
Data-Parallel Programming without Arrays

Conal Elliott

Early draft of October 10, 2018

1 Introduction

Despite its overwhelming popularity, the array type has serious drawbacks for parallel programming. In brief,
array algorithms are unsafe (subject to out-of-bounds errors), weakly compositional, and brittle to change.
A generic functor approach solves these problems, resulting in a programming style that is safe and strongly
compositional (for code reuse), while robustly describing infinite families of guaranteed-correct algorithmic
variations [Elliott, 2017].

For CPU-based and (especially) hardware implementations, the generic functor style of programming can
perform fairly well. GPUs and their supporting programming models, however, have a very strong bias to-
ward array programming. In particular, they efficiently support only “flat” data parallelism, corresponding to
computing over arrays of scalar values. For this reason, Guy Blelloch and others have investigated automatic
flattening of nested data parallelism, although they kept the array as central data type.

This note describes a design for a programming interface isomorphic to the generic functor composition
style and an implementation that maps to efficient (I hope!) GPU-style array computations. The generated
computations are guaranteed safe from out-of-bound errors despite using unsafe array operations internally, and
the programming model remains elegantly compositional and generic-friendly.

2 Arrays and functors

An array is a sort of memoized version of a function over a finite, linearly ordered domain, usually taken to be
{0, . . . , n− 1} for some n. Let’s assume that we have an efficient implementation of arrays, e.g., from the vector
package [Leshchinskiy, 2017]:

type Vector a = ... -- Dynamically sized vectors

index :: Vector a → Int → a
...

This Vector type has two major drawbacks:

• It is unsafe, since index v i can be applied even when i is out of bounds. Although indices can be checked
against a recorded size, client code might fail to do so properly and must deal with erroneous indexing
when detected.

• It provides no compositional structure to guide algorithm design.

The first problem stems from index v being a partial function from Int . One can instead make indexing
be a total function from an explicit type of bounded natural numbers, resulting in an interface like that of the
vector-sized package [Hermaszewski and Gamari, 2017]:

type Vector n v -- Statically sized vectors

index :: Vector n v → Finite n → v
...

The type Finite n represents the natural numbers less than n, i.e., {0, . . . , n − 1}. With Vector , we at least
have a chance of using the type-checker to catch index out-of-bounds errors. Since Haskell doesn’t yet have full

1



2 Conal Elliott

dependent types, n here is a type-level natural number [ref], and we have only weak support for automatically
checked safety proofs.

The second problem is subtler. Array-based algorithms typically involve index arithmetic that obscures the
essence of an algorithm, is difficult to get correct, and is usually not validated automatically (e.g., by type
checking) [Elliott, 2017]. Index arithmetic can be seen as mediating between a more natural data structure
(e.g., trees) and its underlying representation (arrays). Choosing a more suitable representation eliminates
the encoding and decoding, revealing the essence of the algorithm. The more natural data structures often
correspond to memoized forms of functions, with these memoized forms arising from a small algebra of functors,
including product and composition of functors and the two corresponding identities [Hinze, 2000; Elliott, 2017].

Programming in the functor vocabulary retains safety while gaining a natural programming style, free of
any index calculations. The functor style, however, moves us further from SIMD-style architectures—including
GPUs—which work with flat, Int-indexed arrays.

We now come to the main idea of this paper. To combine the benefits of the functor style (safety and com-
positionality) and of the flat array style (fast execution on SIMD architectures), combine the functor interface
with the sized vector representation to form a type of “flattened functors”:1

newtype Flat f a = Flat (Vector |Rep f | a)

The | · | type family assigns cardinalities to types. The associated type Rep f satisfies the property that
∀a.f a ∼= Rep f → a. In words, f is a “representable functor” isomorphic to functions from the associated
domain type Rep f .2 This associated type comes from the Representable class [Kmett, 2018, Data.Functor .Rep],
which also provides the isomorphism as a pair of methods:

class Representable f where
type Rep f
tabulate :: (Rep f → a)→ f a
index :: f a → (Rep f → a)

The idea here is to think in terms of a representable functor f but represent as Flat f , which is isomorphic,
shown as follows:

f a
∼= { the Representable isomorphism }

Rep f → a
∼= { equal cardinality domains }

Finite |Rep f | → a
∼= { ∀n.Rep (Vector n) = Finite n }

Vector |Rep f | a
∼= { definition of Flat }

Flat f a

We can define the isomorphism concretely as a pair of mutually-inverse functions between f a and Flat f a.
First, however, we’ll need to look at isomorphisms more generally and isomorphisms with Finite n in particular.

3 Isomorphisms

[Rethink the order of subsections below.]

3.1 Basic isomorphisms

An isomorphism between types a and b is witnessed by a pair of functions f :: a → b and f ′ :: b → a such that
f ◦ f ′ = id and f ′ ◦ f = id .3

1[Consider an intermediate step of using a type alias: type Flat f a = Vector (Card (Rep f )) a. We wouldn’t get an infinite
family of correct algorithms as in generic parallel programming, but we still get safety.]

2[Refer also to “Naperian functors”.]
3The “
” symbol here is a data constructor, so an a ∼=k b has a field of type a → b and another of type b → a.



Data-Parallel Programming without Arrays 3

data a ∼= b = (a → b)
 (b → a)

This definition extends beyond functions to any category:

data a ∼=k b = (a ‘k ‘ b)
 (b ‘k ‘ a)

Then (∼=) then becomes a simple specialization:

type a ∼= b = a ∼=(→) b

Although arrow inversion is not computable, we can still use it in a specification that relates arrows (e.g.,
functions) in k to arrows in (∼=k ):

iso :: (a ‘k ‘ b)→ a ∼=k b -- non-computable specification
iso f = f 
 f −1

It will sometimes be convenient to extract the halves of an isomorphism:

isoFwd :: a ∼=k b → (a ‘k ‘ b)
isoFwd (f 
 ) = f

isoRev :: a ∼=k b → (b ‘k ‘ a)
isoRev ( 
 f ′) = f ′

Inversion is trivially definable for (∼=k ):

inv :: a ∼=k b → b ∼=k a
inv (f 
 f ′) = f ′ 
 f

We will sometimes need not just isomorphisms, but natural isomorphisms:

type f
.∼= g = ∀a.f a ∼= g a

3.2 Composing isomorphisms

We will use iso to specify operations on a ∼=k b and calculate correct implementations of those operations.

Theorem 1 (Proved in Appendix A.1). Given the instance definitions in Figure 1, iso is a homomorphism with
respect to each of the instantiated classes.4,5

It will also be convenient to specialize the bifunctor operations from Figure 1 into one-sided versions, as shown
in Figure 2.

