
Extensions and Applicationsof Higher-order Uni�cationConal M. ElliottMay, 1990CMU-CS-90-134Submitted in partial ful�llment of the requirements for the degree of Doctor of Philos-ophy in Computer Science at Carnegie Mellon University.
Copyright c 1990 Conal M. ElliottThis research was supported in part by the O�ce of Naval Research and in part by the Defense AdvancedResearch Projects Agency (DOD), monitored by the O�ce of Naval Research under Contract N00014-84-K-0415, ARPA Order No. 5404, and in part by NSF Grant CCR-8620191.The views and conclusions contained in this document are those of the author and should not beinterpreted as representing the o�cial policies, either expressed or implied, of ONR, DARPA or theU.S. government.



Keywords: uni�cation, higher-order logic, logical frameworks, language encoding, pro-gram transformation



AbstractThis dissertation explores the problem of uni�cation in various typed �-calculi, developingand proving the correctness and completeness of uni�cation algorithms for various calculiwithin a single general framework, and then demonstrating the practical importance of thesealgorithms by means of example applications.We begin by presenting our general framework for uni�cation, based on transformations ofuni�cation problems. Then, in this framework, we develop a new uni�cation algorithm fora �-calculus with dependent function (�) types. This algorithm is especially useful as itprovides for mechanization in the very expressive Logical Framework (LF). The developmentinvolves signi�cant complications not arising Huet's corresponding algorithm for the simplytyped �-calculus, primarily because it must deal with ill-typed terms. We then extend thisalgorithm �rst for dependent product (�) types, and second for implicit polymorphism. Inthe latter case, the algorithm is incomplete, though still quite useful in practice.The last part of the dissertation provides examples of the usefulness of the algorithms. Thegeneral idea is to use a �-calculus as a meta-language for representing various other languages(object-languages). The rich structure of a typed �-calculus, as opposed to traditional, �rst-order abstract syntax trees, allows us to express rules, e.g., program transformation andlogical inference rules, that are more succinct, more powerful, and easier to reason about.We can then use uni�cation in the meta-language to mechanize application of these rules.



AcknowledgementsI am grateful to many people for help and encouragement during my studies at CarnegieMellon.Frank Pfenning, my thesis advisor, has been a good friend and the best advisor one couldhope for. Our collaborations have been stimulating and enjoyable. He helped me throughperiods of discouragement, and he set me on and kept me on the line of research and writingresulting in this thesis. His careful reading of and comments on drafts of the thesis havecontributed greatly to its clarity and correctness.The other members of my committee have also given generously of their time with readingand comments.The ERGO project, founded by Bill Scherlis and Dana Scott, has been a terri�c groupto be part of. I greatly enjoyed the many software design and implementation projects, withthe ERGO emphasis on conceptual elegance. Bill Scherlis, my �rst advisor, introduced meto many wonders, including ML, lazy evaluation, and program transformation.Our close friends Ron and Mary Joy Collins and Debbie and Dave Kresh helped to providehappiness and spiritual growth during the Pittsburgh years. Because of them, it was hardto leave, in spite of our joy to return to family in Northern California. The loss of Debbie'sphysical presence this year, due to cancer, is mourned by those of us who were blessed toshare in her life.Our delightful children, Jacob, Becky, Charlotte, and Patrick, keep me real. My parentshave patiently waited for us to return from Pittsburgh with their grandchildren. They havebeen supportive, emotionally and �nancially, when we most needed it.Most of all, I am grateful to my wife Marianne, who has endured being taken out of hernative Californian habitat for six years, and who loves me no matter what.



to Marianne



Contents1 Introduction 11.1 Higher-order Uni�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21.2 Richer Type Theories : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31.3 Overview of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.3.1 The Calculus �� : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.3.2 An Approach to Uni�cation : : : : : : : : : : : : : : : : : : : : : : : 51.3.3 A Pre-uni�cation Algorithm : : : : : : : : : : : : : : : : : : : : : : : 61.3.4 Products : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71.3.5 Polymorphism : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81.3.6 Applications : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82 The Calculus �� 92.1 The Language : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.2 Substitution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102.2.1 Composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122.2.2 Notation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152.2.3 Comparison to the Standard Notion of Substitutions : : : : : : : : : 162.3 Conversion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 172.4 Typing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 202.4.1 Typing and Conversion : : : : : : : : : : : : : : : : : : : : : : : : : : 252.4.2 Well-typed Substitutions : : : : : : : : : : : : : : : : : : : : : : : : : 27iii



3 An Approach to Uni�cation 293.1 The Speci�cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 293.2 Transformations on Uni�cation Problems : : : : : : : : : : : : : : : : : : : : 333.3 Algorithms from Transformations : : : : : : : : : : : : : : : : : : : : : : : : 344 A Pre-uni�cation Algorithm 364.1 Weak Head Normal Forms : : : : : : : : : : : : : : : : : : : : : : : : : : : : 364.2 Some Useful Properties of Convertibility : : : : : : : : : : : : : : : : : : : : 394.2.1 Weak head redices : : : : : : : : : : : : : : : : : : : : : : : : : : : : 424.2.2 Abstractions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 424.2.3 Bodies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 454.3 From Conversion to Uni�cation : : : : : : : : : : : : : : : : : : : : : : : : : 504.4 The Transformations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 544.4.1 Preliminaries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 554.4.2 Redices : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 564.4.3 Abstractions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 574.4.4 Rigid-rigid : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 594.4.5 Flexible-rigid : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 604.5 Completeness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 704.6 Uni�ability of Solved Form Uni�cation Problems : : : : : : : : : : : : : : : : 724.7 Automatic Term Inference : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73



5 Products 795.1 The Language Extension : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 795.2 Substitution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 805.3 Conversion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 815.4 Normal Forms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 825.5 Some Useful Properties of Convertibility : : : : : : : : : : : : : : : : : : : : 845.5.1 Weak Head Redices : : : : : : : : : : : : : : : : : : : : : : : : : : : : 855.5.2 Abstractions and pairs : : : : : : : : : : : : : : : : : : : : : : : : : : 865.5.3 Bodies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 875.6 The Transformations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 885.6.1 Redices : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 895.6.2 Abstractions and Pairs : : : : : : : : : : : : : : : : : : : : : : : : : : 905.6.3 Rigid-rigid : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 915.6.4 Pair-producing Variables : : : : : : : : : : : : : : : : : : : : : : : : : 915.6.5 Flexible-rigid : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 955.7 Completeness and Uni�ability : : : : : : : : : : : : : : : : : : : : : : : : : : 986 Polymorphism 996.1 The Language Extension : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 996.1.1 Substitution and Conversion : : : : : : : : : : : : : : : : : : : : : : : 1006.1.2 Typing Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1006.2 The Transformations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1016.2.1 Rigid-rigid : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1016.2.2 Type Flexible-rigid : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1026.2.3 Term Flexible-rigid : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103



7 Applications 1057.1 Some Motivating Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : 1067.1.1 Correct Matching and Substitution : : : : : : : : : : : : : : : : : : : 1067.1.2 Variable Occurrence Restriction : : : : : : : : : : : : : : : : : : : : : 1077.1.3 Correct Treatment of Contexts : : : : : : : : : : : : : : : : : : : : : 1077.1.4 Object-language Typing : : : : : : : : : : : : : : : : : : : : : : : : : 1087.2 A Convenient Notation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1087.3 Language Representation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1097.3.1 A Simple Expression Language : : : : : : : : : : : : : : : : : : : : : 1097.3.2 Adding Programs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1127.3.3 Syntactic Judgments : : : : : : : : : : : : : : : : : : : : : : : : : : : 1137.4 Object-language Type Checking and Inference : : : : : : : : : : : : : : : : : 1147.5 Program Transformation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1157.5.1 Subterm Rewriting : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1207.5.2 Generalized Rewriting via Uni�cation : : : : : : : : : : : : : : : : : : 1217.6 Theorem Proving : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122Bibliography 123Glossary 129Index 133



Chapter 1IntroductionThis dissertation addresses the problem of performing uni�cation in various typed �-calculi.It was motivated by and builds upon two areas of research whose importance is becomingincreasingly recognized in computer science. The �rst of these is the mechanization offragments of higher-order logic by means of higher-order uni�cation, i.e., uni�cation in thetyped �-calculus (modulo ��-conversion). The second area is the use of rich type theoriesfor formalizing theorem proving and program development.The primary contribution of this thesis is to combine the advantages of mechanizabilityof the simply typed �-calculus with the increased expressive power of these richer calculi, bydeveloping new uni�cation algorithms for calculi with dependent function types, products(again a dependent version, sometimes referred to as \strong sum" or simply \�" types),and implicit polymorphism. These new algorithms have important applications in the gen-eral area of formal language analysis and manipulation, for example, mechanically assistedtheorem proving in a wide range of logics, automated or semi-automated type inference ortype checking in various typed languages, and mechanically assisted program transforma-tion. Of course, these various forms of applications have been implemented before for variouslanguages (including logics). Our algorithms provide a general tool that can be more easilyapplied to a variety of languages than previously existing tools.As a secondary contribution, we o�er a new presentation of this kind of algorithm, whichwe hope serves to clarify the issues involved in these and other problems and algorithms.Although many of the important ideas in our algorithms have their roots in Huet'salgorithm for higher-order uni�cation [36], there are serious technical di�culties that ariseonly in extensions to richer calculi. One is the necessity to deal with ill-typed terms duringthe uni�cation process. Our technique for dealing with ill-typedness signi�cantly complicatesthe proofs, but fortunately requires little additional complexity in the algorithms.1



2 CHAPTER 1. INTRODUCTION1.1 Higher-order Uni�cationThe development of (�rst-order) uni�cation, �rst studied by Herbrand [31], had a majorimpact on the �eld of automated theorem proving in �rst-order logic, because it was the keycomponent of the new mechanization procedure resolution, due to Robinson [67, 66] (whoalso reintroduced uni�cation). Because of the success of resolution, much work was focusedon the e�cient implementation of uni�cation. (See [39] for a survey.) Another signi�cantdevelopment was the observation that a subset of �rst-order logic, now called Horn logic,could serve as an elegant programming language, for which interpretation was performedby a restricted form of resolution known as SLD resolution (which is complete for Hornlogic) [75]. Colmerauer and Roussel �rst implemented the programming language Prologbased on this idea [9].In 1940, Church had formulated a higher-order logic, based on the incorporation of simpletypes in his �-calculus. Formulas and proofs in higher-order logic can be much more succinctthan their corresponding versions in �rst-order logic.Given the success of �rst-order resolution in mechanizing �rst-order logic, it was naturalto consider the possibility of higher-order resolution for mechanizing higher-order logic. Thisform of resolution depends on being able to enumerate complete sets of uni�ers (CSUs) inthe simply typed �-calculus (�!). Guard [27] pointed out that CSUs must sometimes be in-�nite, and the general problem of uni�ability was shown to be undecidable by Lucchesi [40],Huet [35], and Goldfarb [26]. Goldfarb showed undecidability for even a restriction of theproblem to second-order uni�cation, with a single binary function constant. In contrast,Huet [34, 37] showed second-order matching to be decidable, and Farmer [21] showed decid-ability of monadic second-order uni�cation. Decidability of higher-order matching is still anopen problem. A complete algorithm for enumerating CSUs was presented by Jensen andPietrzykowski [38], but it had the problem of being extremely undirected for certain kinds ofproblems. Huet showed that it is impossible in general to enumerateminimal (nonredundant)CSUs [34].In [34], Huet presented a pre-uni�cation algorithm that avoids some of the problems ofundirectedness and redundancy. The key new idea was to postpone uni�cation subproblemsof a certain form, called \exible-exible". He noted that these subproblems were the sourceof uni�cation's extreme undirectedness, and, importantly, proved that when all but exible-exible subproblems are eliminated, the remainder must always be uni�able. Thus a pre-uni�cation algorithm su�ces for uni�ability. It also turns out to su�ce for resolution, inwhich the remaining exible-exible subproblems are saved to be added to future uni�cationproblems. The addition of these new uni�cation constraints often cause some of the exible-exible subproblems to be instantiated into forms in which they can be further reduced.While the original purpose of higher-order uni�cation was higher-order resolution, manydiverse applications followed. Andrews developed the technique of matings for automated



1.2. RICHER TYPE THEORIES 3theorem proving in higher-order logic [1]. Huet and Lang showed how to use a fragmentof �! to encode program transformation rules and then use second-order matching andsubstitution to automatically apply them [37].Just as �rst-order uni�cation and �rst-order resolution led to Prolog, Nadathur appliedhigher-order uni�cation and higher-order resolution in the design of a new programminglanguage �Prolog [53]. Although �rst based on a higher-order Horn logic, Miller et al. gen-eralized the logic to higher-order hereditary Harrop formulas, which include use of explicitexistential and universal quanti�cation and implication [49, 47]. This extra expressivenesshas proved extremely useful in many applications dealing with the manipulation of pro-grams and formulas [50]. Some other applications of �Prolog have been computationallinguistics [46], specifying and implementing theorem provers for various logics [22, 23], pro-gram analysis [28], partial type inference in the !-order polymorphic �-calculus [59], andexplanation based generalization (EBG) [16]. Donat and Wallen [17] also used higher-orderuni�cation for EBG. Paulson's Isabelle system for theorem proving in logics encoded inhigher-order logic [56, 57] is similar in spirit to the �Prolog work of Felty and Miller.1.2 Richer Type TheoriesMany of the applications of higher-order uni�cation listed above involve the use of �!for representing (encoding) various formal languages, in particular logics and programminglanguages.1 Another area of research has been the exploration of richer type theories andtheir application to formalizing theorem proving and program development. One very im-portant paradigm is that of \formulas as types" introduced by Curry [13] and Howard [32],who observed a correspondence between types and terms of a given type on the one hand,and formulas and proofs of a given formula on the other. This correspondence has beenfurther pursued in the work of deBruijn's group [15], Martin-L�of (e.g., [42]), NuPrl [10], andthe Calculus of Constructions (CoC) [11].More recently, a related but di�erent approach has been proposed for representing logicswithin a type theory. The Logical Framework (LF), based on �! extended with dependentfunction (�) types, makes a correspondence between types families (functions from terms totypes) and the fundamental units of inference systems, called judgements (following Martin-L�of [43]). Logical formulas are encoded as terms rather than types, and the judgmenttype families are applied to these terms. The intent of LF is di�erent from the previousformalisms, since it is intended for supporting not just one, but a wide range of logics,even nonconstructive ones. It is thus presented as a \�rst step towards a general theory ofinteractive proof checking and proof construction." A crucial property of LF, due to the richrepresentations allowed by dependent types, is that proof checking in appropriately encoded1Variations on this general idea have also been suggested by Martin-L�of as a \system of arities" [43], andby Pfenning and Elliott as \higher-order abstract syntax" [60].



4 CHAPTER 1. INTRODUCTIONlanguages is reduced to type checking in the representing typed �-calculus, and thus thedecidability of type-checking is vital. As pointed out in [30], this is of great practical value,because it allows for the implementation of general tools, e.g., an interactive proof editor,that work for a variety of logical systems. In comparison with CoC, the LF type theoryis very weak, having the same computational power as the simply typed �-calculus. Theproblem of uni�cation in CoC's type theory seems to be signi�cantly harder than uni�cationin LF's type theory.The enhanced representational ability of extending the �! with product types and im-plicit polymorphism (free type variables) has been demonstrated in [60]. The usefulness ofthese extensions comes from the fact that many languages contain constructs that are madeup of a variable number of components (e.g., a parallel \let" binding expression, as in MLor Lisp). The addition of dependent function types also allows the direct representation ofthe typing systems of various languages. This was observed in the LF encoding in [30] ofChurch's higher-order logic, and is explored in Chapter 7 of this thesis.Pfenning has designed a programming language Elf [58] that combines the ideas of LFand �Prolog. There is an implementation of it in Standard ML [19].1.3 Overview of the Thesis1.3.1 The Calculus ��We begin in Chapter 2 by presenting the calculus \��", which is an extension of the �! intwo ways: First, in place of a simple function type A!B, the type of the result of applyinga function in �� may depend on the term to which the function is applied. These typesare written \�v:A: B", where B may depend on (contain free occurrences of) v. Second,in order for such a B to depend on the variable v, the base types of �! are generalized totype families, as indexed by zero or more appropriately typed terms. This calculus is theone used by the Logical Framework (LF) [30] (which itself is derived from members of theAUTOMATH family of languages [15]) for the purpose of encoding the syntax, rules andproofs of a wide class of logics.After presenting the syntax of the terms, types, and kinds of �� and their associatedtyping rules, we go on to present our somewhat unconventional de�nition of substitutionsand their composition operation. Our de�nition has the advantage of eliminating temporaryvariables, which arise frequently in uni�cation. We demonstrate by example the di�erencebetween the conventional de�nition and ours, and show how to make our notion of sub-stitution practical, by giving a compact representation and a method for composition ofsubstitutions using this representation.



