mempty = CxMonoid (λ(e, ) → e)
CxMonoid f ‘mappend ‘ CxMonoid g =

CxMonoid (λmd@( , op) → f md ‘op‘ g md)

The definitions of MonoidDict and CxMonoid , as well as the
Monoid instance for CxMonoid , are all mechanically derived
from the Monoid type class.

As required for UI to be an applicative functor, CxLayout is a
monoid.

Running a UI works as in Section 2, except that the MoinoidDict
(empty , above) is passed in to extract a layout.

The only change in widget creation (relative to Section 2.1) is
that the new versions of iwidget and owidget , use a new function
widgetCXL that ignores an incoming MonoidDict .

widgetCXL :: Widget w ⇒ w → CxLayout
widgetCXL wid = CxMonoid (const (hwidget wid))

The iwidget and owidget functions use widgetCXL in place of
hwidget .

The pay-off in the new representation comes in definability of
layout-altering functions. For instance,

leftToRight , topToBottom,flipLayout :: Unop (UI a)
leftToRight = withCxMonoid (empty , leftOf )
topToBottom = withCxMonoid (empty , above)
flipLayout = compCxMonoid (second flip)

The withCxMonoid function overrides an inherited layout monoid,
using the more general compCxMonoid .
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Figure 2. Some layout variants

withCxMonoid :: MonoidDict Layout → Unop (UI a)
withCxMonoid dict = compCxMonoid (const dict)

compCxMonoid :: Unop (MonoidDict Layout) → Unop (UI a)
compCxMonoid f = onCxLayout ′ (◦f )

The onCxLayout ′ function is defined on top of onCxLayout
(analogous to onLayout from Section 2.2), adding and removing
the CxLayout constructor.

3.1 Examples
The examples in Section 2.3 all work as before. In addition,
Figure 2 shows three variations, as defined below.

shoppingFlip = flipLayout shopping
shoppingLR = leftToRight shopping
shoppingTLR = leftToRight fruit <∗∗> total

4. UIs with unique notfication
Note: Wolfgang Jeltsch pointed out that this optimization described
in this section is not necessary.9 The reason is that sources are never
accessible to clients of the UI or UI ′ types, and the abstraction
never replicates the sources it creates. Thus the problem I’m trying
to avoid cannot happen anyway. So, I don’t recommend reading this
section.

As an optimization, we next switch to notifier representation in
Section 1.6 for non-redundant notification. Relative to Section 3,
the new UI representation adds a means of generating unique tags
and uses USource in place of Source .

type UI ′ a = NewTag → Win → IO (CxLayout ,USource a)

type UI =
(→) NewTag ◦ (→) Win ◦ IO ◦ (, ) CxLayout ◦USource

9 http://haskell.org/haskellwiki/Talk:Applicative_
data-driven_programming

Running a UI works as in Section 3, except that newNewTag
(Section 1.6) is invoked to make a tag generator to pass in.

runNamedUI :: String → UI (IO ()) → IO ()
runNamedUI name ui = start $

do f ≺— frame [visible := False, text := name ]
newTag ≺— newNewTag
win ≺— panel f [ ]
(cxl ,msrc)≺— unUI ui newTag win
set win [ layout := unCxMonoid cxl (empty , above)]
set f [ layout := hwidget win, visible := True ]
runDD (fromUSource msrc)

The only changes in widget creation use (a) use of the passed
in tag generator to make a unique tag and (b) conversion to an
USource .

iwidget mkWid attr initial = ui $ λnewTag win →
do wid ≺— mkWid win [attr := initial ]

tag ≺— newTag
src ≺— fmap (toUSource tag) (attrSource wid attr)
return (widgetCXL wid , src)
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