3.3 Arrow isomorphisms

Although Figure 1 defines instances of many categorical operations for (∼=k ), it omits some important classes,
due to non-invertibility:6

class MonoidalP k ⇒ Cartesian k where
exl :: (a × b) ‘k ‘ a
exr :: (a × b) ‘k ‘ b

class MonoidalS k ⇒ Cocartesian k where
inl :: a ‘k ‘ (a + b)

4[Try combining six classes into three (Associative, Braided , and Monoidal), e.g., class Braided k (�) where swap :: (a � b) ‘k ‘
(b � a).]

5[Find a different symbol for (⇒) so as not to clash with Haskell’s use for constrained polymorphism.]
6The projections exl and exr fail surjectivity, while inl , inr , and apply fail injectivity. [Do isomorphisms curry and uncurry into

isomorphisms?]



4 Conal Elliott

class Category k where
id :: a ‘k ‘ a
(◦) :: (b ‘k ‘ c)→ (a ‘k ‘ b)→ (a ‘k ‘ c)

class AssociativeP k where
rassocP :: ((a × b)× c) ‘k ‘ (a × (b × c))
lassocP :: (a × (b × c)) ‘k ‘ ((a × b)× c)

class BraidedP k where
swapP :: (a × b) ‘k ‘ (b × a)

class MonoidalP k where
(×) :: (a ‘k ‘ c)→ (b ‘k ‘ d)

→ ((a × b) ‘k ‘ (c × d))

class AssociativeS k where
rassocS :: ((a + b) + c) ‘k ‘ (a + (b + c))
lassocS :: (a + (b + c)) ‘k ‘ ((a + b) + c)

class BraidedS k where
swapS :: (a + b) ‘k ‘ (b + a)

class MonoidalS k where
(+) :: (a ‘k ‘ c)→ (b ‘k ‘ d)

→ ((a + b) ‘k ‘ (c + d))

class Closed k where
(⇒) :: (d ‘k ‘ c)→ (a ‘k ‘ b)

→ ((c ⇒ a) ‘k ‘ (d ⇒ b))

instance Category k ⇒ Category (∼=k ) where
id = id 
 id
(g 
 g ′) ◦ (f 
 f ′) = (g ◦ f )
 (f ′ ◦ g ′)

instance AssociativeP k ⇒ AssociativeP (∼=k ) where
lassocP = lassocP 
 rassocP
rassocP = rassocP 
 lassocP

instance BraidedP k ⇒ BraidedP (∼=k ) where
swapP = swapP 
 swapP

instance MonoidalP k ⇒ MonoidalP (∼=k ) where
(f 
 f ′)× (g 
 g ′) = (f × g)
 (f ′ × g ′)

instance AssociativeS k ⇒ AssociativeS (∼=k ) where
lassocS = lassocS 
 rassocS
rassocS = rassocS 
 lassocS

instance BraidedS k ⇒ BraidedS (∼=k ) where
swapS = swapS 
 swapS

instance MonoidalS k ⇒ MonoidalS (∼=k ) where
(f 
 f ′)+(g 
 g ′) = (f +g)
 (f ′+g ′)

instance Closed k ⇒ Closed (∼=k ) where
(p 
 p′)⇒ (q 
 q ′) = (p ⇒ q)
 (p′ ⇒ q ′)

Figure 1: Isomorphisms (calculated in Appendix A.1, specified by iso as homomorphism)

first :: MonoidalP k ⇒ (a ‘k ‘ c)→ ((a × b) ‘k ‘ (c × b))
first f = f × id

second :: MonoidalP k ⇒ (b ‘k ‘ d)→ ((a × b) ‘k ‘ (a × d))
second g = id × g

left :: MonoidalS k ⇒ (a ‘k ‘ c)→ ((a + b) ‘k ‘ (c + b))
left f = f +id

right :: MonoidalS k ⇒ (b ‘k ‘ d)→ ((a + b) ‘k ‘ (a + d))
right g = id +g

dom :: Closed k ⇒ (d ‘k ‘ c)→ ((c ⇒ a) ‘k ‘ (d ⇒ a))
dom f = f ⇒ id

cod :: Closed k ⇒ (a ‘k ‘ b)→ ((c ⇒ a) ‘k ‘ (c ⇒ b))
cod g = id ⇒ g

Figure 2: One-sided specializations of product, coproduct, and exponential bifunctors



Data-Parallel Programming without Arrays 5

inr :: b ‘k ‘ (a + b)

class (MonoidalP k ,Closed k)⇒ MonoidalClosed k where
apply :: ((a ⇒ b)× a) ‘k ‘ b
curry :: ((a × b) ‘k ‘ c)→ (a ‘k ‘ (b ⇒ c))
uncurry :: (a ‘k ‘ (b ⇒ c))→ ((a × b) ‘k ‘ c)

These Cartesian and Cocartesian instances give rise to two useful derived operations:

(4) :: Cartesian k ⇒ (a ‘k ‘ c)→ (a ‘k ‘ d)→ (a → (c × d))
(O) :: Cocartesian k ⇒ (c ‘k ‘ a)→ (d ‘k ‘ a)→ ((c + d) ‘k ‘ a)

In uncurried form,

fork :: Cartesian k ⇒ (a ‘k ‘ c)× (a ‘k ‘ d)→ (a → (c × d))
fork = uncurry (4)

join :: Cocartesian k ⇒ (c ‘k ‘ a)× (d ‘k ‘ a)→ ((c + d) ‘k ‘ a)
join = uncurry (O)

These uncurried versions have inverses:

unfork :: Cartesian k ⇒ (a ‘k ‘ c)× (a ‘k ‘ d)→ (a → (c × d))
unfork f = (exl ◦ f , exr ◦ f )

unjoin :: Cocartesian k ⇒ (c ‘k ‘ a)× (d ‘k ‘ a)→ ((c + d) ‘k ‘ a)
unjoin f = (f ◦ inl , f ◦ inr)

Lemma 2 (Proved in Appendix A.2). fork and unfork are inverses, as are join and unjoin.