1.3. OVERVIEW OF THE THESIS 5The conversion rules of �� are the � and � rules at the level of terms and the level oftypes. These are extended in the usual way to the one-step and multi-step subterm reducingrelations !�� and !���, and to the convertibility relation $���. The Church-Rosser (CR)property for �� with � as well as � has, for some time, been generally believed to be true.This conjecture has only recently been veri�ed and the proof is quite complex [68]. Wedescribe two alternatives to relying on CR. The importance of CR, together with the strongnormalization property (SN), which is fairly easy to show, is that they reduce the questionof convertibility (of well-typed terms and types) to equivalence (modulo �-conversion) ofnormal forms.1.3.2 An Approach to Uni�cationChapter 3 presents our framework for specifying uni�cation in various calculi and develop-ing and proving the correctness and completeness of algorithms for pre-uni�cation in thesecalculi. Our approach is related to the transformation-based approaches of Martelli andMontanari for �rst-order uni�cation [41] and of Snyder and Gallier for higher-order andequational uni�cation [70, 69], which was itself inspired by the work of Martelli and Monta-nari [41]. However, as discussed below, unlike these works, our approach makes the importantdistinction between two kinds of \nondeterminism" present in the search for uni�ers. Thisdistinction is necessary to formulate an algorithm for enumerating complete and minimalsets of solutions (as de�ned in the chapter).We begin by de�ning the notion of a uni�cation problem, which encapsulates the infor-mation gained in making progress toward a subset of possible uni�ers of an original pair ofterms or types. Next, we de�ne the set of all solutions of a uni�cation problem, and thenminimal complete sets of pre-uni�ers (�CSPs). For us, a pre-uni�er is not a substitution,but rather a special kind of uni�cation problem (solved form), whose set of solutions is asubset of the set of solutions of a given uni�cation problem.We then present the notion of transformations on uni�cation problems, central to ourframework, which are relations between uni�cation problems and sets of uni�cation prob-lems. Each particular pre-uni�cation algorithm is given (in later chapters) as a collectionof transformations. These transformations are required individually to have the propertyof validity and collectively to have the property of completeness. The purpose of such acollection of transformations is to be able to ultimately transform a uni�cation problem intoa �CSP.We then de�ne how a collection of transformations generates a set of pre-uni�ers of agiven uni�cation problem by means of a nondeterministic search process. There are twokinds of choices are made in this process: �rst which uni�cation problem to work on next,and second which transformation to apply and how to apply it. It turns out that the secondkind of choice may be made completely arbitrarily, but, in order to have completeness, the



6 CHAPTER 1. INTRODUCTION�rst kind must be done in a fair way. Finally, we prove that collections of transformationssatisfying the validity and completeness properties do generate �CSPs.1.3.3 A Pre-uni�cation AlgorithmChapter 4 presents the development of an algorithm for HOU�, i.e., pre-uni�cation in ��, asa collection of transformations. The algorithm we construct is similar to Huet's algorithm forHOU! (pre-uni�cation in ��). Under additional assumptions about the control structure, itbehaves almost exactly the same on the subset of �� corresponding to �!. However, thereare considerable technical di�culties in the justi�cation of the algorithm that do not arisein HOU!.Normal forms play a vital role in the development, and we begin by de�ning one thatwill be needed later in the chapter. This is the � weak head normal form (WHNF), whosepurpose is to reveal just the top level structure of the � normal form of a term or type.Interestingly, the role of � is quite di�erent from �. In contrast, Huet used a long normalform (LNF), based on �-reduction and �-expansion.Then we develop several useful properties of convertibility. Each of these properties maybe interpreted as a decomposition method, in the following sense: Given any pair of well-typed terms or types of the same type or kind, one of the de�ned methods either showsthat they are not convertible, or constructs a set of pairs of terms and/or types that (a)has the same set of (simultaneous) uni�ers, (b) satis�es a certain relative well-typednessproperty, and (c) is, in a sense de�ned in the chapter, \smaller" than the given pair. Oneapplication of this set of decomposition methods is as an algorithm to test for convertibility.(In fact, it is a specialization of our HOU� algorithm when there are no uni�cation variables.)However, the main purpose is to lay the groundwork for the formulation and justi�cation ofthe transformation rules.Next we examine some of the issues that arise in HOU�. Of particular importance isthe need to deal with ill-typedness during pre-uni�cation (unlike HOU!, where it is easilyavoided). Managing ill-typedness is a major consideration in our transformations and theirjusti�cation. Fortunately however, the extra complexity is more in the proofs than in thetransformations themselves. We de�ne an invariant on uni�cation problems called \accept-ability", on which the transformations depend and which they maintain. The main featureof an acceptable uni�cation problem is that the ill-typedness present is \accounted for", asensured by the existence of a certain kind of partial order on the pairs being uni�ed.With this background, we are ready to construct the transformations that make up ouralgorithm and prove their correctness. The decomposition methods de�ned previously yieldwith little additional work three transformations, which we call the \redex", \abstraction",and \rigid-rigid" transformations. The idea in each of these transformations is to either



1.3. OVERVIEW OF THE THESIS 7show nonuni�ablity or to replace a chosen disagreement pair (pair of terms or types be-ing uni�ed) with a �nite collection of simpler disagreement pairs. These cases correspondroughly to Huet's SIMPL phase [36]. The �nal transformation deals with \exible-rigid"disagreement pairs. In this case we deduce a useful constraint on the possible uni�ers of thechosen disagreement pair. We then show how to use this constraint to instantiate the uni�-cation problem into a �nite collection of alternate uni�cation problems. This transformationcorresponds to Huet's MATCH phase. Each of the transformations is proved valid, and thecollection is proved complete. They thus de�ne an algorithm for enumerating �CSPs, asdescribed in Chapter 3.The value of pre-uni�cation in �! is that solved disagreement sets (ones containing onlyexible-exible pairs) are always uni�able, and so pre-uni�ability implies uni�ability [36].By making vital use of our de�nition of acceptability, we can generalize Huet's constructiveproof of this fact to acceptable solved-form uni�cation problems in ��. For the simply typedsubset of ��, the substitution that we construct specializes to Huet's.Finally we demonstrate an application of our uni�cation algorithm, to perform automatic\term inference". This problem has two important applications. One is making our uni�-cation algorithm more widely applicable. The other is to provide automatic type inferencein encoded languages, as described in Chapter 7. As in many type inference algorithms,the basic idea is to combine type-checking and uni�cation, in this case, HOU�. A similarproblem is dealt with by Coquand and Huet [12, 33] and by Pollack [61] under the name of\argument synthesis".We reported on a slightly di�erent algorithm for HOU� in [18].Pym has reported an independent development of an algorithm for HOU� as well [64].1.3.4 ProductsChapter 5 extends the pre-uni�cation algorithm developed in the previous chapter to thecalculus \���", which is �� enriched with a dependent version of Cartesian product types,often called \strong sum types", or simply \� types". We begin by presenting the extensionsto the language, notion of substitutions, conversion rules, and the new weak head normalform. We then develop decomposition methods analogous to those of the previous chapter.Interestingly, the rule of surjectivity for pairs turns out to play a role similar to that of �.With the exception of the exible-rigid case, the transformations are quite similar to theones for HOU�, using the new decomposition methods. The exible-rigid case uses the samebasic ideas as in HOU�, but there are some interesting di�erences. It is also simpli�ed bythe addition of a new transformation for eliminating pair-producing uni�cation variables.



8 CHAPTER 1. INTRODUCTION1.3.5 PolymorphismChapter 6 extends the pre-uni�cation algorithm for ��� to a calculus \����" with implicitpolymorphism, i.e., type variables but no explicit type abstraction, and a very limited formof type application. The resulting algorithm is incomplete, but quite useful.The transformations for handling weak head redices, abstraction and pairs, and pair-producing variables carry over unchanged from the previous chapter. The only change inthe rigid-rigid transformation is the need to handle the type arguments of polymorphicconstants. It is worth pointing out here that the analysis is greatly simpli�ed by our use ofweak head normal form instead of the long normal form. There is now a exible-rigid casefor types as well as terms, but it is simpler and does not cause branching in the search forpre-uni�ers. The exible-rigid case for terms contains the source of incompleteness of ouralgorithm. Considerable experience with applications programmed in �Prolog, which uses ananalogous treatment for uni�cation in �! extended with implicit polymorphism, has shownit to be very useful in practice. For many uni�cation problems of interest, the algorithmdoes indeed construct �CSPs.1.3.6 ApplicationsChapter 7 explores applications of our pre-uni�cation algorithms. These applications all havein common that they use a typed �-calculus as a meta-language, i.e., a calculus in which toencode other languages, which we will call object-languages. The rich structure of a typed�-calculus as opposed to traditional, �rst-order abstract syntax trees allows us to expressrules, e.g., program transformation and logical inference rules, that are more succinct, morepowerful, and easier to reason about. We can then use uni�cation in the meta-language tomechanize application of these rules.We begin by giving some examples of the di�culties in using weak representation for-malisms such as abstract syntax trees. These di�culties include consideration of variablecapturing and shadowing, variable occurrence conditions, contexts, and object-language typ-ing.We then give an example of a representation of a simple typed expression language, anduse it to illustrate our claim that our meta-language term inference algorithm directly yieldsobject-language type inference (in simple enough object-languages). We then extend thelanguage with new constructs, including programs de�ned by mutually recursive functionde�nitions. These extensions show the value of products and implicit polymorphism.Finally, we give several examples of transformation rules for our language, which areeasily expressed because of the rich meta-language, and can be applied automatically byusing HOU���.



Chapter 2The Calculus ��In this chapter, we present the calculus ��. After presenting the syntax of the terms, types,and kinds of ��, we go on to present our somewhat unconventional de�nition of substitutionsand their composition operation. The conversion rules of �� are the � and � rules at thelevel of terms and the level of types. The Church-Rosser property for �� reduction on well-typed terms and types in ��, although generally believed to be true, has not been rigorouslyproved. For the purposes of this thesis, one can either accept it as a working hypothesis, ormodify the de�nition of convertibility, as discussed in this chapter. Finally, we present thetyping rules of the calculus and some of their important properties.2.1 The LanguageThe calculus �� is the one used by the Logical Framework (LF) [30], which itself is derivedfrom members of the AUTOMATH family of languages [15]. The language of terms (called\objects" in [30]) in this calculus has the same structure as the simply typed �-calculus(�!) [8]. In place of simple function types \A!B" we have dependent function types1,\�v:A:B", in which the type B of the result of a function may depend on the value v of theterm to which it is applied. Along with types, there are type families, which are instantiatedby applying them to terms. (They are thus di�erent from, e.g., the type constructors ofML [29], which are instantiated by applying them to types.) Types and type families areclassi�ed by their kind. Letting the meta-variables M and N range over terms, A and B1These are also sometimes called \dependent product types". We prefer to use that term for the � typesintroduced in Chapter 5, which are sometimes called \strong sum types".9



10 CHAPTER 2. THE CALCULUS ��over types (and type families), and K over kinds, the language is as follows:M ::= c constantj v variablej �v:A: M abstractionj M N applicationA ::= c constantj �v:A: B dependent function typej �v:A: B type family formationj AM type family instantiationK ::= Type types of termsj �v:A: K type familyWe will often use the abbreviation \A!B" for \�v:A: B" when v is not free in B, andsimilarly for kinds. As usual, application is left associative, i.e., MM 0M 00 is the sameas (MM 0)M 00. Also, in an abstraction, the scope of the dot reaches to the next closingparenthesis (or the end of the expression). We will sometimes use the meta-variable U torange over terms and types, and occasionally kinds.For the most part, we will ignore the issues of �-conversion (bound variable renaming) andvariable capture. In implementations, we prefer de Bruijn's \nameless" representation [14],in which bound variable occurrences are integers denoting the number of �'s between theoccurrence and its binding �. The mechanics of substitution in this representation aredescribed well in [33, Section 8.3]. For purposes of presentation, however, the conventionalnamed representation is much easier to work with.2.2 SubstitutionSubstitution is a fundamental notion in the study of uni�cation. Our approach is somewhatunconventional, in that we associate every substitution with two sets of variables. Prag-matically, the most important di�erence is the way that composition of substitutions works.Our de�nition has the advantage of eliminating temporary variables, which arise frequentlyin higher-order (and equational) uni�cation. It also eliminates the need for idempotencerequirements.First, we need two preliminary notions:



2.2. SUBSTITUTION 11De�nition 2.1 The set of free variables of a term, type, or kind U , written \F(U)", isgiven by the following. First for terms,F(c) = f gF(v) = fvgF(M N) = F(M) [ F(N)F(�v:A: M) = F(A) [ (F(M) � fvg)then for types, F(c) = f gF(�v:A: B) = F(A) [ (F(B)� fvg)F(AM) = F(A) [ F(M)F(�v:A: B) = F(A) [ (F(B)� fvg)and �nally for kinds F(Type) = f gF(�v:A: K) = F(A) [ (F(K)� fvg)De�nition 2.2 Given a variable set V , the set \�V�" contains just those terms, types, andkinds having free variables in V , i.e.,fU 2 �� j F(U) � V gDe�nition 2.3 Given variables sets V and V 0, the set of substitutions from V to V 0, written\�V 0V ", is the set of functions from V to �V 0� .As a convention, we will use the meta-variable \�", possibly subscripted and/or primed, torange over substitutions.Later, we will introduce the more restrictive notion of a \well-typed" substitution.De�nition 2.4 Given a variable set V , the set of substitutions over V , written �V , is theunion over all variable sets V 0 of �V 0V .Of particular interest are the identity substitutions:De�nition 2.5 For any variable set V , the identity substitution over V , \�idV ", is de�nedby �idV 2 �VV and �idV v = v for all v 2 V .



12 CHAPTER 2. THE CALCULUS ��As is customary, we now extend substitutions to functions over �V� . This extension ismore complicated than in �rst-order languages because of variable binding. We �rst needone technical device:De�nition 2.6 Given variable sets V and V 0, and a variable u 62 V [ V 0, let �+u be theunique member of �V 0[fugV[fug such that�+uv = �v for v 2 V�+uu = uDe�nition 2.7 Given variable sets V and V 0, and a substitution � 2 �V 0V , let � be thefunction from �V� to �V 0� satisfying the following properties. First for terms,�c = c�v = �v if v 2 V�(M N) = (�M) (�N)�(�u:A:M) = �u:�A: �+uM if u 62 V [ V 0The condition in the last case is for simplicity. We can always satisfy it by �-conversion.Then for types, �c = c�(�u:A: B) = �u:�A: �+uB if u 62 V [ V 0�(AM) = (�A) (�M)�(�u:A: B) = �u:�A: �+uB if u 62 V [ V 0Finally, for kinds, �Type = Type�(�u:A: K) = �u:�A: �+uK if u 62 V [ V 02.2.1 CompositionComposition of substitutions is an important operation, and is closely related to compositionof functions.2De�nition 2.8 Given variable sets V and V 0, and substitutions � 2 �V 0V and �0 2 �V 00V 0 ,de�ne �0 � � = �0 � �Note then that �0 � � 2 �V 00V .2We use funtional order composition, i.e., (f � g)x = f (g x).



2.2. SUBSTITUTION 13The following theorem relates this notion of composition with standard notion of func-tional composition:Theorem 2.9 Let � and �0 be as above. Then �0 � � = �0 � �.To prove the theorem, we will �rst need some lemmas:Lemma 2.10 Let � 2 �V 0V , and u; u0 62 V [ V 0, with u 6= u0. Then (�+u)+u0 = (�+u0)+u.Proof: We will show that these substitutions yield the same result when applied to membersof V [ fu; u0 g.� Case v 2 V : (�+u)+u0v = �+uv = �v, by De�nition 2.6. Similarly, (�+u0)+uv = �v.� Case u: (�+u)+u0u = �+uu = u. Also, (�+u0)+uu = u.� Case u0: Dual to the previous case. 2Lemma 2.11 Let � 2 �V 0V , u 62 V [ V 0, and U 2 �V� . Then �+uU = �U .Proof: We prove that for all U , and for V; V 0, such that U 2 �V� , and for all � 2 �V 0V , wehave �+uU = �U . The proof is by structural induction on U . We will only show the casesfor terms, since types and kinds are handled analogously.� Variable v: Let V ,V 0, and � be such that v 2 �V� and � 2 �V 0V . Then v 2 V , so�+uv = �+uv = �v = �v.� Constant c: �+uc = c = �c.� Application (M N):�+u(M N) = (�+uM) (�+uN)= (�M) (�N) by the induction hypothesis (see below)= �(M N)We can apply the induction hypothesis here, since F(M) � F(M N) and F(N) �F(M N).



14 CHAPTER 2. THE CALCULUS ��� Abstraction �u0:A: M : Let V , V 0, and � be such that (�u0:A: M) 2 �V� and � 2 �V 0V ,where we assume u0 62 V [ V 0 [ fug. Then�+u(�u0:A: M) = �u0:�+uA: (�+u)+u0M= �u0:�+uA: (�+u0)+uM by the previous lemma= �u0:�A: �+u0M by the induction hypothesis (see below)= �(�u0:A: M)We may apply the induction hypothesis here, since M 2 �V [fu0g� and �+u0 2 �V 0[fu0gV [fug .2Lemma 2.12 Let � 2 �V 0V and �0 2 �V 00V 0 . Then (�0 � �)+u = �0+u � �+u. (Equivalently, by thede�nition of \�", we have (�0 � �)+u = �0+u � �+u.)Proof: We will show that these substitutions yield the same result when applied to membersof V [ fug.� Case v 2 V : (�0 � �)+uv = (�0 � �)v = �0(�v). Also, �0+u(�+uv) = �0+u(�v) = �0(�v),because of the previous lemma (and since u 62 F(�v) � V 0).� Case u: (�0 � �)+uu = u. Also �0+u(�+uu) = �0+uu = u. 2Proof of Theorem 2.9: By de�nition, �0 � � = �0 � �, so we will show that (�0 � �)U =�0(�U), for all terms, types, and kinds U . Again, we will change the order of universalquanti�ers in the claim, proving that for all U , and for V; V 0; V 00, such that U 2 �V� , and forall � 2 �V 0V and �0 2 �V 00V 0 , we have (�0 � �)U = �0(�U). The proof is by structural inductionon U . Again, we will only show the cases for terms.� Variable v: Let V be such that v 2 �V� , and choose V 0, V 00, � 2 �V 0V and �0 2 �V 00V 0 .Then v 2 V , so (�0 � �)v = (�0 � �)v = �0(�v) = �0(�v).� Constant c: (�0 � �)c = c, by De�nition 2.7. Also, �0(�c) = �0c = c.



2.2. SUBSTITUTION 15� Application (M N): Let V be such that (M N) 2 �V� , and choose V 0, V 00, � 2 �V 0V and� 2 �V 00V 0 . Then M 2 �V� and N 2 �V� , so(�0 � �)(M N) = ((�0 � �)M) ((�0 � �)N)= (�0(�M)) (�0(�N)) by the induction hypothesis= �0((�M) (�N))= �0(�(M N))� Abstraction �u:A:M : Let V be such that (�u:A:M) 2 �V� , and choose V 0, V 00, � 2 �V 0Vand � 2 �V 00V 0 . Then(�0 � �)(�u:A: M) = �u: ((�0 � �)A): (((�0 � �)+u)M)= �u: ((�0 � �)A): (�0+u � �+u)M by the Lemma above= �u:�0(�A): �0+u(�+uM) by the induction hypothesis (see below)= �0(�u:�A: �+uM)= �0(�(�u:A: M))We may use the induction hypothesis since M 2 �V�V [ fug, �+u 2 �V 0[fugV[fug , and�0+u 2 �V 00[fugV 0[fug 2Now that we have proved this close relationship between the two kinds of composition,we will no longer make explicit the di�erence between substitutions and their extensions tooperate on �V� . Thus, we will use \�" in place of \�", \�V 0V " in place of \f � j � 2 �V 0V g",and \�0 � �" in place of \�0 � �". Moreover, we will generally omit the explicit addition of avariable to the domain of a substitution, choosing to write \�", in place of �+u, where the uis clear from the context.2.2.2 NotationAlthough our notion of substitution is not the standard one, we will want to adopt somethinglike the standard notation for writing down substitutions as collections of variable/term pairs.Since many of the substitutions used in practice are the identity on many of the variables intheir domains, we want a notation that will allow these variables to be elided.De�nition 2.13 Given variable sets V and V 0, variables x1; : : : ; xm, and terms M1; : : : ;Mmsuch that fx1; : : : ; xm g � V , V � fx1; : : : ; xm g � V 0, and, for 1 � i � m, F(Mi) � V 0, wewill use \[M1=x1; : : : ;Mm=xm ]V 0V " to mean the unique substitution � 2 �V 0V such that (a) for1 � i � m, �xi =Mi, and (b) for each v 2 V � fx1; : : : ; xm g, �v = v.