We can thus package these pairs of inverses into isomorphisms:

forkIso :: Cocartesian k ⇒ (a ‘k ‘ c)× (a ‘k ‘ d) ∼= (a ‘k ‘ (c × d))
forkIso = fork 
 unfork

joinIso :: Cartesian k ⇒ (c ‘k ‘ a)× (d ‘k ‘ a) ∼= ((c + d) ‘k ‘ a)
joinIso = join 
 unjoin

Likewise, curry and uncurry are always inverses:

curryIso :: MonoidalClosed k ⇒ ((a × b) ‘k ‘ c) ∼= (a ‘k ‘ (b → c))
curryIso = curry 
 uncurry

3.4 Natural number isomorphisms

The notions of cardinality and isomorphism are tightly connected. Georg Cantor defined cardinality in terms of
injections and isomorphisms [ref]. In particular, |A| 6 |B | exactly when there is an injection from A to B , and
|A| = |B | exactly when there is an bijection from A to B . These definitions apply not only to finite sets and
so laid the foundation for comparing cardinalities of infinite (even uncountably infinite) set, including Cantor’s
seminal result that there are strictly more real numbers than natural numbers.

Cardinality also relates the notions of sums, products, and exponentials on sets to sums, products, and
exponentials on natural numbers:7

|a + b| = |a|+ |b|
|a × b| = |a| × |b|
|a ↑ b| = |a| ↑ |b|

7[Either complete or remove the discussion of exponentials.]



6 Conal Elliott

type KnownNat2 m n = (KnownNat m,KnownNat n)

finU1 :: 0 ∼= Finite 0
finU1 = combineZero 
 separateZero

finPar1 :: 1 ∼= Finite 1
finPar1 = combineOne 
 separateOne

finSum :: KnownNat2 m n ⇒ Finite m + Finite n ∼= Finite (m + n)
finSum = combineSum 
 separateSum

finProd :: KnownNat2 m n ⇒ Finite m × Finite n ∼= Finite (m × n)
finProd = combineProd 
 separateProd

finExp :: KnownNat2 m n ⇒ Finite m ↑ Finite n ∼= Finite (m ↑ n)
finExp = combineExp 
 separateExp

-- ...

Figure 3: Isomorphisms involving Finite

where “(↑)” refers to exponentiation on types in the LHS and on numbers in the RHS; and a ↑ b on types is
more commonly written as “b → a” or “b ⇒ a” (“exponentials” or “internal homs”). Let’s focus on finite sets,
and particularly Finite n, i.e., the natural numbers {0, . . . , n− 1}, reasoning as follows:

|Finite (m + n)|
= { defining property of Finite }

m + n
= { defining property of Finite }
|Finite m|+ |Finite n|

= { above }
|Finite m + Finite n|

Likewise for products and exponentials as well as for 0 and 1. Summarizing,

|Finite 0 | = |0|
|Finite 1 | = |1|

|Finite (m + n) | = |Finite m + Finite n|
|Finite (m × n) | = |Finite m × Finite n|
|Finite (m ↑ n) | = |Finite m ↑ Finite n|

where 0 is the empty type, and 1 is the unit type (usually written “Void” and “()” in Haskell). Equivalently,

Finite 0 ∼= 0
Finite 1 ∼= 1

Finite (m + n) ∼= Finite m + Finite n
Finite (m × n) ∼= Finite m × Finite n
Finite (m ↑ n) ∼= Finite m ↑ Finite n

Figure 3 defines these isomorphisms for later use.8 Figure 4 defines the operations used to construct isomor-
phisms in Figure 3. These operations correspond to functionality in the finite-typelits package [mniip, 2017].9

8[Fill in for exponentiation. Also, I may want to reverse the sense of these isomorphisms. If so, change the code and then the
paper.]

9[Explain some of the Haskellisms. Also my overloading of (+) and (×) for sum and product of natural numbers and types. I’ll
also need to explain the Finite constructor. Maybe revisit my attempt to redefine the Finite type. ]



Data-Parallel Programming without Arrays 7

combineZero :: 0→ Finite 0
combineZero = absurd

separateZero :: Finite 0→ 0
separateZero = error "no Finite 0" -- Revisit.

combineOne :: 1→ Finite 1
combineOne = const (Finite 0)

separateOne :: Finite 1→ 1
separateOne = const ()

combineSum :: ∀m n.KnownNat2 m n ⇒ (Finite m + Finite n)→ Finite (m + n)
combineSum (Left (Finite l )) = Finite l
combineSum (Right (Finite k)) = Finite (nat @m + k)

separateSum :: ∀m n.KnownNat2 m n ⇒ Finite (m + n)→ (Finite m + Finite n)
separateSum (Finite l) | l <m = Left (Finite l)

| otherwise = Right (Finite (l −m))
where

m = nat @m

combineProd :: ∀m n.KnownNat2 m n ⇒ (Finite m × Finite n)→ Finite (m × n)
combineProd (Finite l ,Finite k) = Finite (nat @n × l + k)

separateProd :: ∀m n.KnownNat2 m n ⇒ Finite (m × n)→ (Finite m × Finite n)
separateProd (Finite l) = (Finite q ,Finite r) where (q , r) = l ‘divMod ‘ nat @n

Figure 4: Sum and product isomorphisms



8 Conal Elliott

Lemma 3. The functions defined in Figure 4 are pairs of inverses (combineZero with separateZero, etc),
justifying their use in Figure 3.10

Another property will turn out to be very useful:

Lemma 4. The functions defined in Figure 4 are strictly monotonic.

Monotonic isomorphisms are also referred to as “order isomorphisms”. While there may be many isomorphisms
between two types, for finite, linearly ordered types, there is only one order isomorphism.11,12 Together with
invertibility, this monotonicity property thus uniquely determines the functions defined in Figure 4. The linear
orderings assumed in these definitions agree with Haskell’s Ord type class and standard instances, in which left
injections are smaller than right injections, and products are ordered lexicographically:

instance (Ord a,Ord b)⇒ Ord (a + b) where
Left a < Left a ′ = a < a ′

Left a < Right b′ = True
Right b < Left a ′ = False
Right b < Right b′ = b < b′

instance (Ord a,Ord b)⇒ Ord (a × b) where
(a, b)< (a ′, b′) = a < a ′ ∨ (a = a ′ ∧ b < b′)

Lemma 5 (Proved in Appendix A.3). Monotonic functions on linear orders form a category that is monoidal
under sums and products.13,14

3.5 Some other useful isomorphisms

While Figures 1 and 2 shows how to construct and compose arrows with a standard vocabulary, we will also
need some primitives, which we can easily build whenever we have a pair of inverses. We’ve already seen one
example in Section 2, namely the representability isomorphism:

repIso :: Representable f ⇒ f a ∼= (Rep f → a)
repIso = index 
 tabulate

Another example is found in the Newtype class from the package newtype-generics [Jahandarie et al., 2018]:

class Newtype n where
type O n
pack :: O n → n
unpack :: n → O n

This class serves as a shared interface for the isomorphism between a newtype-defined data type and its
underlying representation. We can wrap up instances:

newIso :: Newtype n ⇒ n ∼= O n
newIso = unpack 
 pack

Closely related to Newtype is the Coercible class, which provides a way to perform safe, zero-cost conversions
between types that share a common underlying representation [Breitner et al., 2014]. The safe coercion primitive
is

coerce :: Coercible a b ⇒ a → b

10[Can I calculate half of these functions from the others? The combineX functions are simpler, so start with them.]
11Proof sketch: the smallest value of one type must map to the smallest of the other, the next smallest to the next smallest, etc.
12[In what other settings are order isomorphisms unique? At least for well-ordered sets [proof].]
13[Move this lemma to a later section, and expand it.]
14[What about under exponentials?]