16 CHAPTER 2. THE CALCULUS ��2.2.3 Comparison to the Standard Notion of SubstitutionsTo appreciate the advantage of our notion of substitutions over the standard one, one mustunderstand something of how substitutions and composition are used in higher-order (andequational) uni�cation. Uni�ers are constructed incrementally, using free variables as placeholders to be �lled in later via composition. For instance, a uni�er [ g a=x ] might be builtin two steps: �rst we try g y for x where y is a new free variable, and then we try a for y.Expressed as a composition of substitutions this is[ a=y ] � [ g y=x ]However, the conventional meaning given to this composition is [ a=y ; g a=x ]. After com-position, one has to eliminate or explicitly ignore \temporary variables" like y.By keeping track of the contexts involved, he temporary variables are eliminated as soonas they become unnecessary. For instance,[ a=y ]f gfyg � [ g y=x ]fygfxg = [ g a=x ]f gfxgTo make this approach to substitutions computationally useful, we have to show how ingeneral to compute a representation �0 � � from a representation of � and �0.Proposition 2.14 For substitutions given by� = [M1=x1; : : : ;Mm=xm ]V 0V�0 = [M 01=x01; : : : ;M 0m0=x0m0 ]V 00V 0Let �00 = [N1=y1; : : : ; Nn=yn ]V 00Vwhere the set of pairs f hNi; yii j 1 � i � n g isf h�0Mi; xii j 1 � i � m g [ f hM 0j ; x0ji j x0j 2 V � fx1; : : : ; xm g gThen �0 � � = �00Proof: We show (�0 � �)v = �00v for all v 2 V . Consider the possible v 2 V :� If v = xi for 1 � i � m, then �v =Mi, so (�0 � �)v = �0Mi = �00v.� If v = xi 2 V � fx1; : : : ; xm g then �v = v, so (�0 � �)v = �0v =Mi = �00v



2.3. CONVERSION 17� If v 2 V � fx1; : : : ; xm; y1; : : : ; yn g then �v = v and �0v = v, so (�0 � �)v = v = �00v. 2Example 2.15 Given the substitutions� = [ g y=x ]fy;u;v gfx;u;v g�0 = [ a=y ; bw=u ]fv;w gfy;u;v gThen �0 � � = [ g a=x ; bw=u ]fv;w gfx;u;v g2.3 ConversionIn this section, we de�ne the convertibility relation as used in the de�nitions of typing anduni�cation. We start out with the basic reduction relations:De�nition 2.16 The � and � relations for terms and types are the smallest relations satis-fying (�v:A: M)N � [N=v ]M�v:A: M v � M if v 62 F(M)(�v:A: B)N � [N=v ]B�v:A: B v � B if v 62 F(B)Convention 2.17 Given basic reduction relations �1; �2, we will denote their union by\�1�2". For example, \��" is � [ �.These top level relations extend to one-step and multi-step subterm reducing relations, andconvertibility relations:De�nition 2.18 For a relation � on terms and types, the relation !� is given by,U � U 0U !� U 0



18 CHAPTER 2. THE CALCULUS ��and then for kinds, A!� A0�v:A: K !� �v:A0: KK !� K 0�v:A: K !� �v:A: K 0then for types, A!� A0AM !� A0MM !� M 0AM !� AM 0A!� A0�v:A: B !� �v:A0: BB !� B0�v:A: B !� �v:A: B 0and �nally for terms, A!� A0�v:A: M !� �v:A0: MM !� M 0�v:A: M !� �v:A:M 0M !� M 0M N !� M 0NN !� N 0M N !� M N 0De�nition 2.19 The relation !�� is the reexive transitive closure of !�, and $�� is theequivalence closure of !�.This gives us our notion of convertibility:De�nition 2.20 The convertibility relation =� is $���.The following properties will be important:De�nition 2.21 A binary relation � on terms, types, and kinds, is said to be substitutivei� given any U;U 0 such that U � U 0, it is the case that (�U) � (�U 0) for any substitution �.



2.3. CONVERSION 19Proposition 2.22 The reduction relations � and � are substitutive.The proof for the � rule will use the following fact:Lemma 2.23 We have �([N=v ]M) = [ �N=v ](�M).Proof: Simple induction on the structure of M . 2Proof of Proposition 2.22: We will treat only � and � at the level of terms, since thearguments for relations on the level of types is analogous. the Consider � 2 �V 0V . For �, wereason as follows: If M̂ � M̂ 0, then M̂ and M̂ 0 are of the form (�v:A: M)N and [N=v ]Mrespectively (where v 62 V [ V 0). Then�M̂ = �((�v:A: M)N)= (�v:�A: �M) (�N) by De�nition 2.7� [ (�N)=v ](�M)= �([N=v ]M) by the lemma= �M̂ 0Next, if M̂ � M̂ 0, then M̂ and M̂ 0 are of the form �v:A: M v and M respectively, wherev 62 F(M) (and v 62 V [ V 0). Then�M̂ = �(�v:A: M v)= �v:�A: (�M) (�v)= �v:�A: (�M) v since v 62 V� �M since v 62 F(M) and v 62 V 0= �(M̂ 0) 2Proposition 2.24 If �1 and �2 are substitutive, then �1�2 (i.e., �1 [ �2) is substitutive.Proof: Let U;U 0 be such that U�1�2U 0 and let � 2 �V 0V for variables sets V and V 0. Theneither U �1 U 0 or U �2 U 0. Assume the former. By substitutivity of �1, (�U) �1 (�U 0), and so(�U)�1�2(�U 0). Similarly, if U �2 U 0. 2Proposition 2.25 If � is substitutive, then !�, !��, and $�� are substitutive.



20 CHAPTER 2. THE CALCULUS ��Proof: Let U;U 0 be such that U !� U 0 and let � 2 �V 0V for variable sets V and V 0. Wewill prove that (�U) !� (�U 0) by induction on the derivation D of U !� U 0, followingDe�nition 2.18:� If D consists simply of an instance of the �rst rule in De�nition 2.18, then U �U 0, andthe result is immediate from substitutivity of �.� If D ends in an instance of the second rule, then U = �v:A: K, U 0 = �v:A0: K,and there is a subderivation of D ending in A !� A0. By induction, we may assume�A!� �A0. Then �U = �(�v:A: K)= �v:�A: �K!� �v:�A0: �K= �(�v:A0: K)= �U 0� The other cases are all quite similar.Given this, substitutivity of !�� and $�� follows by a simple induction. 2Corollary 2.26 The convertibility relation =� is substitutive.2.4 TypingTo de�ne the typing rules, we will need devices to declare the types and kinds of constantsand the types of variables.De�nition 2.27 A signature is a sequence of pairs associating constants with types or kinds.We write a signature, typically denoted by �, ash c1:A1; : : : ; cn:An i(where here the Ui stand for types and kinds). We write \dom(�)" for the domain f c1; : : : ; cn gof �, and \� � c:U" to mean the result of extending the signature � by adding c:U to theend.



2.4. TYPING 21De�nition 2.28 Similarly, a context is a sequence of pairs associating variables with types(but not kinds). We write a context, typically denoted by �, as[ v1:A1; : : : ; vn:An ]and write \dom(�)" for its domain, and \�� v:A" for its extension. Occasionally, we willalso use \ran(�)" for the range A1; : : : ; An of �.Following [30], we then de�ne �ve judgments:De�nition 2.29 The �ve basic typing judgments are de�ned below. We read (a) \` � sig"as � is a valid signature, (b) \`� � context" as � is a valid context given �, (c) \ � `�K kind" as K is a valid kind given � and �, (d) \� `� A 2 K" as A has kind K given �and �, and (e) \ � `� M 2 A" as M has type A given � and �. The typing rules below aretaken from [30], and depend on the notions of substitution and of convertibility.3Signatures ` h i sig` � sig [ ] `� K kind c 62 dom(�)` �� c:K sig` � sig [ ] `� A 2 Type c 62 dom(�)` � � c:A sigThus valid signatures assign types and kinds to distinct constants, and these types and kindsmust be valid in the part of the signature preceding their use.Contexts ` � sig`� [ ] context`� � context � `� A 2 Type v 62 dom(�)`� �� v:A contextThus valid contexts assign types (but not kinds) to distinct variables, and these types mustbe valid in the current signature and the part of the context preceding their use. Also, notethat no context is valid in an invalid signature.3This dependence is why we presented substitution and conversion before typing.



22 CHAPTER 2. THE CALCULUS ��Kinds `� � context� `� Type kind� `� A 2 Type �� v:A `� K kind� `� �v:A: K kindNote that no kind is valid in an invalid context.Types `� � context c:K 2 �� `� c 2 K� `� A 2 Type �� v:A `� B 2 Type� `� �v:A: B 2 Type� `� A 2 Type �� v:A `� B 2 K� `� �v:A: B 2 �v:A: K� `� A 2 �v:B: K � `� M 2 B� `� AM 2 [M=v ]K� `� A 2 K � `� K 0 kind K =� K 0� `� A 2 K 0Note that there is no ambiguity in the �rst rule. If � contained two di�erent kind assignmentsfor c, then � would not be a valid signature, so � would not be a valid context with respectto �. In the last rule, the condition \� `� K 0 kind" is necessary because a valid kind can beconvertible to an invalid one.Terms `� � context c:A 2 �� `� c 2 A`� � context v:A 2 �� `� v 2 A� `� A 2 Type � � v:A `� M 2 B� `� �v:A: M 2 �x:A: B� `� M 2 �v:A: B � `� N 2 A� `� M N 2 [N=v ]B� `� M 2 A � `� B 2 Type A =� B� `� M 2 BAgain, there is no ambiguity in the rules for typing constants or variables.



2.4. TYPING 23Proposition 2.30 In any context, every term has at most one type, modulo convertibility.More precisely, given a context �, term M and types A;A0, if � `� M 2 A and � `� M 2 A0,then A =� A0. Similarly for types and their kinds.Proof: The reason is that to any term, only two rules might apply, one of which is theconversion rule. Moreover, the other rule, speci�c to the given form of term assigns at mostone type. For instance, consider an application M N in a context �. A typing derivationfor M N must end in an instance of the application typing rule, followed by zero or moreinstances of the conversion typing rule. Let the following be the instance of the applicationtyping rule: � `� M 2 �v:A: B � `� N 2 A� `� M N 2 [N=v ]BBy induction on the structure of the terms being typed, we may assume that every type ofM in � is convertible to �v:A: B, and every type of B in � is convertible to A. Therefore,every typing ofM N must end in this same instance, modulo convertibility, of the applicationtyping rule, followed by some number of type conversions, and hence concludes in a type forM N that is convertible with [N=v ]B. 2We will have use of some simple properties of this calculus. Many of these properties areproved in [30] for a very similar calculus based on � convertibility.Proposition 2.31 (Strengthening) If (a) �1 � �2 `� M 2 A, (b) v 62 dom(�1 � �2), and(c) �1 `� A 2 Type, then �1 � v:A� �2 `� M 2 A. Similarly for types and their kinds.Proof: Simple induction on the derivation of �1 � �2 `� M 2 A. 2Proposition 2.32 (Weakening) If (a) �1 � v:A� �2 `� M 2 B, and (b) �1 `� N 2 A,then �1 � [N=v ]�2 `� [N=v ]M 2 [N=v ]BProof: The proof is by induction on the derivation D of �1� v:A��2 `� M 2 B, makinguse of the derivation DN of �1 `� N 2 A. The idea is to replace every use of the typing v:Ain D by DN . As usual, we only treat the case of terms.



24 CHAPTER 2. THE CALCULUS ��� If D consists of the rule for typing variables, then either M = v, M 2 dom(�1), orM 2 dom(�2). If M = v, then [N=v ]M = N , and B = A. Also v 62 dom(�1) andF(A) � dom(�1), so [N=v ]A = A. But we already know that �1 `� N 2 A. Ifv 2 dom(�1), then [N=v ]M = M and [N=v ]B = B (since again, F(B) � dom(�1)).Otherwise, for some variable u and type C,M = u and u:C 2 �2. Then, [N=v ]M = u,and u: [N=v ]C 2 [N=v ]�2, so the result follows.� If D ends in a constant typing then the treatment is similar to the above.� If D ends in an instance of the application typing rule, then M is an applicationM̂ N̂ and B = [ N̂=v ]B̂, where D contains subderivations of (a) �1 � v :A � �2 `�M̂ 2 �v0: Â: B̂ and �1 � v : A � �2 `� N̂ 2 Â. By induction, we may assume that(a) �1 � [N=v ]�2 `� [N=v ]M̂ 2 [N=v ](�v0: Â: B̂), and (b) �1 � �2 `� [N=v ]N̂ 2[N=v ]Â. However, [N=v ](�v0: Â: B̂) = �v0: [N=v ]Â: [N=v ]B̂, so by the applicationtyping rule, �1 � [N=v ]�2 `� ([N=v ]M̂) ([N=v ]N̂) 2 [ ([N=v ]N̂ )=v0 ]B̂. Then, since([N=v ]M̂) ([N=v ]N̂) = [N=v ]M , and [ ([N=v ]N̂)=v0 ]B̂ = ([N=v ] � [ N̂=v0 ])B̂ =[N=v ]B, the result follows.� The abstraction typing case is similar.� Finally, assume that D ends in an instance of the conversion typing rule. Then D hasa subderivation of �1 � v:A� �2 `� M 2 B0, where �1 � v:A� �2 `� B0 2 Type, andB0 =� B. By the induction hypothesis then, we may assume that (a) �1� [N=v ]�2 `�[N=v ]M 2 [N=v ]B0, and (b) �1 � [N=v ]�2 `� [N=v ]B0 2 Type. (The latter holdsbecause [N=v ]Type = Type.) However, since B0 =� B, we have [N=v ]B 0 =� [N=v ]Bby Corollary 2.26, so the result follows by the conversion typing rule. 2We will also need a variant of weakeningProposition 2.33 If (a) �1 � v:A� �2 `� M 2 B, and v 62 F(�2) [ F(M) [ F(B), then�1 � �2 `� M 2 B.Proof: Similar to the previous proposition. We cannot simply appeal to that proposition,however, since there might not exist a term N such that �1 `� N 2 A. 2Proposition 2.34 If � `� M 2 A then � `� A 2 Type, and if � `� A 2 K then � `�K kind.



2.4. TYPING 25Proof: Simple induction on the derivation of � `� M 2 A or � `� A 2 K, using weakeningin cases the derivation ends in an instance of the term or type application rule. 22.4.1 Typing and ConversionFor �!, it is well known that !�� has the strong normalization (SN) and Church-Rosser(CR) properties for well-typed terms, guaranteeing the existence and uniqueness of normalforms[63]. For well-typed terms in ��, SN is fairly simple to show [30, Theorem A.7]. TheCR property for �� with � as well as � has, for some time, been generally believed to betrue. This conjecture has only recently been veri�ed and the proof is quite complex [68].The importance of CR, together with the strong normalization property (SN) is that theyreduce the question of convertibility (of well-typed terms and types) to equivalence (modulo�-conversion) of normal forms. An alternative to relying on CR for !�� would be to usejust !�, for which CR has been shown (even for ill-typed terms) [30]. The algorithm wedevelop in Chapter 4 could be modi�ed to perform uni�cation for this calculus by followingthe reasoning behind Huet's � uni�cation algorithm for �!. However, this does not seemworthwhile, because the � rule is necessary for language representation, on which mostapplications of interest depend.As another alternative to relying on CR, we could rede�ne convertibility in terms of aparticular deterministic process of comparing terms. This process is de�ned and discussedin Section 4.2. Then our uni�cation procedure is guaranteed correct with respect to thisnotion of convertibility. The CR conjecture (together with SN) implies that this notion isequivalent to the conventional notion of convertibility.Another important property is the following:De�nition 2.35 A relation � on �� is said to preserve typing i� for any �, M , M 0, andA, if � `� M 2 A and M �M 0, then � `� M 0 2 A, and similarly for types and their kinds.Proposition 2.36 (\Subject reduction") The reduction relations � and � preserve typing.We will �rst need a lemma:Lemma 2.37 If � `� �v:A: M 2 C and C =� �v:A0: B0, then (a) A =� A0, and (b)� � v:A `� M 2 B0. Similarly for types and kinds.