https://proofwiki.org/wiki/Order_Isomorphism_between_Wosets_is_Unique


Data-Parallel Programming without Arrays 9

Instances of the Coercible class are synthesized automatically as needed by the compiler. One source of these
instances is newtype definitions, but others include congruence rules so that, for instance, if Coercible a b
then Coercible (f a) (f b), and so on for conversions involving arbitrarily nested newtype coercions. (There
are some restrictions depending on the “role” of type parameters). Coercibility is also an equivalence relation
(reflexive, symmetric, and transitive). Packaging as an isomorphism is straightforward:

coerceIso :: Coercible a b ⇒ a ∼= b
coerceIso = coerce 
 coerce

While coerceIso is much more flexible, newIso requires fewer type annotations.

3.6 Reindexing representable functors

Let’s now use our isomorphism vocabulary to form reindexing isomorphisms. Given representable functors f
and g , suppose we have an isomorphism h :: Rep g ∼= Rep f , converting between indices of g and f . Then f and
g are also (naturally) isomorphic, witnessed as follows:15

reindex :: (Representable f ,Representable g)⇒ (Rep g ∼= Rep f )→ (f
.∼= g)

reindex h = inv repIso ◦ dom h ◦ repIso

where dom is defined in Figure 2.16 The types involved:

repIso :: f a ∼= (Rep f → a)
dom h :: (Rep f → a) ∼= (Rep g → a)
inv repIso :: (Rep g → a) ∼= g a

This reindexing isomorphism will be exactly what we need to allow us to program in the style of generic functors
but implement via flat data parallelism for SIMD execution.

Exercise 6. Show that reindex is a contravariant functor, i.e., reindex id = id , and reindex (k ◦h) = reindex h◦
reindex k whenever these equations are type-correct. (When might they not be type-correct?)

There are some generally useful representable functors defined in GHC .Generics [Magalhães et al., 2011],
shown with their Representable instances [Kmett, 2018] in Figure 5.17,18

3.7 Reshaping vectors

Figure 6 applies reindexing from Section 3.6 with index isomorphisms involving Finite from Section 3.4, recalling
that Rep (Vector n) = Finite n. The RHSs of these isomorphisms involve the generic functor building blocks.
The types involved:

finU1 :: 0 ∼= Finite 0
:: Rep U1

∼= Rep (Vector 0)

reindex finU1 :: U1

.∼= Vector 0

finPar1 :: 1 ∼= Finite 1
:: Rep Par1

∼= Rep (Vector 1)

reindex finPar1 :: Par1

.∼= Vector 1

finSum :: Finite m + Finite n ∼= Finite (m + n)
:: Rep (Vector m) + Rep (Vector n) ∼= Rep (Vector (m + n))

15[I think reindex is a contravariant functorial. I first made it covariant, but I think contravariant fits the intent better. It also
saves me double inversion of dom h.]

16[Maybe note some specializations of reindex at this point, including h = id , f = (→) a, and g = (→) b. In these cases,
dom h = id , repIso = id , and inv repIso = id , respectively.]

17[Drop a hint about why these definitions.]
18[Rewrite each index and tabulate pair via a single isomorphism than handles both elegantly? How to present nicely, considering

that Representable has two methods instead of one isomorphism-valued method?]



10 Conal Elliott

newtype U1 a = U1 -- unit
newtype Par1 a = Par1 a -- singleton
data (f ××× g) a = f a ××× g a -- product
newtype (g ◦◦◦ f ) a = Comp1 (g (f a)) -- composition

instance Representable U1 where
type Rep U1 = 0
index U1 = absurd
tabulate = U1

instance Representable Par1 where
type Rep Par1 = ()
index (Par1 a) () = a
tabulate f = Par1 (f ())

instance (Representable f ,Representable g)⇒ Representable (f ××× g) where
type Rep (f ××× g) = Rep f + Rep g
index (a ××× ) (Left i) = index a i
index ( ××× b) (Right j ) = index b j
tabulate f = tabulate (f ◦ Left)××× tabulate (f ◦ Right)

instance (Representable f ,Representable g)⇒ Representable (g ◦◦◦ f ) where
type Rep (g ◦◦◦ f ) = Rep g × Rep f
index (Comp1 gf ) (j , i) = index (index gf j ) i
tabulate = Comp1 ◦ tabulate ◦ fmap tabulate ◦ curry

Figure 5: Some generic functors and their associated Representable instances

vecU1 :: Vector 0
.∼= U1

vecU1 = reindex finU1

vecPar1 :: Vector 1
.∼= Par1

vecPar1 = reindex finPar1

vecProd :: KnownNat2 m n ⇒ Vector (m + n)
.∼= Vector m ×××Vector n

vecProd = reindex finSum

vecComp :: KnownNat2 m n ⇒ Vector (m × n)
.∼= Vector m ◦◦◦Vector n

vecComp = reindex finProd

Figure 6: Reshaping vectors



Data-Parallel Programming without Arrays 11

:: Rep (Vector m ×××Vector n) ∼= Rep (Vector (m + n))

reindex finSum :: Vector (m + n)
.∼= Vector m ×××Vector n

finProd :: Finite m × Finite n ∼= Finite (m × n)
:: Rep (Vector m)× Rep (Vector n) ∼= Rep (Vector (m × n))
:: Rep (Vector m ◦◦◦Vector n) ∼= Rep (Vector (m × n))

reindex finProd :: Vector (m × n)
.∼= Vector m ◦◦◦Vector n

In the forward direction, vecProd slices a vector into two pieces, while vecComp slices a vector into a two-
dimensional array.19,20

3.8 Finite isomorphisms

For each type a with finitely many distinct values n, we can form an isomorphism between a and Finite n
(representing the natural numbers {0, . . . , n − 1} and introduced briefly in Section 2). We will then use the
latter as safe array indices:21

type KnownCard a = KnownNat |a|

class KnownCard a ⇒ HasFin a where
type |a| :: Nat
fin :: a ∼= Finite |a|

The KnownNat constraint is part of GHC’s support for type-level natural numbers [ref]. Figure 7 shows HasFin
instances for some standard types and type constructions.22 These instances come from a simple specification:

Lemma 7. Each fin defined in Figure 7 is an order isomorphism.