26 CHAPTER 2. THE CALCULUS ��Proof: Consider a derivation D of � `� �v:A: M 2 C, where C =� �v:A0: B0. The onlytwo possible �nal rules are the abstraction and type conversion ones.� If D ends in an instance of the conversion rule, then it contains a subderivation of� `� �v:A:M 2 C 0 for some C 0 such that � `� C 0 2 Type, and C 0 =� C, so that C 0 =��v:A0: B0. By derivation induction, we have (a) A =� A0, and (b) �� v:A `� M 2 B0,which is what we are proving.� If D ends in an instance of the abstraction rule, then C itself is of the form �v:A:B, sopart (a) is immediate. Part (b) is also immediate because D contains a subderivationof � � v:A `� M 2 B. 2Now we can prove that � and � preserve typing.Proof of Proposition 2.36: We will begin with � and will only treat the term cases, sincethe type cases are analogous. Assume that there is a derivation D of � `� (�v:A:M)N 2 Cfor some type C. There are two cases to consider:� AssumeD ends in an instance of the conversion typing rule. Then D has subderivationsof (a) � `� (�v:A: M)N 2 C 0 and (b) � `� C 0 2 Type, where C 0 =� C. By derivationinduction, we may assume that � `� [N=v ]M 2 C 0. However, we can then use theconversion rule again to conclude � `� [N=v ]M 2 C.� Assume D ends in an instance of the application typing rule. Then for some A0 andB, C has the form [N=v ]B, and D contains subderivations of (a) � `� �v:A: M 2�v:A0: B, and (b) � `� N 2 A0. By the lemma above, we know that A =� A0, so� `� N 2 A, and � � v : A `� M 2 B, so that, by weakening (Proposition 2.32),� `� [N=v ]M 2 [N=v ]B,i.e., � `� [N=v ]M 2 C.For �, there are again two cases, this time depending on whether the derivation D of� `� �v:A: M v 2 C ends in an instance of the conversion or abstraction typing rule.The reasoning in the conversion rule case is exactly as above. Otherwise, C has the form�v:A: B and D contains a subderivation DM v of � � v : A `� M v 2 B. Recall that wewant to show � � v:A `� M 2 �v:A: B, from which we will conclude by Proposition 2.33that � `� M 2 �v:A: B since v =2 F(M) and v 62 F(�v:A: B). Again there are two cases,depending on whether DM v ends with an instance of the conversion or application typingrule. The conversion case is handled as usual. Otherwise, there are subderivations of DM vof the form (a) � � v : A `� M 2 �v0:A0: B0 and (b) � � v : A `� v 2 A0, and we have



2.4. TYPING 27B = [ v=v0 ]B0. Therefore, A =� A0, and so � � v:A `� M 2 �v0:A: B 0. However, �v0:A: B 0is �-equivalent to �v:A: B, since B = [ v=v0 ]B0, so the result follows by weakening. 2Proposition 2.38 If the relations �1 and �2 preserve typing, then �1�2 (i.e., �1 [ �2) does.If � preserves typing, then !� and !�� do.Proof: The �rst claim is immediate, since M�1�2M 0 i� M �1 M 0 or M �2 M 0. The secondfollows by induction on the derivation of M !� M 0 and the third follows by induction onthe number of !� steps. 2However, it is not necessarily the case that $�� preserves typing.Example 2.39 Consider a signature � containing type constants i; o, and a term constantc: i. Then (�x:o: x) c!� c, and so c$�� (�x:o: x) c, but (�x:o: x) c is ill-typed.On the other hand, we do have the following:Proposition 2.40 Assume that � preserves typing, and that!� is CR on well-typed terms,and let U and U 0 be well-typed terms or types such that U $�� U 0. Then U and U 0 have thesame type or kind.4Proof: By CR, there is some Û such that U !�� Û and U 0 !�� Û . By Proposition 2.38however, Û has the same type or kind as both U and U 0 and therefore U and U 0 have thesame type or kind. 22.4.2 Well-typed SubstitutionsIn uni�cation over a typed calculus, we are given not just the set of variables to be instan-tiated during uni�cation, but also their types, i.e., the types of the terms that must beassigned to these variables.4More precisely, any type or kind that U has, U 0 also has. This distinction becomes important in calculilike that of Chapter 5, which do not have unique typing.



28 CHAPTER 2. THE CALCULUS ��De�nition 2.41 For contexts � and �0, the set of well-typed substitutions from � to �0,written \��0� ", is the set of � 2 �dom(�0)dom(�) such that for any variable v and type B,v : B 2 � ) �0 `� �v 2 �B(Note that we do not assume � to be valid, but that the validity of �0 is implied by thiscondition if � is nonempty, since, by the typing rules, no term has a type in an invalidcontext.)De�nition 2.42 For a context �, the set of well-typed substitutions over �, written \��",is the union over all contexts �0 of ��0�



Chapter 3An Approach to Uni�cationIn this chapter, we present our approach to uni�cation. Although several details are calculus-dependent, the properties used are quite weak and apply to the calculi in later chapters aswell as other problems, e.g., equational uni�cation. A related approach, by Snyder and Gal-lier, for HOU!, (uni�cation in the simply typed �-calculus, �!), and equational uni�cation,is presented in [70, 69], which was itself inspired by the work of Martelli and Montanari [41].However, as discussed below, unlike these works, our approach makes the important dis-tinction between two kinds of \nondeterminism" present in the search for uni�ers. Thisdistinction is necessary to formulate an algorithm for enumerating complete and minimalsets of solutions (as de�ned in this chapter).3.1 The Speci�cationOur formulation of higher-order uni�cation is a generalization of the usual formulation,designed for exposition of the algorithm.De�nition 3.1 For a context �, a disagreement pair over � is a triple h	 ; U; U 0i, where Uand U 0 are both terms or both types, 	 is a \universal context", typing those variables not tobe substituted for, such that dom(�) \ dom(	) = f g, and all of the variables occurring in Uand U 0 are in dom(�)[dom(	).1 We will use the meta-variable P to range over disagreementpairs.1There is no conceptual di�culty in allowing kind disagreement pairs as well, but it does not appear tobe useful. 29



30 CHAPTER 3. AN APPROACH TO UNIFICATIONThe uni�cation context � and the universal context 	 serve quite di�erent purposes here:� serves to enumerate and provide types for the variables that may be instantiated duringuni�cation, while 	 enumerates and provides types for the variables that are not subjectto instantiation. These latter, universal, variables arise because at a certain point in eachof our algorithms, binding constructs are removed, e.g., an abstraction term �v:A: M isreplaced by M . The 	's record the types of these variables, which would otherwise be lost.2In contrast, Huet's presentation [36] maintains explicit � abstractions, which accumulateduring execution of his algorithm. A potential disadvantage of our approach is that witha traditional representation for the calculus that uses variable names, we would have toperform �-conversion, before removing binding constructs. This disadvantage is removed byadopting de Bruijn's index based representation [14].De�nition 3.2 A disagreement set over � is a �nite multiset of disagreement pairs over �.3We will use the meta-variable D to range over disagreement sets.De�nition 3.3 A uni�cation problem is a triple h�; �0;Di consisting of a context �, asubstitution �0 2 �dom(�)dom(�0) for some context �0, and a disagreement set D over �. We willuse Q to range over uni�cation problems.Usually one presents uni�cation as taking simply a pair of terms having some free variables.The extra complexity here is motivated by the transformation-based framework developedin this chapter. In practice, one begins with an initial uni�cation context, �, the identitysubstitution, �id� , over �, and a single disagreement pair, h[ ] ; M; M 0i whose free variables areall contained in dom(�). Then, in a search process described in general terms later in thischapter, progress is made incrementally towards uni�ers. In this process, substitutions areperformed (as in Huet's MATCH phase), and disagreement pairs are decomposed into setsof disagreement pairs (as in Huet's SIMPL phase). We compose the individual substitutionsleading toward a uni�er and keep them as the �0 component of a uni�cation problem. Bycomparison, in [36], the individual substitutions are kept in the edges of a \matching tree".We do not wish to emphasize this di�erence, as it seems to be mostly one of convenience ofpresentation.An important point here, which we will discuss in detail later, is that we do not assumethat �0 is well-typed, and thus we say �0 2 �dom(�)dom(�0) rather than �0 2 ���0 . Similarly, we donot say in this de�nition that the disagreement pairs in D relate well-typed terms or typesof the same type or kind. There is however a somewhat weaker condition which we will2In fact, the 	's are used only in the proofs and are never examined by the algorithm itself. They couldthus be removed as an optimization.3We will use conventional set-like notation for these multisets, with the exception of using ] instead of[.



3.1. THE SPECIFICATION 31call \acceptability" of a uni�cation problem Q, written \A(Q)". This condition is requiredand maintained as an invariant by the uni�cation process described in general terms in thischapter and speci�cally in later chapters. There we will also show how to initially establishthe invariant. The meaning of acceptability is not made precise until De�nition 4.38, sinceit involves technical details developed in Chapter 4. As an approximation, the reader maythink of acceptability as saying that all of the disagreement pairs relate well-typed terms ortypes of the same type or kind.De�nition 3.4 Given a context �, a substitution � 2 ��, and a disagreement pair P =h	 ; U; U 0i over �, we say that � uni�es P i� �U =� �U 0. For a disagreement set D over �,we say that � uni�es D i� � uni�es every P 2 D.Given a uni�cation problem h�; �0;Di, we are interested in the result of composing �0(representing what has already been learned about the original uni�cation problem) withwell-typed uni�ers of D.De�nition 3.5 The set of solutions of a uni�cation problem h�; �0;Di isU(h�; �0;Di) = f �̂ j 9�: �̂ =� � � �0 ^ � 2 �� ^ � uni�es D gIn general, to avoid confusion, we will use �̂ to refer to potential solutions of uni�cationproblems, and � for potential unifying substitutions, where for a given �0, �̂ =� � � �0.Note that when �0 is an identity substitution and D is of the form fh[ ] ; M; M 0ig, we havethe usual problem of simply unifying two terms (except for the additional well-typednesscondition on �). An important use of U isDe�nition 3.6 A uni�cation problem Q has a solution i� U(Q) 6= f g.In the problem of �rst-order uni�cation, it is well known that when two terms have auni�er, they have a most general uni�er (MGU), of which all other uni�ers are instances. (Inparticular, every MGU is an instance of every other MGU, so in that sense they are unique.)There are many e�cient algorithms to decide whether a �rst-order uni�cation problem hasa uni�er, and if so, to produce an MGU. (See [39] for a survey.)With higher-order uni�cation (and equational uni�cation), MGUs no longer exist. How-ever, we can still look for a complete set of uni�ers (CSU), whose instances forms the set ofall uni�ers [20]. One would also like to have the property of minimality (non-redundancy),saying that the enumerated uni�ers have no instances in common. However, as shown in [34],even for �!, it is not generally possible to enumerate minimal CSUs.



32 CHAPTER 3. AN APPROACH TO UNIFICATIONHuet's idea of pre-uni�cation [34] (implicit in [36]) solved this di�culty. For this, weneed the notion of a uni�cation problem being in solved form. (We have borrowed thisterm from [70].) The precise meaning of this property varies from one calculus to anotherand is motivated by considerations in developing the pre-uni�cation algorithms. The precisemeaning of this property will be given as De�nition 4.46. For now we need only the following:Assumption 3.7 The solved form property satis�es1. It is decidable whether a uni�cation problem is in solved form.2. A uni�cation problem whose disagreement set is empty is in solved form.3. Every acceptable uni�cation problem in solved form has a solution.For us, a \pre-uni�er" is not a substitution, but rather a special kind of uni�cationproblem:De�nition 3.8 A uni�cation problem Q0 is a pre-uni�er of a uni�cation problem Q i�U(Q0) � U(Q) and Q0 is in solved form.An important property of pre-uni�cation isProposition 3.9 An acceptable uni�cation problem has a solution i� it has a pre-uni�er.Proof: Let Q = h�; �0;Di be a uni�cation problem, and assume that Q has a solution�̂ 2 ��0�0. Then, by the substitutivity property of convertibility (Proposition 2.25), andpart 2 of Assumption 3.7, h�0; �̂; f gi is a pre-uni�er of Q. Next, assume that Q has a pre-uni�er Q0. Since Q0 is in solved form, it has a solution �̂ by part 3 of Assumption 3.7, butU(Q0) � U(Q), so �̂ is also a solution of Q. 2Given a uni�cation problem, we will want to compute a representative subset of itsuni�ers, in the following sense:De�nition 3.10 Let Q be a uni�cation problem and Q be a set of uni�cation problems.Then Q is a minimal complete set of pre-uni�ers (�CSP) of Q i�1. Every Q0 2 Q is acceptable.2. Every Q0 2 Q is a pre-uni�er of Q (i.e., it is in solved form and U(Q0) � U(Q)).3. Q is complete with respect to Q, i.e., for any solution �̂ of Q, there is a Q0 2 Q suchthat �̂ 2 U(Q0).4. Q is minimal, i.e., for any two distinct members Q0; Q00 of Q, U(Q0) \ U(Q00) = f g.



3.2. TRANSFORMATIONS ON UNIFICATION PROBLEMS 333.2 Transformations on Uni�cation ProblemsThe uni�cation algorithms in the following chapters are presented as collections of (nonde-terministic) transformations on uni�cation problems. This allows us, for the most part, toignore issues of control structure and focus on the main ideas. The transformations mapuni�cation problems to sets of uni�cation problems, preserving sets of uni�ers. The goal ofthe transformations is to eventually construct only pre-uni�ers.De�nition 3.11 A transformation is a relation between uni�cation problems and �nite setsof uni�cation problems.De�nition 3.12 Let Q be an acceptable uni�cation problem and Q be a set of uni�cationproblems. We say that the transition \Q 7! Q" is� acceptable i� every Q0 2 Q is acceptable,� correct i� U(Q) = SQ02Q U(Q0),� minimal i� for any two distinct Q0; Q00 2 Q, U(Q0) \ U(Q00) = f g, and� valid i� it is acceptable, correct, and minimal.De�nition 3.13 A transformation � is acceptable, correct, minimal, or valid, if for anyacceptable uni�cation problem Q, and set of uni�cation problems Q such that Q � Q, thetransition Q 7! Q is respectively acceptable, correct, minimal, or valid.A simple but useful fact isProposition 3.14 The union of acceptable, correct, minimal, or valid transformations isrespectively an acceptable, correct, minimal, or valid transformation.Proof: Trivial from De�nition 3.13. 2



34 CHAPTER 3. AN APPROACH TO UNIFICATION3.3 Algorithms from TransformationsGiven a collection of transformations, we will now describe a search process that operateson a set of uni�cation problems and enumerates a set of pre-uni�ers. Informally, the processgoes as follows: If there are no uni�cation problems left, stop. Otherwise, choose a uni�cationproblem to work on next. If it is in solved form, output it as a pre-uni�er. Otherwise, applyone of the transformations, in some way, to replace the uni�cation problem by a �nite set ofnew uni�cation problems. Then continue.Note that two kinds of choices are made in this process. First, there is the choice of whichuni�cation problem to work on next, and second, there is the choice of which transformationto apply and how to apply it. It turns out that the second kind of choice may be madecompletely arbitrarily, but, in order to have completeness, the �rst kind must be done in afair way.4 As pointed out in [36], this allows for various strategies. Huet formulated thisdi�erence by constructing \matching trees", in which the nodes are disagreement sets andthe edges are substitutions, and then showed that all matching trees are complete. Hispre-uni�ers are constructed by composing substitutions along edges that form a path fromthe original disagreement set to one in solved form. In our formulation, these composedsubstitutions are part of the uni�cation problem.De�nition 3.15 For a transformation � and a uni�cation problem Q, a � search tree fromQ is a (possibly in�nite) tree T of uni�cation problems such that� The root of T is Q.� For every node Q0 in T , the set of children of Q0 in T is either empty if Q0 is in solvedform, or is some Q satisfying Q0 �Q if Q0 is not in solved form.De�nition 3.16 For a transformation �, we de�ne the relation ��� as follows: Q ��� Q i�there is some � search tree from Q whose set of solved form nodes is Q.We will want our combined transformations to be su�cient to �nd any uni�er, in the followingsense:De�nition 3.17 A transformation relation � is complete i� for any acceptable uni�cationproblem Q and any Q such that Q���Q, and any �̂ 2 U(Q), there is some Q0 2 Q such that�̂ 2 U(Q0).4In implementation terms, this means that we can use e.g., breadth-�rst search or depth-�rst search withiterative deepening, but not simple depth-�rst search.



3.3. ALGORITHMS FROM TRANSFORMATIONS 35We can then show the followingProposition 3.18 Let � be any valid complete transformation relation, Q be an acceptableuni�cation problem, and Q be any set of uni�cation problems such that Q ���Q. Then Q isa �CSP of Q.Proof: The completeness requirement (part 3 of De�nition 3.10) is immediate from De�-nition 3.17.5 To see why the other three requirements are satis�ed, let T be a � search tree,the set of whose solved form nodes is Q, and let Q0 2 Q, so that Q0 lies on some path inT (of �nite length) from Q. For each parent and child, Qp and Qc, in T , if A(Qp), then(a) A(Qc) (by the acceptability of �), and (b) we have U(Qc) � U(Qp) (by correctness of�). Thus, by induction on path length, (a) U(Q0) � U(Q), and (b) A(Q0). But also, Q0 isin solved form by de�nition of ���, so Q0 is a pre-uni�er. The remaining condition, mini-mality of Q, follows from minimality of �: Let Q0; Q00 be distinct members of Q. Then Q0and Q00 have a common ancestor Qa in T that is a descendant of all of the other commonancestors of Q0; Q00. Then there are distinct children Q0c; Q00c of Qa, which are ancestors ofQ0 and Q00 respectively. By minimality of �, U(Q0c) \ U(Q00c ) = f g. But U(Q0) � U(Q0c) andU(Q00) � U(Q00c ), so U(Q0) \ U(Q00) = f g. 2The following will be useful in proving completeness.De�nition 3.19 Let � be a transformation relation, and assume that for any substitution�̂ there is a well founded ordering \��̂" such that for any acceptable uni�cation problem Qwith �̂ 2 U(Q), and set of uni�cation problems Q0, with Q �Q0, and any Q0 2 Q0, we haveQ ��̂ Q0. Then we say that � is decreasing.Proposition 3.20 Every correct, acceptable, decreasing transformation relation is complete.Proof: Let � be a correct, acceptable, decreasing transformation relation, and let Q be anacceptable uni�cation problem with �̂ 2 U(Q), and Q be such that Q ��� Q. We will showthat there is a Q�̂ 2 Q such that �̂ 2 U(Q�̂). Using the de�nition of ���, let T be a � searchtree from Q whose set of solved form nodes is Q. Consider a sequence, �nite or in�nite,of uni�cation problems Qi de�ned as follows. Let Q0 = Q. Then for a given Qi, if Qi isnot in solved form, let Qi+1 be a child of Qi in T such that �̂ 2 U(Qi+1). (It exists and isacceptable, by induction, given the correctness and acceptability of �, and is unique if � isminimal.) Then Q0 ��̂ Q1 ��̂ � � �, and since ��̂ is a well founded ordering, the sequence is�nite, ending with some Qn. But then Qn 2 Q and �̂ 2 U(Qn). 25If � were not assumed to be complete, we could take it to be the trivially valid transformation thatrelates every uni�cation problem Q to the set fQg.