Proof. Follows from Lemmas 4 and 5.

It will sometimes be convenient to extract the halves of the fin isomorphism:

toFin :: HasFin a ⇒ a → Finite |a|
toFin = isoFwd fin

unFin :: HasFin a ⇒ Finite |a| → a
unFin = isoRev fin

4 Working with flattened functors

Section 2 defined a type Flat f a and showed it to be isomorphic to f a for any representable functor f having
a finite associated index type. The vocabulary defined above suffices to define this isomorphism concretely:

flat :: HasFlat f ⇒ f
.∼= Flat f

flat = inv newIso ◦ inv repIso ◦ dom (inv fin) ◦ repIso

This definition mirrors the type isomorphism chain appearing in Section 2.
To make for simpler calculations, let’s now slightly refactor the definition of Flat . Let Arr a b be a type of

“domain-indexed safe arrays”23, indexed by a with elements in b:

newtype Arr a b = Arr (Vector |a| b)

We can easily redefine Flat via Arr :

19[Add another isomorphism for exponentiation.]
20[Use these vector-reshaping definitions as specifications, but at least allude an efficient, no-copy implementation.]
21[I think I use the terms “vector” and “array” interchangeably. Perhaps pick one and stick to it.]
22[Add a HasFin (a → b) instance.]
23[Look for a different description and matching name.]



12 Conal Elliott

type KnownCard a = KnownNat |a|

class KnownCard a ⇒ HasFin a where
type |a| :: Nat
fin :: a ∼= Finite |a|

instance HasFin 0 where
type |0| = 0
fin = finU1

instance HasFin 1 where
type |1| = 1
fin = finPar1

instance KnownNat n ⇒ HasFin (Finite n) where
type |Finite n| = n
fin = id

instance (HasFin a,HasFin b)⇒ HasFin (a + b) where
type |a + b| = |a|+ |b|
fin = finSum ◦ (fin+fin)

instance (HasFin a,HasFin b)⇒ HasFin (a × b) where
type |a × b| = |a| × |b|
fin = finProd ◦ (fin × fin)

Figure 7: HasFin instances

type Flat f = Arr (Rep f )

The type Arr a b is isomorphic to a → b:

arrFun :: HasFin a ⇒ Arr a b ∼= (a → b)
arrFun = dom fin ◦ repIso ◦ newIso

Use this isomorphism to define a Representable instance such that repIso = arrFun:

instance HasFin a ⇒ Representable (Arr a) where
type Rep (Arr a) = a
index = isoFwd arrFun
tabulate = isoRev arrFun

Consequently, for Arr a,

index :: HasFin a ⇒ Arr a b → (a → b)
index = isoFwd arrFun

= dom toFin ◦ index ◦ unpack
= λ(Arr xs)→ index xs ◦ toFin

tabulate :: HasFin a ⇒ (a → b)→ Arr a b
tabulate = isoRev arrFun

= pack ◦ tabulate ◦ dom unFin
= λf → Arr (tabulate (f ◦ unFin))

We can adapt the vector-reshaping isomorphisms from Section 3.7 to reshape Arr instead, as shown in Figure 8.

Lemma 8 (Proved in Appendix A.4). Each of the definitions in Figure 8 is equal to (a type instance of)
reindex id .



Data-Parallel Programming without Arrays 13

type KnownCard2 a b = (KnownCard a,KnownCard b)

arrU1 :: Arr 0
.∼= U1

arrU1 = vecU1 ◦ newIso

arrPar1 :: Arr 1
.∼= Par1

arrPar1 = vecPar1 ◦ newIso

arrProd :: KnownCard2 a b ⇒ Arr (a + b)
.∼= Arr a ×××Arr b

arrProd = coerceIso ◦ vecProd ◦ newIso

arrComp :: KnownCard2 a b ⇒ Arr (a × b)
.∼= Arr a ◦◦◦Arr b

arrComp = coerceIso ◦ vecComp ◦ newIso

Figure 8: Arr reshaping isomorphisms

Note that the only operations besides the corresponding vector reshapers are newIso and coerceIso, which
will likely vanish at compile time.24,25,26 The arrFun isomorphism does most of the work for flat :27

flat :: HasFlat f ⇒ f a ∼= Flat f a
flat = reindex id

= inv repIso ◦ repIso

toFlat :: HasFlat f ⇒ f a → Flat f a
toFlat = isoFwd flat

= tabulate ◦ index

These last two definitions look like they would simplify to id , but they do not, because the argument and result
types differ. This pattern occurs whenever converting between functors via a common index type (here Rep f ).28

Now, note that homomorphisms compose (into homomorphisms), so to guarantee that toFlat is homomor-
phic, it suffices to guarantee that tabulate or index on f is homomorphic. We will assume the latter as a
reasonable expectation on the representable functors involved.29

Theorem 9 (Proved in Appendix A.5). Given the instance definitions below, tabulate for Arr a is a homomor-
phism with respect to Functor and Applicative:30

instance Functor (Arr a) where
fmap h (Arr bs) = Arr (fmap h bs)

instance KnownCard a ⇒ Applicative (Arr a) where
pure a = Arr (pure a)
Arr fs <∗>Arr xs = Arr (fs <∗> xs)

In Haskell, these two instance definitions can be written more succinctly:

deriving instance Functor (Arr a)
deriving instance KnownCard a ⇒ Applicative (Arr a)

24[Do they?]
25[Move this paragraph and figure somewhere more sensible.]
26[I think each of these Arr reshapers is a special case of reindex id . Prove and exploit.]
27[Revisit this part, since arrFun is no longer apparent here.]
28Give a name to reindex id , and use it here.
29[Return to this assumption.]
30[Hence index is as well. Explain somewhere clearly and simply that inverses of homomorphisms and compositions of homomor-

phisms are also homomorphisms.]



14 Conal Elliott

instance Foldable ((→) 0) where
fold = ∅

instance Foldable ((→) 1) where
fold as = as ()

instance (Foldable ((→) a),Foldable ((→) b))⇒ Foldable ((→) (a + b)) where
fold as = fold (as ◦ Left)⊕ fold (as ◦ Right)

instance (Foldable ((→) a),Foldable ((→) b))⇒ Foldable ((→) (a × b)) where
fold as = fold (fold ◦ curry as)

instance KnownNat n ⇒ Foldable ((→) (Finite n)) where
...

Figure 9: Folding functions

What’s remarkable about these definitions is that the conversions between the index type a and its numeric
counterpart Finite |a| (via the fin isomorphism) have disappeared during calculation. The index type a therefore
plays no role in the structure of the algorithms used for fmap, pure, and (<∗>) on Arr a. As the instances
above show, these operations are implemented directly as the corresponding operations on Vector n.31 Those
vector operations correspond to what SIMD-style parallel processors—including GPUs—do best, namely map
k-ary functions over k vectors of arguments. We will see that the structure of the algorithms used for other
operations does depend on the functor f . By fixing the Functor and Applicative implementations always to
use the full SIMD style, we exploit the high-performance parallelism of the GPU architecture. By varying the
implementations of other classes (Foldable etc) according to choice of functor f , we embrace a variety of parallel
algorithms for solving the same problem with different sequential-vs-parallel trade-offs.32

5 Folds

While the Functor and Applicative operations correspond to fully parallel computations, folds do not. Let’s
now examine how to structure them by a combination of sequential and parallel composition. An important
requirement to keep in mind is that GPU-style architectures support “flat” data parallelism, i.e., sequential
compositions of fully parallel passes [ref].

5.1 Folding functions

Unlike fmap, pure, and (<∗>) (from Functor and Applicative), we will not simply delegate fold on Arr a (or
Flat f ) to the same operation on vectors. Instead, we will imitate folds on functions. The standard Haskell
libraries do not define these instances, but they could, as shown in Figure 9.33,34 These instances reflect the
view of a function f :: a → b as an a-indexed collection of b values. To avoid ambiguity, the index type a must
linearly ordered, and the fold definitions must respect that ordering. In particular, for a + b, Left a < Right b
for all a and b, and for a × b, ordering is lexicographic, as in Section 3.4.

Another way to justify these instances is to relate them to Foldable instances on the representable func-
tors isomorphic to these functions, as shown in Figure 10.35 The reverse might be more satisfying, however,

31The instances also involve removing and adding the newtype wrapper (Arr), but even those simple operations disappear
during compilation.

32[I think there is a lovely principle here to be highlighted. Datatype-indexed families of generic parallel algorithms are great [say
why], but they don’t operate on arrays and so are difficult to map well to flat data parallelism. The Arr (or Flat) data type retains
the type-driven nature of the families of generic algorithms, while mapping well to flat data parallelism. Revisit Guy Blelloch’s
flattening transformation to determine how my techniques relate to it.]

33[Explain Haskellisms, especially (→) a.]
34[Start using “Fun” in place of (→) when given only one argument.]
35[State and prove a theorem here. Maybe specify by enumerating the inhabitants of each functor in index order into a list and

then folding over the list.]



Data-Parallel Programming without Arrays 15

instance Foldable U1 where
fold U1 = ∅

instance Foldable Par1 where
fold (Par1 a) = a

instance (Foldable f ,Foldable g)⇒ Foldable (f ××× g) where
fold (fa ××× ga) = fold fa ⊕ fold ga

instance (Foldable f ,Foldable g)⇒ Foldable (g ◦◦◦ f ) where
fold (Comp1 gfa) = fold (fmap fold gfa)

instance KnownNat n ⇒ Foldable (Vector n) where
...

Figure 10: Folding representable functors

calculating Foldable instances for representable functors by appealing to the instances on functions in Figure 9.36

Note that in Haskell’s current Foldable class, a fold definition does not suffice for a complete instance
definition, so the fold definitions in Figure 9 would have to be replaced or augmented by foldMap definitions.
Semantically, foldMap f = fold ◦ fmap f , and that equality could be captured as a default definition for foldMap,
though currently it is not. This current situation is unfortunate for parallel SIMD performance. As mentioned
above, fmap f is a pure SIMD operation and so every f application in fmap f can be evaluated in a single
parallel pass (assuming sufficient hardware resoures), to then be followed by a sequential composition of passes
for the remaining fold . Taking foldMap f as primitive moves those f applications into the fold, where they are
no longer all evaluated in parallel.37

We will sometimes want to re-parametrize functions monotonically for convenient and efficient folding:

Lemma 10 (Proved in Appendix A.6). For types a and b and any order isomorphism h :: a → b, dom h is
a Foldable isomorphism, i.e., have fold = fold ◦ dom h. (The LHS fold is on a → x , while the RHS fold is on
b → x .)

We can generalize Lemma 10 to reindexing of representable functors:

Lemma 11 (Proved in Appendix A.7). For functors f and g and any order isomorphism h :: Rep g ∼= Rep f ,

fold ◦ index = fold ◦ index ◦ isoFwd (reindex h :: f
.∼= g)

5.2 Folding flattened functors

[Maybe move function folds to an earlier section, so we can move the Foldable (Arr a) instances earlier.]
Theorem 9 in Section 4 gives simple instances of Functor and Applicative for Arr a, calculated from the

usual specification that tabulate (or index ) on Arr a is a homomorphism:

Theorem 12 (Proved in Appendix A.8). Given the following instance definition, index for Arr a is a Foldable
homomorphism:

instance Foldable (Arr a) where
fold = fold ◦ unpack

Equivalently,

deriving instance Foldable (Arr a)

36[Maybe do some, and leave the rest for exercises.]
37[Return to this point later.]



16 Conal Elliott

instance Foldable (Arr 0) where
fold = fold ◦ isoFwd arrU1

instance Foldable (Arr 1) where
fold = fold ◦ isoFwd arrPar1

instance (Foldable (Arr a),Foldable (Arr b),KnownCard2 a b)⇒ Foldable (Arr (a + b)) where
fold = fold ◦ isoFwd arrProd

instance (Foldable (Arr a),Foldable (Arr b),KnownCard2 a b)⇒ Foldable (Arr (a × b)) where
fold = fold ◦ isoFwd arrComp

Figure 11: Specialized and optimized Foldable instances for Arr

As with Functor and Applicative, this Foldable instance for Arr a simply defers to the corresponding instance
for Vector |a|. Although this instance is correct, it is somewhat dissatisfying. If we defer all instances for
Arr a to the corresponding instances for Vector |a|, then we will have achieved our goal of safety, but not
of type-directed algorithm design.38 For Functor and Applicative, the Vector instances are compelling in
that they directly exploit SIMD-style architecture. Since fold is not a SIMD operation in itself (due to data
dependencies), it must be decomposed into a pattern of SIMD computations with at least some sequentiality.
An entirely sequential fold would have a much longer parallel computation time than necessary. Instead, we
can use the specific nature of a (not just its cardinality) into account.39

Theorem 13 (Proved in Appendix A.9). The specialized instance definitions in Figure 11 below agree with
the general instance above. With these specialized definitions, therefore, index for Arr a is a Foldable homo-
morphism.40,41

[Return to fold vs foldMap f . Maybe I should start with foldMap f and then explain (or better, show) how
fold ◦ fmap f gives better parallelism.]