Chapter 4A Pre-uni�cation AlgorithmIn this chapter we develop an algorithm for HOU� in the framework established in Chapter 3,i.e., as a collection of transformations on uni�cation problems. The algorithm we end upwith is quite similar to Huet's algorithm for HOU!, and in fact behaves almost exactly thesame on the subset of �� corresponding to �!. However, there are considerable technicaldi�culties in the justi�cation of the algorithm that do not arise in HOU!.We begin by presenting a useful normal form, the � weak head normal form, and thenuse it to reduce convertibility of terms or types to convertibility of simpler terms or types.Next we point out some of the complications arising in HOU� that are not present in HOU!.In particular, we are forced to deal with ill-typed terms. These considerations serve to mo-tivate the development of our algorithm and, in particular, the de�nition of \acceptability",an invariant maintained by the transformations, constraining the ill-typedness present inuni�cation problems. We then go on to develop a collection of transformations that su�cefor pre-uni�cation. The next two sections prove completeness of the set of transformations,and uni�ability of solved form uni�cation problems. Finally, we show how our algorithmallows for a simple type checking/\term inference" algorithm. This problem is not onlyuseful in its own right, but also allows for performing uni�cation on terms that may becomewell-typed only after substitution.4.1 Weak Head Normal FormsConvertibility, as de�ned in Section 2.3 is an undirected notion. However, the CR and SNproperties allow us to replace convertibility by reducibility to common normal form. Inhigher-order uni�cation, we are considering convertibility after substitution, and as we willsee, it is su�cient to normalize just enough to reveal the ultimate \top level structure" ofthe fully normalized term. 36



4.1. WEAK HEAD NORMAL FORMS 37The reduction rules � and � will turn out to play quite di�erent roles. Our use of � ismore in the spirit of extensionality than reduction.De�nition 4.1 The (�) weak head reduction relation \wh�" is a restriction of!�, applying� only \at the head": U � U 0U wh� U 0where U and U 0 range over terms and types. Then for types,Awh� A0AM wh� A0Mand then for terms, M wh� M 0M N wh� M 0NAdditionally, we de�ne a weak head redex to be any term or type U such that there is someU 0 for which U wh� U 0.Example 4.2 The following weak head reductions hold (using the �rst and third rules re-spectively): (�x: i: c (cx)) b wh� c (c b)((�x: i: c (cx)) b) b wh� c (c b) bNote that another way of expressing wh� would be to say(�v:A: M̂)N N1 � � �Nn wh� ([N=v ]M̂)N1 � � �Nn(�v:A: B̂)N N1 � � �Nn wh� ([N=v ]B̂)N1 � � �Nnfor n � 0. The form we have chosen extends better to the calculus of the next chapter.Proposition 4.3 If U wh� U 0 then U !� U 0.Proof: A simple induction of the derivation of U wh� U 0. 2Corollary 4.4 wh� preserves typing.Proposition 4.5 wh� is substitutive.



38 CHAPTER 4. A PRE-UNIFICATION ALGORITHMProof: Again, a simple induction on the derivation of U wh� U 0, this time using the substi-tutivity of �, and the distributive properties of substitution with respect to application. 2De�nition 4.6 A term or type U is in (�) weak head normal form (WHNF) i� there is noU 0 such that U wh� U 0.We now focus on a subset of the WHNF terms and types:De�nition 4.7 A body is a WHNF term or type (not necessarily well-typed) that is not anabstraction.Proposition 4.8 A well-typed term body (i.e., a body at the level of terms) is either� a variable,� a constant, or� M N for a well-typed body M ,1and a well-typed type body is either� a type constant,� �v:A: B, or� AM for a well-typed body A that is not a � type.Proof: Follows easily from De�nitions 4.6 and 4.1. The restriction of well-typedness insuresthat, in AM , A is not a � type. 2The following will be convenient:De�nition 4.9 An atom is a term constant or variable.De�nition 4.10 An atomic type is one of the form cN1 � � �Nn for some c; n, and N1; : : : ; Nn.Then the previous proposition can be restated to say that (a) a well-typed term body hasthe form aM1 � � �Mm for some atom a, and (b) a type body is either a � type or an atomictype.1Of course, N is also well-typed, but we want to emphasize that this proposition applies recursively toM .



4.2. SOME USEFUL PROPERTIES OF CONVERTIBILITY 394.2 Some Useful Properties of ConvertibilityThe development of our algorithm is divided into two main parts. In this section, we presentthe �rst part, which consists of revealing some useful properties of convertibility (as opposedto uni�ability). The properties will play a key role in the second part of the development,which forms and justi�es of the transformations that make up the pre-uni�cation algorithm..We will construct various methods by which to decompose questions of convertibility ofpairs of terms or types to convertibility of \simpler" pairs. It will be convenient even atthis stage to use disagreement pairs, even though we are dealing with conversion and notuni�cation. First, the following de�nitions will be useful.De�nition 4.11 Given a substitution � 2 �V 0V and a universal context 	 = [ v1:A1; : : : ; vn:An ],by \�	" we mean the context [ v1:�A1; : : : ; vn:�An ]2. For simplicity, we assume that f v1; : : : ; vn gis disjoint from V [ V 0. Similarly for uni�cation contexts.De�nition 4.12 For a context � and a disagreement pair P = h	 ; U; U 0i over �, the setof free variables of P , written \F(P )", is(F(U) [ F(U 0))� dom(	)(This will be a subset of dom(�).) Similarly, for a disagreement set D, \F(D)" is SP2D F(P ).De�nition 4.13 For a disagreement pair P = h	 ; U; U 0i and a substitution �, by \�P",we mean the disagreement pair h�	 ; �U; �U 0i. Note that we may have to �-convert P (i.e.rename some of the variables in 	 and perform the corresponding renaming in U and U 0).For a disagreement set D, by \�D", we mean the multiset f �P j P 2 D g.De�nition 4.14 Given a uni�cation context �, we will say that a disagreement pair h	; U; U 0iis well-typed over � i� U and U 0 have the same type or kind (and are therefore well-typed)in the context ��	. A disagreement set D is well-typed i� every disagreement pair P 2 Dis well-typed.De�nition 4.15 Given a disagreement pair P , we will write \eq�(P )", to mean that Prelates convertible terms or types, i.e., P = h	 ; U; U 0i, where U =� U 0.2To be more precise, �	 = [ v1:A1; v2:�+v1A2; : : : ; vn:�+v1���+vn�1An ]



40 CHAPTER 4. A PRE-UNIFICATION ALGORITHMIn our eventual use of these properties of convertibility, the pairs of terms or types whoseconvertibility is in question is the result of applying a substitution � to a disagreement set Pbeing uni�ed, since, by de�nition, � uni�es P i� eq�(�P ). Although our disagreement setsmay contain ill-typed terms, it will turn out that we will only need to consider substitutions� that instantiate a given disagreement pair to be well-typed. Thus it will su�ce in thissection to consider only well-typed disagreement pairs (in the sense of De�nition 4.14).To show that our decomposition methods make progress, we will need a notion of size:De�nition 4.16 Given a term or type U in � normal form, we de�ne the size of U , written\size(U)", as follows. First for terms,size(c) = 1size(v) = 1size(�v:A: M) = size(A) + size(M) + 1size(M N) = size(M) + size(N)Then for types, size(c) = 1size(�v:A: B) = size(A) + size(B) + 1size(�v:A: B) = size(A) + size(B) + 1size(AM) = size(A) + size(M)Then we extend this notion to all terms and types that are well-typed in some context bysaying that for an arbitrary well-typed term or type U , size(U) = size(Û ), where Û is the �normal form of U . (Note that CR and SN of � for well-typed terms and types makes thiswell-de�ned.)We also extend this notion to well-typed disagreement pairs bysize(h	 ; U; U 0i) = size(U) + size(U 0)but not to disagreement sets.We will also need a measure of how far from being head-normalized a term or type is:De�nition 4.17 Given a term or type U , well-typed in some context, we write \dn(U)" tomean the number of weak head � reductions required to convert U to weak head normal form.More precisely, it is the number n such that there is a sequence U0; : : : ; Un for which (a)U0 = U , (b) Un is in � weak head normal form, and (c) Ui wh� Ui+1 for 0 � i < n. (Notethat SN and the determinacy of wh� ensure that dn(U) is well-de�ned.) We extend dn todisagreement pairs as with size.



4.2. SOME USEFUL PROPERTIES OF CONVERTIBILITY 41Our various decomposition methods will be concrete ways of satisfying the followingabstract requirement (explanation follows):De�nition 4.18 Given a disagreement pair P , and a \disagreement sequence" D̂ = hh P 01; : : : ; P 0k ii,both over a uni�cation context �, P is decomposable to D̂, written \P < D̂", i�1. eq�(P ) i� for 1 � i � k, we have eq�(P 0i ), and2. Each P 0i is well-typed (in the sense of De�nition 4.14) relative to the convertibility ofthe preceding sequence of P 0j , i.e., for 1 � i � k, P 0i is well-typed if for 1 � j < i,eq�(P 0j).3. For 1 � i � k, either (a) size(P 0i ) < size(P ), or (b) size(P 0i ) = size(P ) and dn(P 0i ) <dn(P ).4. No new free variables are introduced, i.e., F(P 0i ) � F(P ), for 1 � i � k.The �rst part is the fundamental property, stating that the question of convertibility beforedecomposition is equivalent to the question of convertibility after. The second says that,while we may construct ill-typed disagreement pairs (ill-typed terms or types or even well-typed terms or types of di�erent types or kinds), this only happens if one or more of thepreceding disagreement pairs is not convertible. Note that, in particular, if k � 1, it requiresP 01 to be well-typed. The third part says that the decomposition is making a kind of progress.Given any tree of disagreement pairs, where each node is decomposable to a sequence of itschildren, this part says that the tree can only have �nite paths. Finally, the fourth part isa technical condition needed for later proofs. Note that since P and the P 0i are over �, thefree variables referred to are in dom(�).It is interesting to note that the decomposition methods de�ned below form a completerecursive algorithm for deciding whether two well-typed terms or types are convertible. Afterdecomposing, we would (recursively) �rst test earlier P 0i for convertibility and, only if theysucceed, then test later ones. Then part 1 guarantees correctness, part 2 guarantees thateach disagreement pair that is tested is well-typed, and part 3 guarantees termination. Onemight think that we could do something similar for uni�cation, and thus avoid dealing withill-typed terms or types, but in fact, there will be other, conicting, requirements on theorder in which disagreement pairs are processed.The following sections develop decomposition methods that together apply to all possibleforms of well-typed terms and types. The cases come from the fact that for a well-typeddisagreement pair P = h	 ; U; U 0i, either� U or U 0 is a weak head redex,� U or U 0 is an abstraction, or� Both U and U 0 are (well-typed) bodies.



42 CHAPTER 4. A PRE-UNIFICATION ALGORITHM4.2.1 Weak head redicesConvertibility of terms or types subject to weak head reduction is handled by the followingmethod.De�nition 4.19 The decomposition method (relation) ;wh is given byU wh� Vh	 ; U; U 0i;wh hh h	 ; V; U 0i iiU 0 wh� V 0h	 ; U; U 0i;wh hh h	 ; U; V 0i iiThen we haveProposition 4.20 Let P be a well-typed disagreement pair and D̂ a disagreement sequencesuch that P ;wh D̂. Then P < D̂.Proof: Letting D̂ = hh P 0 ii, note that P and P 0 are of the form h	 ; U; U 0i and h	 ; V; V 0irespectively where either (a) U wh� V and U 0 = V 0, or (b) U = V and U 0 wh� V 0. In eithercase, by Proposition 4.3, U =� V and U 0 =� V 0. Therefore, if U =� U 0 then by transitivityand reexivity of =�, V =� V 0. By the same argument, if V =� V 0 then U =� U 0. Thesecond requirement, well-typedness of P 0, follows from Corollary 4.4. For the third require-ment, we have size(P 0) = size(P ) and dn(P 0) < dn(P ), because P 0 results from a � weakhead reduction of U or U 0. Finally, the fourth condition is satis�ed because reduction doesnot introduce new free variables. 24.2.2 AbstractionsConvertibility involving abstractions is reduced via the following method. (Note here therole of 	.)De�nition 4.21 The decomposition method ;� is given byh	 ; �v:A: M̂; �v0:A0: M̂ 0i;� hh h	� v : A ; M̂ ; [ v=v0 ]M̂ 0i iih	 ; �v:A: B̂; �v0:A0: B̂0i;� hh h	� v : A ; B̂; [ v=v0 ]B̂0i ii



4.2. SOME USEFUL PROPERTIES OF CONVERTIBILITY 43M 0 is a bodyh	 ; �v:A: M̂; M 0i;� hh h	 � v:A ; M̂; M 0 vi iiM is a bodyh	 ; M; �v:A: M̂ 0i;� hh h	� v:A ; M v; M̂ 0i iiB0 is a bodyh	 ; �v:A: B̂; B0i;� hh h	 � v:A ; B̂; B0 vi iiB is a bodyh	 ; B; �v:A: B̂0i;� hh h	 � v:A ; B v; B̂0i iiProposition 4.22 Let P be a well-typed disagreement pair and D̂ a disagreement sequencesuch that P ;� D̂. Then P < D̂.(Proof below.)Example 4.23 Suppose P = h[ ] ; �x: i: x; �y: i: yi. ThenP ;� hh h[ x: i ] ; x; xi iiwhich can be handled by the next decomposition method. It is important to note that in thisrule we do not have to compare the types of the abstracted variables. This is precisely becausewell-typedness of P guarantees them to be convertible.Example 4.24 Suppose P = h[ f: i!i ] ; �x: i: f x; fi. ThenP ;� hh h[ f: i!i ; x: i ] ; f x; f xi iiThis decomposition method is strongly reminiscent of the rule of extensionality. As wewill see in the proof below, the justi�cation for this decomposition relies on the � rule. In factthe uni�cation algorithm (as well as the convertibility algorithm implicitly de�ned by thiscollection of decomposition methods) performs no other form of � conversion. In contrast,Huet's algorithm, in the case of �, performs �-expansion to put terms into long normal form(LNF). Our development shows that these expansions are sometimes unnecessary. Another,more fundamental di�culty with LNF, or even long head normal form, is that its de�nitioninvolves considerations of whether certain subterms are of functional type. In HOU�, how-ever, as we have remarked, we will be forced to deal with terms that are ill-typed, and so



44 CHAPTER 4. A PRE-UNIFICATION ALGORITHMthe concept of long normal form would need careful reconsideration. This was the approachwe took in [18], using the notion of \approximate well-typedness".We can also make a comparison to the use of � in the standard method for testingconvertibility of well-typed terms, which is to completely � and � normalize them, and thentest the result for �-equivalence. Instead, we perform � reductions and some �-expansions.We can now explain why we use weak head normal forms, as opposed to the more common\head normal form", which requires some beta-reductions even inside an abstraction [3, page41]. The reason is simply that we know how to decompose a disagreement pair involving anabstraction, regardless of the reductions that apply inside the abstraction.Proof of Proposition 4.22: We will treat only two of the six cases, since the others areanalogous.Let P ;� D̂ by the �rst rule. Then P = h	; �v:A:M̂; �v0:A0:M̂ 0i and D̂ = hh P 0 ii, whereP 0 = h	�v:A;M̂; [ v=v0 ]M̂ 0i. First assume that eq�(P ), i.e. �v:A:M̂ =� �v0:A0:M̂ 0. Then by�-conversion, �v:A: M̂ =� �v:A0: [ v=v0 ]M̂ 0. Therefore, (�v:A: M̂) v =� (�v:A0: [ v=v0 ]M̂ 0) v,so, by �-reduction, M̂ =� [ v=v0 ]M̂ 0, i.e., eq�(P 0). The converse, that eq�(P 0) implies eq�(P ),follows from the abstraction rule of De�nition 2.18, and �-conversion.For the second requirement, we must show that P 0 is well-typed. Since P is well-typed,there must be some B such that �v:A: M̂ and �v0:A0: M̂ 0 both have type B in � �	. Butthen B must be convertible to �v:A: B̂ for some B̂ such that ��	� v:A `� M̂ 2 B̂,3 andB must also be convertible to �v0:A0: B̂0 for some B̂0 such that ��	�v0:A0 `� M̂ 0 2 B̂0. Byconsideration of normal forms, we have Â =� Â0 and B̂ =� [ v=v0 ]B̂0. Therefore, � �	� v:A `� [ v=v0 ]M̂ 0 2 B̂, i.e., P 0 is well-typed.For the third requirement, we havesize(P 0) = size(M̂ ) + size([ v=v0 ]M̂ 0)= size(M̂ ) + size(M̂ 0) by a simple induction< size(�v:A: M̂) + size(�v0:A0: M̂ 0)= size(P )The fourth condition, that there are no new free variables, is immediate.Next, let P ;� D̂ by the third rule. Then P = h	 ; �v:A: M̂ ; M 0i where M 0 is a body,and D̂ = hh P 0 ii, where P 0 = h	� v:A ; M̂ ; M 0 vi. First assume that �v:A: M̂ =� M 0. Since(�v:A:M̂) v !� M̂ , we then have M̂ =� M 0 v, i.e., eq�(P 0). Next, assume M̂ =� M 0 v. Then�v:A:M̂ =� �v:A:M 0 v. Since �v:A:M̂ is well-typed in ��	, we know that v 62 dom(��	),3This is because any derivation of � `� �v:A:M 2 B ends in an instance of the abstraction typing rulefollowed by zero or more instances of the conversion typing rule.



4.2. SOME USEFUL PROPERTIES OF CONVERTIBILITY 45and then because M 0 is well-typed in � � 	, v 62 F(M 0). Thus �v:A: M 0 v !� M 0, so�v:A: M̂ =� M 0. This shows that the �rst requirement for < is satis�ed.For the second requirement, that P 0 is well-typed, the reasoning is similar to the �rstcase.For the third requirement, we will again show that size(P 0) < size(P ).size(P 0) = size(M̂) + size(M 0 v)= size(M̂) + size(M 0) + 1 since M 0 is a body< size(�v:A: M̂) + size(M 0) since size(�v:A: M̂) > size(M̂) + 1= size(P )The fourth requirement is immediate. 24.2.3 BodiesThe only remaining case to consider is a disagreement pair relating two bodies. We will usethe following facts:Proposition 4.25 If U;U 0 are bodies well-typed in a context � (though not necessarily ofthe same type or kind), then U =� U 0 i� one of the following holds. First for terms:� U and U 0 are the same atom, or� U =M N and U 0 =M 0N 0, for bodies M;M 0 well-typed in �, such that M =� M 0 andN =� N 0.and for types� U and U 0 are the same type constant,� U = AM and U 0 = A0M 0, for bodies A;A0 well-typed in �, such that A =� A0 andM =� M 0, or� U = �v:A: B and U 0 = �v:A0: B0, such that A =� A0 and B =� B0.