6 What else?

[

• Idea: use foldMap f at first, and then discover the loss of parallelism, motivating factoring foldMap f =
fold ◦ fmap f .

• LScan and FFT . There might not be much direct value in this work for just Functor , Applicative, and
Foldable, since vector-specific versions don’t specialize for the first two and don’t might not be worth
varying for the latter. I think I’ll have to tackle a whole new issue, which is how to construct Arr a in a
compositional and functional manner but still map to efficient data-parallel code. I think the underlying
implementation will imperatively update output arrays. I guess I’ll have to manage non-interference proofs
for parallel computations, hopefully in an elegantly rigorous way.

• In-place update.

• Add an isomorphism version of fold/unfold , given an algebra/coalgebra isomorphism. Are there interesting
and/or useful examples of invertible algebras?

]

38[Connect these remarks to an earlier discussion of goals.]
39[Maybe fold is a poor use of this flexibility. It may be perfectly fine to have a single fold strategy based only on cardinality.

On the other hand, scan and fft make good use of additional flexibility.]
40[Resolve fold vs foldMap f .]
41[Maybe refactor: add a class with a method that chooses an order isomorphism for reindexing. Then I could give a single

instance for Foldable (Arr a) that defers to the new class and method.]



Data-Parallel Programming without Arrays 17

7 Related work

• The flattening transformation for nested data parallelism.

• Reversible computing?

• [Gibbons, 2017]

• [Hinze and James, 2010]

A Proofs

A.1 Theorem 1

First, let’s require that iso is a functor, i.e., a homomorphism for the Category interface shown in Figure 1. The
corresponding homomorphism properties for iso:

id = iso id

iso g ◦ iso f = iso (g ◦ f )

Start with the id homomorphism, and simplify the RHS:

iso id
= { definition of iso }

id 
 id−1

= { id is its own inverse (i.e., id ◦ id = id) }
id 
 id

The id homomorphism for iso is thus equivalent to

id = id 
 id

We can thus satisfy the homomorphism requirement by using this version of as a definition.
Next consider the (◦) homomorphism and simplify the LHS:

iso g ◦ iso f
= { definition of iso }

(g 
 g−1) ◦ (f 
 f −1)

Then the RHS:

iso (g ◦ f )
= { definition of iso }

(g ◦ f )
 (g ◦ f )−1

= { property of inversion and composition }
(g ◦ f )
 (f −1 ◦ g−1)

The (◦) homomorphism is thus equivalent to

((g 
 g−1) ◦ (f 
 f −1)) = (g ◦ f 
 f −1 ◦ g−1)

Now strengthen this requirement by generalizing from f −1 and g−1 to arbitrary f ′ and g ′ (having the required
types):

((g 
 g ′) ◦ (f 
 f ′)) = (g ◦ f 
 f ′ ◦ g ′)

This strengthened (hence sufficient) condition is also in solved form and so can be satisfied by definition.
We can set up and solve similar homomorphism equations for the operations of the other categorical classes,

leading to the class instances in Figure 1. For instance, for MonoidalP , the crucial insight is as follows:



18 Conal Elliott

Lemma 14. The product, coproduct, and exponential bifunctors invert as follows:

(f × g)−1 = f −1 × g−1

(f + g)−1 = f −1 + g−1

(f ⇒ g)−1 = f −1 ⇒ g−1

Proof:

(f −1 × g−1) ◦ (f × g)
= { (f × g) ◦ (h × k) = (f ◦ h)× (g ◦ k) [Gibbons, 2002, Section 1.5.1] }

f −1 ◦ f × g−1 ◦ g
= { fundamental property of inverses }

id × id
= { [Gibbons, 2002, Section 1.5.1] }

id

Likewise (f × g) ◦ (f −1 × g−1) = id . Similarly for f +g , while f ⇒ g differs slightly due to contravariance:

(f −1 ⇒ g−1) ◦ (f ⇒ g)
= { (f ⇒ g) ◦ (h ⇒ k) = (h ◦ f )⇒ (g ◦ k) }

f ◦ f −1 ⇒ g−1 ◦ g
= { fundamental property of inverses }

id ⇒ id
= { [cite or prove] }

id

A.2 Lemma 2

unfork ◦ fork
= { η-expansion }
λ(f , g)→ unfork (fork (f , g))

= { definition of fork }
λ(f , g)→ unfork (f 4 g)

= { definition of unfork }
λ(f , g)→ (exl ◦ (f 4 g), exr ◦ (f 4 g))

= { [Gibbons, 2002, Section 1.5.1] }
λ(f , g)→ (f , g)

= { definition of id for functions }
id

unjoin ◦ join
= { η-expansion }
λ(f , g)→ unjoin (join (f , g))

= { definition of join }
λ(f , g)→ unjoin (f O g)

= { definition of unjoin }
λ(f , g)→ ((f O g) ◦ inl , (f O g) ◦ inr)

= { [Gibbons, 2002, Section 1.5.2] }
λ(f , g)→ (f , g)

= { definition of id for functions }
id



Data-Parallel Programming without Arrays 19

fork ◦ unfork
= { η-expansion }
λf → fork (unfork f )

= { definition of unfork }
λf → fork (exl ◦ f , exr ◦ f )

= { definition of fork }
λf → (exl ◦ f )4 (exr ◦ f )

= { [Gibbons, 2002, Section 1.5.1] }
λf → (exl 4 exr) ◦ f

= { [Gibbons, 2002, Section 1.5.1] }
λf → id ◦ f

= { property of id and (◦) }
λf → f

= { definition of id for functions }
id

join ◦ unjoin
= { η-expansion }
λf → join (unjoin f )

= { definition of unjoin }
λf → join (f ◦ inl , f ◦ inr)

= { definition of join }
λf → (f ◦ inl) O (f ◦ inr)

= { [Gibbons, 2002, Section 1.5.2] }
λf → f ◦ (inl O inr)

= { [Gibbons, 2002, Section 1.5.2] }
λf → f ◦ id

= { property of id and (◦) }
λf → f

= { definition of id for functions }
id

A.3 Lemma 5

[To do. See my notes from 2018-08-01.]

A.4 Lemma 8

[See my notes from 2018-08-11. I’m looking for much simpler proofs.]

A.5 Theorem 9

[Add some explanation here.]

tabulate ◦ fmap f ◦ index
= { definition of tabulate and index for Arr a }

pack ◦ tabulate ◦ dom unFin ◦ fmap f ◦ dom toFin ◦ index ◦ unpack
= { tabulate ◦ dom unFin is a Functor homomorphism }

pack ◦ fmap f ◦ unpack

tabulate (pure a)
= { definition of tabulate for Arr a }

pack (tabulate (dom unFin (pure a)))
= { tabulate ◦ dom unFin is an Applicative homomorphism }

pack (pure a)

tabulate (index fs <∗> index xs)
= { definition of tabulate and index for Arr a }

pack (tabulate (dom unFin (dom toFin (index (unpack fs))<∗> dom toFin (index (unpack xs)))))
= { tabulate ◦ dom unFin is an Applicative homomorphism }

pack (unpack fs <∗> unpack xs)

A.6 Lemma 10

Proof.

fold ◦ dom h
= { η-expansion }
λxs → fold (dom h xs)

= { definition of dom on functions }
λxs → fold (xs ◦ h)



20 Conal Elliott

[How to finish this proof? Maybe via a new lemma in Section 5.1. Still, I think I’ll need a new angle in order
to make general claims about folds on functions.]

Lemma 15. For any function f :: u → v , dom f is a Functor and Applicative homomorphism.

Proof.

dom f (fmap h xs)
= { definition of fmap on functions }

dom f (h ◦ xs)
= { definition of dom }

(h ◦ xs) ◦ f
= { associativity of (◦) }

h ◦ (xs ◦ f )
= { definition of dom }

h ◦ dom f xs
= { definition of fmap on functions }

fmap h (dom f xs)

dom f (pure a)
= { definition of pure on functions }

dom f (const a)
= { definition of dom }

const a ◦ f
= { property of const and (◦) }

const a
= { definition of pure on functions }

pure a

dom f (hs <∗> xs)
= { definition of (<∗>) on functions }

dom f (λu → hs u <∗> xs u)
= { definition of dom }

(λu → hs u <∗> xs u) ◦ f
= { definition of (◦) on functions }

(λu → (hs (f u)) (xs (f u)))
= { definition of (◦) on functions }

(λu → ((hs ◦ f ) u) ((xs ◦ f ) u))
= { definition of (<∗>) on functions }

(hs ◦ f )<∗> (xs ◦ f )
= { definition of dom }

dom f hs <∗> dom f xs

A.7 Lemma 11

Proof.

fold ◦ index ◦ isoFwd (reindex h)
= { definition of reindex }

fold ◦ index ◦ isoFwd (inv repIso ◦ dom h ◦ repIso)
= { definitions of (◦) on IsoT k , inv , etc }

fold ◦ index ◦ tabulate ◦ dom (isoFwd h) ◦ index
= { index ◦ tabulate = id }

fold ◦ dom (isoFwd h) ◦ index



Data-Parallel Programming without Arrays 21

= { Lemma 10 }
fold ◦ index

A.8 Theorem 12

We want to show that fold ◦ index = fold ◦ unpack , where the equation is on Arr a. (The LHS fold is on (→) a
and the RHS fold is on Vector |a|.)

Proof.

fold ◦ index
= { definition of index for Arr a }

fold ◦ dom toFin ◦ index ◦ unpack
= { dom toFin ◦ index is a Foldable homomorphism }

fold ◦ unpack

The last step depends on dom toFin being a Foldable homomorphism, which follows from Theorem 7 and
Lemma 11.

A.9 Theorem 13

Proof. Let p be one of the Arr -reshaping isomorphisms in Figure 8. By Lemma 8, we know that p = reindex h
where h is monotonic (and in fact h = id).

fold
= { definition of Foldable instance (Figure 8) }

fold ◦ isoFwd (reindex h)
= { induction on the index type }

fold ◦ index ◦ isoFwd (reindex h)
= { Lemma 11 }

fold ◦ index

References

Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and Stephanie Weirich. Safe Zero-cost Coercions
for Haskell. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’14, 2014.

Conal Elliott. Generic functional parallel algorithms: Scan and FFT. Proceedings of the ACM Programming
Languages (ICFP), 1(ICFP), September 2017.

Jeremy Gibbons. Calculating functional programs. In Algebraic and Coalgebraic Methods in the Mathematics
of Program Construction, volume 2297 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

Jeremy Gibbons. APLicative Programming with Naperian Functors. In Hongseok Yang, editor, European
Symposium on Programming, 2017.

Joe Hermaszewski and Ben Gamari. vector-sized, 2017. URL http://github.com/expipiplus1/

vector-sized. Haskell library.

Ralf Hinze. Memo functions, polytypically! In 2nd Workshop on Generic Programming, pages 17–32, 2000.

Ralf Hinze and Daniel W. H. James. Reason isomorphically! In ICFP-WGP, 2010.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.587.5376
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.587.5376
http://conal.net/papers/generic-parallel-functional
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/acmmpc-calcfp.pdf
https://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/aplicative.pdf
http://github.com/expipiplus1/vector-sized
http://github.com/expipiplus1/vector-sized
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.3272
http://www.cs.ox.ac.uk/people/daniel.james/iso/iso.pdf


22 Conal Elliott

Darius Jahandarie, Conor McBride, João Cristóvão, and Simon Jakobi. newtype-generics (version 0.5.3), 2018.
URL http://hackage.haskell.org/package/newtype-generics. Haskell library.

Edward Kmett. adjunctions (version 4.4), 2018. URL http://hackage.haskell.org/package/adjunctions.
Haskell library.

Roman Leshchinskiy. vector (version 0.12), 2017. URL https://github.com/haskell/vector. Haskell library.

José Pedro Magalhães et al. GHC.Generics, 2011. URL https://wiki.haskell.org/GHC.Generics. Haskell
wiki page.

mniip. finite-typelits, 2017. URL https://github.com/mniip/finite-typelits. Haskell library.

http://hackage.haskell.org/package/newtype-generics
http://hackage.haskell.org/package/adjunctions
https://github.com/haskell/vector
https://wiki.haskell.org/GHC.Generics
https://github.com/mniip/finite-typelits

	Introduction
	Arrays and functors
	Isomorphisms
	Basic isomorphisms
	Composing isomorphisms
	Arrow isomorphisms
	Natural number isomorphisms
	Some other useful isomorphisms
	Reindexing representable functors
	Reshaping vectors
	Finite isomorphisms

	Working with flattened functors
	Folds
	Folding functions
	Folding flattened functors

	What else?
	Related work
	Proofs
	Theorem 1
	Lemma 2
	Lemma 5
	Lemma 8
	Theorem 9
	Lemma 10
	Lemma 11
	Theorem 12
	Theorem 13