46 CHAPTER 4. A PRE-UNIFICATION ALGORITHMTo prove this proposition, we will need the following fact.4Lemma 4.26 The �� normal form of a body is a body. In particular, let U be a body. Thenfor terms,� U = a, for some atom a, i� the �� normal form of U is a.� U = M N i� the �� normal form of U is M̂ N̂ , where M̂ and N̂ are the �� normalforms of M and N respectively.5and for types,� If U = c, the �� normal form of U is c.� If U = AM , the �� normal form of U is Â M̂ , where Â and M̂ are the �� normalforms of A and M respectively.� If U = �v:A: B, the �� normal form of U is �v: Â: B̂, where Â and B̂ are the ��normal forms of A and B respectively.Proof: A simple induction on the structure of U . 2Proof of Proposition 4.25: The \if" part is immediate. The \only if" part follows fromconsidering the possible forms of well-typed bodies, listed in Proposition 4.8, and their ��normal forms, described in the lemma. For example, if U is M N , then the �� normal formof U is M̂ N̂ , where M̂ and N̂ are the �� normal forms respectively of M and N . Let Û 0be the �� normal form of U 0. Since U =� U 0 though, Û 0 = M̂ N̂ . But then by the lemma,U 0 = M 0N 0 for some M 0 and N 0 whose �� normal forms are M̂ and N̂ respectively, whichsays that M =� M 0 and N =� N 0. 2This proposition gives rise to a decomposition method, almost giving a su�cient conditionfor < . The only problem is the relative well-typedness condition on the new disagreementpairs, as is demonstrated in the following.Example 4.27 Let our signature be a small fragment of the one given in [30] for encoding�rst-order logic: h o:Type ; i:Type ; 8: (i!o)!o ; ::o!o ; >:o i4The usefulness of the lemma is based the CR property. Alternatively, we would take Proposition 4.25as part of the de�nition of convertibility.5More precisely, the \if" direction of this statement should be that if the �� normal form of (the body)U is M̂ N̂ , then there are terms M;N with �� normal forms M̂ and N̂ respectively such that U =M N .



4.2. SOME USEFUL PROPERTIES OF CONVERTIBILITY 47and consider the two terms 8 (�x: i:>) and :>, both well-typed bodies (even of the same type).From the preceding proposition, we know that these terms are convertible i� (a) 8 =� :, and(b) �x: i:> =� >. However, it is not the case thath[ ] ; 8 (�x: i:>); :>i < hh h[ ] ; 8; :i ; h[ ] ; �x: i:>; >i iisince both of these new disagreement pairs are ill-typed (in that they relate terms of di�erenttypes.)To avoid this problem, we instead use the following more complicated decompositionmethod:De�nition 4.28 The decomposition method ;rr is given as follows. First for term bodies,6h	 ; v; vi;rr hh iih	 ; c; ci;rr hh iih	 ; M; M 0i;rr D̂h	 ; M N; M 0N 0i;rr D̂ � h	 ; N; N 0iand then for type bodies, h	 ; c; ci;rr hh iih	 ; A; A0i;rr D̂h	 ; AM; A0M 0i;rr D̂ � h	 ; M; M 0ih	 ; �v:A: B; �v0:A0: B0i;rr hh h	 ; A; A0i; h	� v : A ; B; [ v=v0 ]B0i iiDe�nition 4.29 Given a disagreement pair P = h	 ; U; U 0i, we say that \topeq(P )" i�there is a D̂ such that P ;rr D̂. From the de�nition of ;rr, we can see that the choice of	 is irrelevant. We will thus say that two terms or types U and U 0 have the same top levelstructure, written \U � U 0", i� topeq(h	 ; U; U 0i), where 	 is an arbitrary context.Proposition 4.30 Given bodies U and U 0, U � U 0 i� one of the following holds: First forterms,� U and U 0 are the same atoms, or� U =M N and U 0 =M 0N 0 for bodies M;M 0 and terms N;N 0 such that M �M 0;6We use the notation \D̂ � P", for a disagreement sequence D̂ and a disagreement pair P , to mean thedisagreement sequence that results from adding P onto the end of D̂.



48 CHAPTER 4. A PRE-UNIFICATION ALGORITHMand for types� U and U 0 are the same constant, or� U = AM and U 0 = A0M 0 for bodies A;A0 and terms M;M 0 such that A � A0, or� U and U 0 are both � types.Proof: The \if" part is a direct consequence of the de�nition of ;rr. The \only if" partfollows by induction on the derivation of h	 ; U; U 0i;rr D̂. 2Two simple consequences are as follows:Proposition 4.31 \�" is an equivalence relation.Proof: Each of reexivity, transitivity and symmetry, follows by induction on the structureof the bodies involved, given Proposition 4.30. 2Proposition 4.32 Let P be a well-typed disagreement pair. If eq�(P ) then topeq(P ).(Hence, if :topeq(P ) then :EQ�(P ).)Proof: By induction on U , using Propositions 4.25 and 4.30. 2Example 4.33 Return to the previous example, where P = h[ ] ; 8 (�x: i: >); :>i. Then:topeq(P ), and indeed 8 (�x: i:>) 6=� :>.Proposition 4.34 Let P be a disagreement pair relating well-typed terms or types (thoughnot necessarily of the same type or kind), and let D̂ be such that P ;rr D̂. Then P < D̂.(Proof below.)



4.2. SOME USEFUL PROPERTIES OF CONVERTIBILITY 49Example 4.35 Let P = h[ ]; qM N; qM 0N 0i be a well-typed disagreement pair in a signatureincluding h a:Type ; b:a!Type ; c:Type ; q:�x:a: (bx)!c iNote that both terms have type c. ThenP ;rr hh h[ ] ; M; M 0i; h[ ] ; N; N 0i iiBy our assumption that P is well-typed, M and M 0 both have type a, while N and N 0 havetypes (bM) and (bM 0) respectively. If however, M =� M 0, then these types are convertible.Proof of Proposition 4.34: We will use induction on the derivation D of P ;rr D̂.� If D consists of an instance of one of the �rst two rules, then P relates the same variableor constant, and D̂ = hh ii. Then eq�(P ) and so the �rst part of De�nition 4.18 istrivially satis�ed. The second and third parts are vacuously true. For the fourth part,note that F(D̂) = f g.� Next, assume D ends in an instance of the third rule. Then P = h	 ; M N; M 0N 0i,and for some D̂0 such that D̂ = D̂0�h	 ; N; N 0i, there is a subderivation of D showingthat h	 ; M; M 0i;rr D̂0. SinceM N andM 0N 0 are well-typed in ��	,M andM 0 arewell-typed. Therefore, by the induction hypothesis, we have h	 ; M; M 0i< D̂0. LettingD̂0 = hh P 01; : : : ; P 0k0 ii, we have D̂ = hh P 01; : : : ; P 0k0+1 ii, where P 0k0+1 = h	 ; N; N 0i. Forpart 1 of De�nition 4.18, we reasoneq�(P ) , M N =� M 0N 0, M =� M 0 ^N =� N 0 by Proposition 4.25, eq�(P 01) ^ � � � ^ eq�(P 0k0) ^N =� N 0 by the induction hypothesis, eq�(P 01) ^ � � � ^ eq�(P 0k0+1) by de�nition of P 0k0+1For part 2, given the induction hypothesis, all that remains to show is that if eq�(P 0j)for 1 � j � k0, then P 0k0+1, i.e., h	 ; N; N 0i, is well-typed. By the above, this is thesame as saying that if M =� M 0 then h	 ; N; N 0i is well-typed. Assume M =� M 0.SinceM and M 0 are well-typed, and !�� is CR for well-typed terms,M and M 0 havethe same type, by Proposition 2.40. Also, sinceM N andM 0N 0 are well-typed,M andM 0 have some type �v:A: B, and N and N 0 have the same type A. Thus h	 ; N; N 0iis well-typed.For the third requirement of < , we show size(P 0i ) < size(P ), for 1 � i � k0, reasoningas follows. For 1 � i � k0,size(P 0j) < size(h	 ; M; M 0i) by the induction hypothesis< size(P )and, �nally, size(P 0k0+1) = size(h	 ; N; N 0i) < size(P ).The fourth requirement follows by induction and since F(h	 ; M; M 0i) � F(P ) andF(h	 ; N; N 0i) � F(P ).



50 CHAPTER 4. A PRE-UNIFICATION ALGORITHM� If D consists of an instance of the fourth rule (involving a type constant), the argumentis analogous to the �rst case.� If D ends in an instance of the �fth rule (involving a type application), the argumentis analogous to the second case.� Finally, suppose that D consists of an instance of the last rule (involving � types).Then P = h	 ; �v:A:B; �v0:A0: B 0i and D̂ = hh h	 ; A; A0i; h	� v:A ; B; [ v=v0 ]B0i ii.The �rst part of De�nition 4.18 follows immediately from Proposition 4.25. For thesecond, since �v:A: B and �v0:A0: B 0 are well-typed in � � 	, A and A0 are both ofkind Type in ��	 and if A =� A0 then B and B0 have kind Type in ��	� v:A. Thethird and fourth parts are trivial. 24.3 From Conversion to Uni�cationThe previous section developed a collection of methods for decomposing questions of con-vertibility of a given pair of terms or types into the question of convertibility of a �niteset of pairs of terms or types. In this section, we prepare for the second main part of ourdevelopment, which is the construction and justi�cation of the transformations that formour pre-uni�cation algorithm.Huet's algorithm for HOU! relies on and maintains an important invariant on the uni�-cation problems under consideration, namely that their disagreement sets are well-typed (inthe sense of De�nition 4.14, being made up of only disagreement pairs relating well-typedterms of the same type). As we will demonstrate, we cannot maintain this invariant forHOU�, and so we use a more complicated one. Fortunately, the additional complexity is notas much in the �nal algorithm as in its justi�cation.One of the ways in which ill-typedness can enter our uni�cation problems is illustratedin the following:Example 4.36 Consider again the disagreement pair in Example 4.35. As we shall justify inSection 4.4.4, this disagreement pair is uni�ed by any uni�er of f h[ ] ; M; M 0i; h[ ] ; N; N 0i g.However, unlessM andM 0 are convertible (not just uni�able), the disagreement pair h[ ]; N;N 0iis ill-typed in the sense that it relates terms of di�erent types (bM) and (bM 0).



4.3. FROM CONVERSION TO UNIFICATION 51Recall that the same kind of ill-typedness arose in the discussion of convertibility. Therewe were able to avoid comparing (bM) and (bM 0) until insuring that they have the sametype (by �rst �nding that M =� M 0). This suggests a similar treatment when performinguni�cation: First unify M and M 0. If this succeeds with some uni�er �, i.e., �M =� �M 0,then continue by unifying �N and �N 0. These terms have types �(bM) = b (�M) and�(bM 0) = b (�M 0) respectively, but since �M =� �M 0, these types are convertible. Thus wemight think we could avoid ever dealing with ill-typed disagreement pairs. The fatal awin this approach is that it relies on doing full uni�cation instead of pre-uni�cation. Tryingthe analogous approach with pre-uni�cation does not always eliminate all of the di�erencesbetween the types (bM) and (bM 0).Another source of ill-typedness comes from the fact that, as mentioned following De�ni-tion 3.3, our algorithm builds up uni�ers incrementally by composing certain substitutionsand applying them to appropriate disagreement sets. These substitutions are the natural ex-tensions of the imitations and projections used in the MATCH phase of Huet's algorithm. Inthat algorithm, certain potential projections are ruled out immediately, because they wouldbe of the wrong type. The test for allowable projections consists simply of a comparison oftype constants. In HOU�, however, the situation is much more di�cult, because the typeswe would have to compare contain terms. Since they are therefore subject to instantiation,determining possible type correctness of the substitution requires unifying these types, whichis as di�cult as unifying terms. As mentioned above, in pre-uni�cation, we cannot simplyperform a full uni�cation before continuing.Our solution to this problem is simply to carry out the possibly ill-typed substitution,and to add a disagreement pair relating the types that would have to be uni�ed to makethe substitution well-typed. However, this raises an issue that requires careful treatment:Applying an ill-typed substitution can result in an ill-typed term, which may therefore failto be strongly normalizing, or even weakly head normalizing. We will explain followingDe�nition 4.38 of acceptability why this possibility does not jeopordize completeness.Another potential problem with allowing ill-typedness in our uni�cation problems is that,if unrestricted, it would destroy the crucial property that solved form uni�cation problems,as we shall de�ne them, have solutions (as expressed in Assumption 3.7).The way we avoid these potential problems is to carefully restrict the structure of ill-typedness involved in acceptable uni�cation problems. For this we needDe�nition 4.37 Given a uni�cation problem Q = h�; �0;Di, an accounting for Q is a strictpartial order (i.e., a transitive, antisymmetric, nonreexive relation) \<", between D andD[ran(�)7, such that (a) for any X 2 D[ran(�), and uni�er � 2 �� of fP 2 D j P < X g,�X is well-typed, and (b) for any �1; v;A;�2 such that � = �1 � v:A� �2, and any P 2 D,7To be more precise: \<" does not relate disagreement pairs with disagreement pairs and types, butrather occurrences of these.



52 CHAPTER 4. A PRE-UNIFICATION ALGORITHMif P < A, we have F(P ) � dom(�1). For X 2 D [ ran(�), de�ne \D<X" to be the setfP 2 D j P < X g. We will often refer to D<X as the set of pairs that account for (theill-typedness of) X.De�nition 4.38 A uni�cation problem Q = h�; �0;Di is acceptable i� the following condi-tions hold:1. There is an accounting for Q.2. �0 is permanent. See De�nition 4.39 below.3. � is weakly valid. See De�nition 4.43 below.It is important to note that our algorithm only maintains the existence of accountings, butnever actually constructs them.Now we can informally explain why we do not need to avoid non-normalizing terms.More rigorous justi�cation is contained in the validity and completeness proofs of the trans-formations in Section 4.4. Suppose a disagreement set contains some disagreement pair P ,containing a term M that is not strongly normalizing. Then for any substitution �, �M isalso not strongly normalizing, since by substitutivity we can parallel reduction sequencesfromM by reduction sequences from �M . By the SN property for well-typed terms, we canthen conclude that �M is ill-typed for all �. However, we know by acceptability that thereis a subset D<P of D all of whose uni�ers instantiate P , and therefore M , to be well-typed.Therefore D<P , and hence D has no uni�er. In summary, if an acceptable uni�cation problemcontains a non-SN term then it is nonuni�able. Completeness, however, makes no claimsabout uni�cation problems with no solutions. This is one reason we choose to treat one-stepweak head reduction as a transformation, rather than taking normalization for granted as isusually done in HOU! (e.g., [36] and [70]). In [18], we described an optimization based onthe idea of approximate well-typedness that allows us to avoid ever constructing terms thatare not strongly normalizing.Given a pair of termsM andM 0 to unify, we can satisfy the invariant initially in either oftwo ways. The �rst is to simply check thatM andM 0 are well-typed and have the same type.The second method, de�ned in Section 4.7, is much more exible, allowing for disagreementpairs that will become well-typed after substitution.The property of a substitution being permanent, mentioned in De�nition 4.38 will beused to show minimality of our transformations (in the sense of De�nition 3.13) and henceof the sets of pre-uni�ers enumerated by the algorithm (in the sense of De�nition 3.10). Weadopted the word from the notion of a \permanent occurrence" in [48].



4.3. FROM CONVERSION TO UNIFICATION 53De�nition 4.39 For contexts �0 and �, a substitution �0 2 �dom(�)dom(�0) is permanent i� forany substitutions �; �0 2 ��, we have� � �0 =� �0 � �0 ) � =� �0One trivial example of a permanent substitution is the identity substitution over anygiven variable set.Example 4.40 Given the signature � = h i:Type ; c: i!i!i i, and the contexts �0 = [ z: i ]and � = [ x: i ; y: i ], the substitution �0 = [ cx y=z ]��0 is permanent. To see this, considerany two substitutions �; �0 2 ��.� � �0 =� �0 � �0, (� � �0)z =� (�0 � �0)z since dom(� � �0) = fzg, �(�0z) =� �(�0z) by de�nition of composition, �(cx y) =� �0(cx y), c (�x) (�y) =� c (�0x) (�0y) by De�nition 2.7, �x =� �0x ^ �y =� �0y by Proposition 4.34, � =� �0 since dom(�) = dom(�0) = f x; y gExample 4.41 Given the signature � = h i:Type ; a: i ; b: i i, and the contexts �0 = [ z: i ]and � = [ f: i!i ], the substitution �0 = [ f x=z ]��0 is not permanent. Let � = [ (�v: i: c)=f ; a=x ][ ]�and �0 = [ (�v: i: c)=f ; b=x ][ ]� . Then � � �0 = [ c=z ][ ]� = �0 � �0, but � 6=� �0.Since our �0 are built up by composition, we will needProposition 4.42 The composition of permanent substitutions is permanentProof: For contexts �0;�1;�, let �0 2 �dom(�1)dom(�0) and �1 2 �dom(�)dom(�1) be permanent substi-tutions and �; �0 2 �� be such that � � (�1 � �0) =� �0 � (�1 � �0). Then by associativity ofcomposition, (� � �1) � �0 =� (�0 � �1) � �0. But then by permanence of �0, � � �1 =� �0 � �1, andthen by permanence of �1, � =� �0. 2Although we will not rely on maintaining valid uni�cation contexts (in the sense ofDe�nition 2.29), we will need a weaker property in the proofs of our transformations:De�nition 4.43 A context � = [ x1:A1; : : : ; xm:Am ] is weakly valid i� for each i with1 � i � n, we have (a) F(Ai) � fx1; : : : ; xi�1 g, and (b) Ai is reducible to the form�y1:B1: � � ��yk:Bk:B0, where B0 is an atomic type. (For example, B0 cannot be an abstrac-tion.)



54 CHAPTER 4. A PRE-UNIFICATION ALGORITHM4.4 The TransformationsFor uni�cation, we will need to distinguish between two forms of bodies.De�nition 4.44 The head of a body, which is an atom or the symbol �, is given by, �rstfor terms,� head(v) = v,� head(c) = c,� head(M N) = head(M),and then for types� head(c) = c,� head(AM) = head(A),� head(�v:A: B) = �,Then we haveDe�nition 4.45 Given a uni�cation context � and a body U , we say that U is exible ifhead(U) 2 dom(�). Otherwise, U is rigid.To know the goal of the transformations, we need to de�ne the solved form property. Itturns out that we can use exactly the same criterion as in Huet's algorithm for HOU!:De�nition 4.46 A uni�cation problem is in solved form i� its disagreement set containsonly exible-exible (term) disagreement pairs.Clearly, this de�nition satis�es parts 1 and 2 of Assumption 3.7. We will prove part 3,uni�ability of acceptable solved form uni�cation problems, in Section 4.6.The transformations making up our algorithm come from considering all possible formsof disagreement pairs other than exible-exible ones, and is guided by the properties ofconvertibility developed in Section 4.2. If no transformation applies to a given uni�cationproblem, it is in solved form.



4.4. THE TRANSFORMATIONS 554.4.1 PreliminariesSome of the transformations have the form of replacing a given disagreement pair P by themembers of a sequence D̂ of disagreement pairs. Clearly such a transformation would becorrect (in the sense of De�nition 3.13) if the set of uni�ers of P is equal to the set of uni�ersof D̂. However, this will turn out to be too strong a requirement. We must make use ofthe accounting for acceptable uni�cation problems, as the proof of the following propositionshows.8Proposition 4.47 Let Q = h�; �0;D ] fP gi be acceptable, D̂ be such that �P < �D̂, forany � 2 �� for which �P is well-typed, and let Q0 be h�; �0;D ] D̂i.9 Then the transitionQ 7! fQ0g is valid (i.e., correct, acceptable, and minimal).Proof: Let < be an accounting for Q, and let Da = (D ] fP g)<P . Consider an arbitrary� 2 �� such that �P is well-typed. To show correctness (in the sense of De�nition 3.13),consider two cases:� � does not unify Da: Then, since Da � D (by nonreexivity of <), � does not unifyD ] fP g. However, for the same reason, such a � does not unify D ] D̂.� � uni�es Da: Since < is an accounting, �P is well-typed. But then �P < �D̂, so by part1 of De�nition 4.18 of < , � uni�es P i� � uni�es D̂. Then expanding the de�nition ofU , we see U(Q) = f �̂ j 9�: �̂ =� � � �0 ^ � 2 �� ^ � uni�es D ] fP g g= f �̂ j 9�: �̂ =� � � �0 ^ � 2 �� ^ � uni�es D ] D̂ g= U(Q0)Thus, in either case, the transition Q 7! fQ0g is correct.To see the �rst condition, we construct an accounting for Q0: Let D̂ = hh P 01; : : : ; P 0k ii.In the new ordering, the role of P will be shared by the P 0i , and each P 0i will be below laterones. More precisely, de�ne <0 by� P̂ <0 X if P̂ 6= P , X 6= P , and P̂ < X;� P̂ <0 P 0i for 1 � i � k, if P̂ < P8For a disagreement sequence D̂ = hh P 01; : : : ; P 0k ii, we write \�D̂" to mean the disagreement sequencehh �P 01; : : : ; �P 0k ii.9For a disagreement multiset D and a disagreement sequence D̂, we write \D ] D̂" to mean the multisetunion of D and the (multiset of) members of D̂.



56 CHAPTER 4. A PRE-UNIFICATION ALGORITHM� P 0i <0 X for 1 � i � k, if P < X� P 0i <0 P 0j if 1 � i < j � kIt is straightforward, though rather tedious to see that <0 is a strict partial order.10 To showthat <0 is an accounting for Q0, consider �rst an arbitrary X 2 D [ ran(�). There are twocases:1. P 6< X. Then D<0X = D<X and therefore since < is an accounting for Q, any uni�er ofD<0X instantiates X be well-typed.2. P < X. Then D<0X = (D<X � fPg) ] D̂. Let � be a uni�er of D<0X . Since P < X,D<P � D<X � fPg, so because < is an accounting for Q, �P is well-typed. Therefore,by De�nition 4.18, of < , since � uni�es D̂, it uni�es P . But we already knew that �uni�es D<0X � D<X � fPg, so it follows that � uni�es D<X , so �X is well-typed.Next, consider Pi for 1 � i � k. We can see that D<0Pi = D<P ] fP 01; : : : ; P 0i�1 g. Let � be auni�er of D<0Pi . Then � uni�es D<P , and hence �P is well-typed. Then the de�nition of < ,since � also uni�es P 01; : : : ; P 0i�1, it follows that �Pi is well-typed.To show the second requirement of <0 to be an accounting, let � = �1 � v:A� �2, andassume for some P̂ 2 D ] D̂ that P̂ <0 A. Then either (a) P̂ 2 D, in which case P̂ < A, soF(P̂ ) � dom(�1), because < is an accounting for Q, or (b) P̂ = P 0i for some i, in which casealso P < A, so F(P 0i ) � F(P ) � dom(�1).The second and third conditions for acceptability (De�nition 4.38) are trivially satis�ed,since neither the uni�cation context � nor the substitution �0 changes.Finally, minimality is vacuously true. 24.4.2 RedicesThe idea here is very simple | if a member of a disagreement pair is a weak head redex,perform a reduction.Proposition 4.48 Let � be a context, P be a disagreement pair over �, and D̂ a disagree-ment set such that P ;wh D̂. Then for any � 2 ��, �P ;wh �D̂, and in particular if �P iswell-typed then �P < �D̂ .10Given we really mean relating occurrences of disagreement pairs.



4.4. THE TRANSFORMATIONS 57Proof: From De�nition 4.19 of ;wh, we have P = h	 ; U; U 0i and D̂ = hh h	 ; V; V 0i ii,where either (a) U wh� V and U 0 = V 0, or (b) U = V and U 0 wh� V 0. We will consider the�rst case only, as the second is analogous:�P = h�	 ; �U; �U 0i;wh hh h�	 ; �V; �V 0i ii by Proposition 4.5 and V = V 0= �hh h	 ; V; V 0i ii= �D̂The �nal conclusion follows from Proposition 4.20. 2Transformation 4.1 A Let Q = h�; �0;D ] fP gi and let D̂ be such that P ;wh D̂. Thenmake the transition11 Q 7! fh�; �0;D ] D̂igProposition 4.49 Transformation 4.1 is valid.Proof: Immediate from Propositions 4.48 and 4.47. 24.4.3 AbstractionsThe key to handling a uni�cation problem that contains a disagreement pair including atleast one top-level abstraction is the following:Proposition 4.50 Let � be a context, P be a disagreement pair over �, and D̂ a disagree-ment set such that P ;� D̂. Then for any � 2 ��, �P ;� �D̂, and in particular if �P iswell-typed then �P < �D̂ .Proof: From De�nition 4.21 of ;�, we can see that there are four cases to consider. Wewill treat just the �rst and third cases, since the others are similar. Let � 2 ��0� , and asalways, assume that v; v0 62 dom(�) [ dom(�0).11The intended interpretation of this is to de�ne Transformation 4.1 to be the transformation relation thatrelates Q to fh�; �0; D ] D̂ig for all Q;�; �0; D; P , and D̂ such that Q = h�; �0; D ] fP gi and P ;wh D̂.Recall from De�nition 3.13 that validity refers only to acceptable Q.



58 CHAPTER 4. A PRE-UNIFICATION ALGORITHMLet P ;� D̂ by the �rst rule of De�nition 4.21. Then P = h	 ; �v:A: M̂; �v0:A0: M̂ 0iand D̂ = hh P 0 ii, where P 0 = h	� v:A ; M̂ ; [ v=v0 ]M̂ 0i. Thus�P = �h	 ; �v:A: M̂; �v0:A0: M̂ 0i= h�	 ; �v:�A: �M̂; �v0:�A0: �M̂ 0;� hh h�	� v:�A ; �M; [ v=v0 ](�M̂ 0)i iii= hh h�(	� v:A) ; �M; �([ v=v0 ]M̂ 0)i ii since v; v0 62 dom(�) [ dom(�0)= �D̂Next, let P ;� D̂ by the third rule of De�nition 4.21. Then P = h	 ; �v:A: M̂ ; M 0i,and D̂ = hh h	� v:A ; M̂ ; M 0 vi ii. Thus�P = �h	 ; �v:A: M̂; M 0i= h�	 ; �v:�A: �M̂; �M 0i;� hh h(�	)� v:�A ; �M̂ ; (�M 0) vi ii by De�nition 4.21= hh h�(	� v:A) ; �M̂ ; �(M 0 v)i ii since v 62 dom(	)= �hh h	� v:A ; M̂ ; M 0 vi ii= �D̂The �nal conclusion follows from Proposition 4.22. 2Transformation 4.2 Let Q = h�; �0;D ] fP gi, and let D̂ be such that P ;� D̂. Thenmake the transition Q 7! fh�; �0;D ] D̂igProposition 4.51 Transformation 4.2 is valid.Proof: Immediate from Propositions 4.47 and 4.50. 2This case does not correspond directly to anything in Huet's algorithm. There, �'s simplyaccumulate in the normal form.



4.4. THE TRANSFORMATIONS 594.4.4 Rigid-rigidThe treatment of this case will be much like the previous ones. The key isProposition 4.52 Let U be a rigid body with respect to �, and let � 2 ��. Then �U is abody and �U � U . (See De�nition 4.29.)Proof: Simple induction on U , using Proposition 4.8 and De�nition 2.7. 2Proposition 4.53 Let � be a context and P be a rigid-rigid disagreement pair over �. If:topeq(P ), then P is nonuni�able. If P ;rr D̂, then for all � 2 ��, �P ;rr �D̂, and inparticular when �P is well-typed, we have �P < �D̂.Proof: Suppose that :topeq(P ), where P = h	 ; U; U 0i. If P is uni�able then for some � 2��, �U =� �U 0, and hence by Proposition 4.32, �U � �U 0. However, from Proposition 4.52,�U � U , and �U 0 � U 0, so by transitivity and reexivity of � (Proposition 4.31), U � U 0,which is a contradiction. Next assume that P ;rr D̂. We will prove by induction on thederivation D of P ;rr D̂ that �P ;rr �D̂.� IfD consists solely of an instance of the �rst rule in De�nition 4.28 (involving variables),then P = h	 ; v; vi and D̂ = hh ii. Since P is rigid-rigid, v 62 dom(�), so �P =h�	 ; v; vi;rr hh ii = �D̂.� IfD consists solely of an instance of the second rule (involving constants), the argumentis analogous.� IfD ends in an instance of the third rule (involving applications) then P = h	;M N;M 0N 0iand D̂ = D̂0�h	; N; N 0i, where there is a subderivation of D ending in h	; M; M 0i;rrD̂0. By induction, we may assume that �h	 ; M; M 0i = h�	 ; �M; �M 0i;rr �D̂0. Butthen �P = h�	 ; �(M N); �(M 0N 0)i= h�	 ; (�M) (�N); (�M 0) (�N 0)i;rr �D̂0 � h�	 ; �N; �N 0i by the induction hypothesis= �D̂� If D consists of or ends in an instance of the rules for a type constants or application,the argument is analogous to the �rst two cases.



60 CHAPTER 4. A PRE-UNIFICATION ALGORITHM� Finally, if D consists of an instance of the last rule (involving � types), then P =h	 ; �v:A: B; �v:A0: B0i and D̂ = hh h	 ; A; A0i; h	 � v:A ; B; B0i ii. Thus�P = h�	 ; �(�v:A: B); �(�v:A0: B0)i= h�	 ; �v:�A: �B; �v:�A0: �B0i;rr hh h�	 ; �A; �A0i; h(�	)� v:�A ; �B; �B0i ii= �hh h	 ; A; A0i; h	� v:A ; B; B0i ii= �D̂The �nal conclusion follows from Proposition 4.34. 2Transformation 4.3 Let Q = h�; �0;D ] fP gi where P is rigid-rigid. If :topeq(P ) thenmake the transition Q 7! f gOtherwise, let P ;rr D̂, and make the transitionQ 7! h�; �0;D ] D̂iProposition 4.54 Transformation 4.3 is valid.Proof: Immediate from Propositions 4.47 and 4.53. 2This case corresponds to one step of Huet's SIMPL phase.4.4.5 Flexible-rigidIn the preceding cases we either showed nonuni�ablity, or replaced the chosen disagreementpair by a �nite collection of other disagreement pairs. In this case, the strategy is di�erent.Here we deduce a useful constraint on the possible uni�ers of the chosen disagreement pair,and hence the whole disagreement set. We then show how to use this constraint to instan-tiate the uni�cation problem into a �nite collection of alternate uni�cation problems. Thiscorresponds to Huet's MATCH phase. Although we refer to this case as \exible-rigid", italso handles the symmetric rigid-exible case.



4.4. THE TRANSFORMATIONS 61For the analysis of this case, assume that our acceptable uni�cation problemQ is h�; �0;Di,where D contains a exible-rigid disagreement pair P = h	 ; M; M 0i or a rigid-exible dis-agreement pair P = h	 ; M 0; Mi.12 Let the uni�cation variable v be the head of M , and a0be the head of M 0. Since M 0 is rigid, a0 is either a constant, or a variable in dom(	). Let� = �1 � v:A� �2, where by part three of De�nition 4.38 for acceptability, A is reducibleto the form �x1:A1: � � ��xm:Am: A0, for an atomic A0. To determine the possible structure(modulo =�) of �v, we will need the following fact:Proposition 4.55 For some �, M̂ , x1; : : : ; xm, A1; : : : ; Am, suppose that� `� M̂ 2 �x1:A1: � � ��xm:Am: A0for an atomic A0. Then for some atom b, and terms N1; : : : ; Nn, we haveM̂ =� �x1:A1: � � � �xm:Am: bN1 � � �Nnwhere the right hand side is well-typed in �.Proof: By induction on m:� If m = 0, let M 0 be the wh� normal form of M̂ . Then � `� M 0 2 A0 (by Proposi-tion 4.4). M 0 cannot be an abstraction, since otherwise A0 would be convertible to a� type, which contradicts Proposition 4.25. Thus, since M 0 is in wh� normal form, ithas the form bN1 � � �Nn.� Assume m � 1. Without loss of generality, assume x1 62 dom(�), and so x1 62 F(M̂).By strengthening (Proposition 2.31), ��x1:A1 `� M̂ 2 �x1:A1: � � ��xm:Am:A0. Also,�� x1:A1 `� x1 2 A1. Thus, by the application typing rule,� � x1 : A1 `� M̂ x1 2 �x2:A2: � � ��xm:Am: A0and then by the abstraction typing rule,� `� �x1:A1: M̂ x1 2 �x1:A1: � � ��xm:Am: A0and �x1:A1: M̂ x1 is well-typed in �. Also, since� � x1 : A1 `� M̂ x1 2 �x2:A2: � � ��xm:Am: A0we may assume, by the induction hypothesis, thatM̂ x1 =� �x2:A2: � � ��xm:Am: bN1 � � �Nnwhere the right hand side is well-typed. Thus,M̂ =� �x1:A1: M̂ x1 =� �x1:A1: � � ��xm:Am: bN1 � � �Nnwhich is well-typed.12There are no exible types, so P must relate terms.



62 CHAPTER 4. A PRE-UNIFICATION ALGORITHM2Now we return to the problem of determining the possible top level structure of �v. Recallfrom the de�nition of ��0� that for � 2 ��0� , we have �0 `� �v 2 �(�x1:A1: � � ��xm:Am: A0),so that for some types A01; : : : ; A0m, atom b, and terms N1; : : : ; Nn, �v is convertible to a termof the form �x1:A01: � � ��xm:A0m: bN1 � � �Nnfor some atom b, by the Proposition we just proved. We are interested in the possibilitiesfor b when � is a uni�er.Proposition 4.56 Let � be as above. If � uni�es P then b is either� a0, if a0 is a constant (rather than a variable in dom(	)), or� some xi, for 1 � i � m.Proof: If b is not one of the xi, then the head of any � normal form of �M is b. How-ever, the head of �M 0 is a0 for any �, so if � uni�es P , then, by Proposition 4.32, b mustbe a0. The reason that b cannot be a variable in dom(	) is that if b is a variable, thenb 2 F(�v), i.e., b 2 dom(�0), where � 2 ��0� , but we assume that (possibly after �-conversion),dom(	) \ (dom(�) [ dom(�0)) = f g. 2De�nition 4.57 Let H be this set of possible values of b.Next we see how possible values of b translate into \approximating substitutions".De�nition 4.58 Let �; v;A;�1, etc. be as above. Let b 2 H and let B be the type of baccording to � or [ x1:A1; : : : ; xm:Am ], where B = �y1:B1: � � ��yn:Bn:B0 for an atomic B0.Note that either b:B 2 �, or for some k, b = xk, and so B = Ak. LetNb = �x1:A1: � � ��xm:Am: b (v1 x1 � � �xm) � � � (vn x1 � � �xm)where the vj are new variables, i.e., f v1; : : : ; vn g \ (dom(�1) [ dom(�2) [ dom(	)) = f g.Then de�ne the approximating substitution�b = [Nb=v ]dom(�1)[fv1;:::;vn g[dom(�2)dom(�)For the types of the new variables v1; : : : ; vn, letCj = �x1:A1: � � ��xm:Am: [ (v1 x1 � � � xm)=y1; : : : ; (vj�1 x1 � � �xm)=yj�1 ]Bj



4.4. THE TRANSFORMATIONS 63for 1 � j � n. Then we de�ne the new context�b = �1 � [ v1:C1; : : : ; vn:Cn ]� (�b�2)(The reason we have to apply �b to �2 is that the types assigned in �2 might contain thevariable v.)Finally, for the type of Nb, letCb = �x1:A1: � � ��xm:Am: [ (v1x1 � � �xm)=y1; : : : ; (vnx1 � � � xm)=yn ]B0Proposition 4.59 For any b 2 H and � 2 ��, �v is convertible to a term of the form�x1:A01: � � ��xm:A0m: bN1 � � �Nni� there is a �0 such that � =� �0 � �b.Proof: Assume �v is as stated. We need to construct a �0 such that � =� �0 � �b. Letf v̂1; : : : ; v̂l g = dom(�1) [ dom(�2) and �v̂i = M̂i, for 1 � i � l. It is easy to check that thefollowing su�ces for �0:[ (�x1:A01: � � ��xm:A0m: N1)=v1; : : : ; (�x1:A01: � � ��xm:A0m: Nn)=vn ; M̂1=v̂1; : : : ; M̂l=v̂l ]The reverse implication follows from the fact that the body of Nb (i.e., the result of strippingo� the �'s) is rigid. 2The following fact will also be useful:Lemma 4.60 For any �0 and �0 2 ��0�b, if �0 `� �0A 2 Type, then (a) for 1 � j � n,�0 `� �0Cj 2 Type, and (b) �0 `� �0Cb 2 Type.Proof: Assume �0 `� �0A 2 Type, and let B be as in De�nition 4.58. Since B is eithersome Ai or the type of a constant, we know that�0 � [ x1:�0A1; : : : ; xm:�0Am ] `� �0B 2 Typeand, since B = �y1:B1: � � ��yn:Bn: B0, we have�0 � [ x1:�0A1; : : : ; xm:�0Am ]� [ y1:�0B1; : : : ; yj�1:�0Bj�1 ] `� �0Bj 2 Typefor 1 � j � n, and also�0 � [ x1:�0A1; : : : ; xm:�0Am ]� [ y1:�0B1; : : : ; yn:�0Bn ] `� �0B0 2 Type



64 CHAPTER 4. A PRE-UNIFICATION ALGORITHMThe result follows, using weakening (Proposition 2.32) n times and the � typing rule mtimes. 2In order to show that the exible-rigid transformation makes progress, we will need anotion of height of a term:13De�nition 4.61 The height of a well-typed term M with respect to a context �, written\ height�(M)", is given by� If M wh� M 0 for some M 0, then height�(M) = height�(M 0).� If M = �v:A:M 0 for some v;A;M 0, then height�(M) = height��v:A(M 0).� If M is a body and � `� M 2 �v:A: B, then height�(M) = height�(�v:A: M v).� If M is an atom not of � type in �, then height�(M) = 1.� If M is an application M 0N 0 not of � type, then height�(M) = max(height�(M 0); 1 +height�(N 0)).(Note that this is well-de�ned for well-typed terms because of the SN and determinacy prop-erties of wh� and unicity of types.14)It will be important to note that height is invariant under conversion.Proposition 4.62 Given two terms M and M 0, well-typed in a context �, such that M =�M 0, we have height�(M) = height�(M 0).Proof: By induction on the structure of M and M 0, using the properties proved in Sec-tion 4.2, recalling that either (a)M orM 0 is a weak head redex, (b)M orM 0 is an abstraction,and if the other is not then it has � type, or (c) both M and M 0 are bodies. 2Then to compare substitutions, we will use a multiset ordering based on height:13The reason we cannot simply use size is that we must not take into account the �'s and abstractedvariable types.14It will be important to note that we only use here unicity of types for bodies.



4.4. THE TRANSFORMATIONS 65De�nition 4.63 Given contexts �;�0 and two substitutions �; �0 2 ��0� , de�ne � � �0 i�there is an integer h such thatjf v 2 V j height�0(�v) = h gj > jf v 2 V j height�0(�0v) = h gjbut for each k > h,jf v 2 V j height�0(�v) = k gj = jf v 2 V j height�0(�0v) = k gjProposition 4.64 In Proposition 4.59, �0 can be chosen such that �� �0.Proof: The �0 in that proof su�ces, since the di�erence between � and �0 is the re-placement of one substitution term by a collection of substitution terms with strictly smallerheights. (Note that height�0(�x1:A01: � � ��xm:A0m:bN1 � � �Nn) = max1�i�n(1+height�0(Ni)) >height�0(Nj), for 1 � j � n.) 2For minimality of the transformation de�ned below, we will needProposition 4.65 For each b 2 H, �b is permanent.Proof: For some �0, let �1; �2 be arbitrary substitutions in ��0�b such that �1 � �b =� �2 � �b.We will show that, therefore, �1 =� �2, i.e., for every u 2 dom(�b), �1u =� �2u.� Assume u 2 dom(�1) [ dom(�2). Then (�1 � �b)u = �1u, and (�2 � �b)u = �2u, so�1u = �2u.� Assume u = vi where 1 � i � n. Note that for some A01; : : : ; A0m and A001; : : : ; A00m, wehave (�1 � �b)v = �1Nb= �x1:A01: � � ��xm:A0m: b ((�1v1)x1 � � � xm) � � � ((�1vn)x1 � � � xm)and (�2 � �b)v = �2Nb= �x1:A001: � � ��xm:A00m: b ((�2v1)x1 � � �xm) � � � ((�2vn)x1 � � � xm)Applying the abstraction and body decomposition methods (De�nitions 4.21 and 4.28), we�nd that for 1 � i � n, (�1vi)x1 � � �xm =� (�2vi)x1 � � � xm, and thus�v1:A1: � � � �vm:Am: (�1vi)x1 � � �xm =� �v1:A1: � � ��vm:Am: (�2vi)x1 � � �xmThe result then follows from � reduction. 2



66 CHAPTER 4. A PRE-UNIFICATION ALGORITHMProposition 4.66 For distinct b; b0 2 H, �b and �b0 have no common instances, i.e., thereis no �; �0 such that � � �b =� �0 � �b0.Proof: Assume otherwise, so that for some distinct b; b0 2 H and substitutions �; �0, wehave � � �b =� �0 � �b0. Then, in particular, (� � �b)v =� (�0 � �b0)v, i.e., �Nb =� �0Nb0. However,Nb and Nb0 are both rigid bodies, so by Proposition 4.52, �Nb � Nb and �N 0b0 � Nb0 , and byProposition 4.32, �Nb � �0Nb0 . We thus have Nb � Nb0, which is plainly false since b 6= b0. 2Now we will see how to use this fact to transform our uni�cation problem. The followingsteps are mostly symbol manipulation, but the point to keep in mind is that we are tryingto re-express U(Q) as Sb2H U(Qb) for some fQb j b 2 H g, since by De�nition 3.12, thisconstitutes a correct transformation.First, expand the de�nition of U(Q) in a somewhat more explicit form:f �̂ j 9�: �̂ =� � � �0 ^ � 2 �� ^ 8h	 ; U; U 0i 2 D: �U =� �U 0 gNow from Propositions 4.56 and 4.59, we know that the condition on � implies the additionalcondition 9b 2 H: 9�0: � = �0 � �bso we can conjoin this condition without changing the meaning of the set expression. Nextperform some quanti�er manipulation to getf �̂ j 9b 2 H: 9�0: 9�: �̂ =� � � �0 ^ � = �0 � �b ^ � 2 �� ^ 8h	 ; U; U 0i 2 D: �U =� �U 0 gNext, eliminate � by replacing it by �0 � �b, and change the 9b into a set union[b2Hf �̂ j 9�0: �̂ =� (�0 � �b) � �0 ^ (�0 � �b) 2 �� ^ 8h	 ; U; U 0i 2 D: (�0 � �b)U =� (�0 � �b)U 0 gNow, in a key step, re-associate the compositions[b2Hf �̂ j 9�0: �̂ =� �0 � (�b � �0) ^ (�0 � �b) 2 �� ^ 8h	 ; U; U 0i 2 D: �0(�bU) =� �0(�bU 0) gThis is almost in the form we want, i.e., Sb2H U(Qb) for some family fQb j b 2 H g. Theonly obstacle is the condition �0 � �b 2 ��, where we need a condition involving �0 2 ��b.From De�nition 2.42 of ��, we know that the condition �0 � �b 2 �� means that for somecontext �0, and all variables u 2 dom(�) and types B,u : B 2 � ) �0 `� �0(�bu) 2 �0(�bB)There are three cases of interest, depending on the position of u relative to v in �:



4.4. THE TRANSFORMATIONS 67� If u 2 dom(�1), then �bu = u and �bB = B (since, by weak validity of �, v does notoccur in B). Therefore the type condition is equivalent to �0 `� �0u 2 �0B.� If u 2 dom(�2), then �bu = u, so the typing condition is equivalent to �0 `� �0u 2�0(�bB), i.e., �0 `� �0u 2 �0B̂, where B̂ is the type assigned to u by �b�2.� If u = v then also B = A and �bu = Nb and �bB = B = A. Thus the typing conditionis equivalent to �0 `� �0Nb 2 �0A.For analyzing the latter case, we will need the following:Lemma 4.67 Given a context �0, a type A, and a (possibly ill-typed) substitution �0 2�dom(�0)dom(�b), we have �0 `� �0Nb 2 �0A i� (a) �0 `� �0A 2 Type, (b) �0A =� �0Cb, and (c) for1 � j � n, �0 `� �0vj 2 �0Cj.Proof: Using the de�nition of Nb and properties of substitution, we have�0Nb = �x1:�0A1: � � ��xm:�0Am: b ((�0v1)x1 � � �xm) � � � ((�0vn)x1 � � � xm)Recall that b is either a constant or one of the xi, so�0 � [ x1:�0A1; : : : ; xm:�0Am ] `� b 2 �0Bwhere B is as in De�nition 4.58. Therefore, �Nb is well-typed in �0 i� for 1 � j � n,�0�[ x1:�0A1; : : : ; xm:�0Am ] `� (�0vj)x1 � � � xm 2 [ (�0v1)x1 � � � xm=y1; : : : ; (�0vj�1)x1 � � �xm=yj�1 ](�Bj)By appealing to the abstraction typing rule m times, �-reducing, and recalling the de�nitionof the Cj, we can see that this is equivalent to the conjunction, for 1 � j � n, of�0 `� �0vj 2 �0CjAlso, if this is the case, then �0 `� �0Nb 2 �0CbWe can now show the equivalence stated in the lemma.Let A be an arbitrary type. First assume that �0 `� �0Nb 2 �0A. Then, since �0Nb iswell-typed in �0, by the argument above, we have �0 `� �0vj 2 �0Cj for 1 � j � n, and�0 `� �0Nb 2 �0Cb. Then by unicity of types (Proposition 2.30), �0A =� �0Cb. Finally,�0 `� �0A 2 Type by Proposition 2.34.Next, assume that the conditions (a), (b), and (c) hold. By condition (c), we have�0 `� �0Nb 2 �0Cb, and the result follows by the conversion typing rule, given conditions (a)and (b). 2



68 CHAPTER 4. A PRE-UNIFICATION ALGORITHMCombining the �rst two cases of interest above, with this analysis of the third case, resultsin the new condition that (a) �0A =� �0Cb, and (b) for all variables u and types Bu : B 2 �b ) �0 `� �0u 2 �0BThis latter condition is just �0 2 ��0�b. Since this applies to any �0, we conclude that�0 � �b 2 �� , �0 2 ��b ^ �0A =� �0CbReturning to our problem of re-expressing U(Q), we now have[b2Hf �̂ j 9�0:�̂ =� �0�(�b��0)^�0 2 ��b^(8h	 ; U; U 0i 2 D:�0(�bU) =� �0(�bU 0))^�0A =� �0Cb gwhich can also be written as[b2Hf �̂ j 9�0: �̂ =� �0 � (�b � �0) ^ �0 2 ��b ^ �0 uni�es (�bD ] fh[ ] ; A; Cbig) gand then collapsing the de�nition of U gives the equivalent form[b2H U(h�b; �b � �0; �bD ] fh[ ] ; A; Cbigi)These considerations motivate the following de�nition:De�nition 4.68 For each b 2 H de�ne the uni�cation problemQb = h�b; �b � �0; �bD ] fh[ ] ; A; CbigiTransformation 4.4 Let Q, H, and fQb j b 2 H g be as above. Then make the transitionQ 7! fQb j b 2 H gProposition 4.69 Transformation 4.4 is valid.Proof: Correctness (in the sense of De�nition 3.13) follows from the reasoning above.To prove acceptability, we must �rst show how to construct new accountings out of anold one. Let < be an accounting for Q. For each b 2 H, de�ne <bfr by1515Recall that � = �1 � v:A� �2, and �b = �1 � [ v1:C1; : : : ; vn:Cn ]� (�b�2).



4.4. THE TRANSFORMATIONS 69� �bP <bfr �bX if P < X and X 2 D [ ran(�2);� �bP <bfr B if P < B and B 2 ran(�1), in which case, F(P ) � dom(�1), so �bP = P ;� �bP <bfr Ci for 1 � i � n if P < A, in which case, �bP = P ;� �bP <bfr h[ ] ; A; Cbi if P < A, in which case, �bP = P ;� h[ ] ; A; Cbi <bfr �bP if P 6< A; and� h[ ] ; A; Cbi <bfr �bB for B 2 ran(�2).It is straightforward to check that <bfr is a strict partial order.To show that <bfr is an accounting, consider an arbitrary X 2 �bD]fh[ ]; A; Cbig]ran(�b).For the �rst part of De�nition 4.37 of an accounting, we will need to show that for any uni�er�0 2 ��b of D<bfrX , �0X is well-typed. There are four cases:� X = �bP for some P 2 D such that P < A. Then F(P ) � dom(�1) (by De�ni-tion 4.37), so X = �bP = P , and D<bfrX = �bD<P = D<P . (By transitivity, P 0 < P )P 0 < A, so F(P 0) � dom(�1).) The result then follows, since < is an accounting.� X = �bP for some P 2 D such that P 6< A. Then D<bfrX = �bD<P ] fh[ ] ; A; Cbig. Let�0 2 ��b be a uni�er of D<bfrX . Then �0 � �b uni�es D<P , and, since �0A =� �0Cb, from theconclusion following Lemma 4.67, �0 � �b 2 ��. Therefore, since < is an accounting,(�0 � �b)P is well-typed. But (�0 � �b)P = �0(�bP ) = �0X, so the result follows.� X = h[ ] ; A; Cbi or X = Ci for 1 � i � m. Then D<bfrX = �bD<A = D<A , sinceF(D<A) � dom(�1) by De�nition 4.37. The result then follows from Lemma 4.60.� X = B 2 ran(�1). Then, D<bfrX = �D<X = D<X , so the result follows as in the �rst case.� X = �bB, for B 2 ran(�2). Then D<bfrX = �bD<B ] fh[ ] ; A; Cbig. The reasoning is thesame as in the second case.The permanence condition of De�nition 4.38 follows from permanence of the �b (Propo-sition 4.65) and the closure of permanence under composition (Proposition 4.42).The third condition of acceptability, i.e., weak validity of �b, follows easily from weakvalidity of �, with the additional considerations that (a) F(Ci) � dom(�1) [ f v1; : : : ; vi�1 g,and (b) letting �2 = [ u1: B̂1; : : : ; uk: B̂k ], we have F(�B̂i) � dom(�1) [ f v1; : : : ; vn g [fu1; : : : ; ui�1 g.



70 CHAPTER 4. A PRE-UNIFICATION ALGORITHMWe will show minimality by contradiction: Assume that for some distinct b; b0 2 H, thereis some uni�er �̂ 2 U(Qb) \ U(Qb0). Then there are �0 and �00 such that �0 � (�b � �0) =� �̂ =��00 � (�b0 � �0), i.e., (�0 � �b) � �0 =� (�00 � �b0) � �0. But since �0 is permanent, �0 � �b =� �00 � �b0.However, �b and �b0 have no common instances, so this is a contradiction. 2Example 4.70 Consider the uni�cation problem Q = h�; �id� ; fh[ ] ; f >; triv>igi in thesignature h o:Type ; :̀o!Type ; >:o ; �:o!o!o ; triv:�p:o: ` (� p p) iwhere the uni�cation context � is [ f:�p:o: ` (� p>) ]In �!, a uni�cation problem like this (replacing the types by simple types) would have twosolutions, with possible instantiations for f being �z:o: triv> and �z:o: triv z. However,neither of these terms has the type required by �. Our transformations correctly fail to�nd a solution. We can apply the exible-rigid transformation (4.4). Trying the projectionsubstitution �p = [ �p:o: p=f ] yieldsh[ ]; �p; f h[ ] ; >; triv>i; h[ ] ; �p:o: ` (� p>); �p:o: oi gifor which applications of the rigid-rigid transformation (4.3) eventually indicate failure (i.e.,make a transition to f g). Trying instead the imitation substitution �triv = [ �p:o: triv (f1 p)=f ]yields h[ f1:o!o ]; �triv;D1i, where D1 isf h[ ] ; triv (f1>); triv>i ; h[ ] ; �p:o: ` (� p>); �p:o: ` (� (f1 p) (f1 p))i gFour applications of the rigid-rigid transformation (4.3) lead to the the disagreement setf h[ ] ; f1>; >i ; h[ p:o ] ; p; f1 pi ; h[ p:o ] ; >; f1 pi gThis will lead to failure, since f1 is constrained by the second disagreement pair to be �p:o: pand by the third disagreement pair to be �p:o:>.4.5 CompletenessIn this section we show that the transformations developed in the previous section togetherform a complete transformation relation in the sense of De�nition 3.17, and hence yielda complete pre-uni�cation algorithm. The main ideas in our completeness argument areessentially the same as Huet's.



4.5. COMPLETENESS 71De�nition 4.71 Let the transformation relation �� be the union of Transformations 4.1through 4.4.Proposition 4.72 �� is valid (correct, minimal and acceptable).Proof: Immediate from validity of the transformations, using Proposition 3.14. 2More substantial isProposition 4.73 �� is complete.Proof: We will use Proposition 3.20. Given a substitution �̂, de�ne the ordering ��̂ asfollows. Let Q = h�; �0;Di and Q0 = h�0; �00;D0i be two uni�cation problems having �̂ asa solution, and let � and �0 be such that �̂ =� � � �0 and �̂ =� �0 � �00. (These are uniquelydetermined up to convertibility because of the permanence of �0 and �00.) Then Q ��̂ Q0i� either (a) � � �0, or (b) � = �0 and �D >size �D0, where >size is the multiset orderingof disagreement sets based on size.16 Then ��̂ is clearly a well founded ordering (being thelexicographic combination of two well-founded orderings).Now, let Q = h�; �0;Di and Q0 = h�0; �00;D0i be such that for some Q0, we have Q �� Q0and Q0 2 Q0, thus satisfying the conditions of Proposition 3.20. We will show that Q ��̂ Q0,from which it follows that � is decreasing. Let � and �0 be substitutions such that �̂ =� � � �0and �̂ =� �0 � �00. (Again, these are unique up to convertibility.) There are two cases,depending on which of our transformations was used in making the transition from Q to Q0:� Other than the exible-rigid transformation. Then for some D1; P and D̂, D = D1 ]fPg, �0 = �, �00 = �0, and D0 = D1 ] D̂, where �P < �D̂. Thus � =� �0. Also, �D0results from �D by replacing the disagreement pair �P by the disagreement pairs �D̂of strictly smaller size, and thus �D >size �D0.� The exible-rigid transformation. Then, by Proposition 4.59, there is a �b, such that�00 =� �b � �0, � =� �0 � �b, and �� �0. 216The ordering ��̂ is only well-de�ned because the orderings � and >size are invariant under conversion.(See Proposition 4.62 and De�nition 4.16.)



72 CHAPTER 4. A PRE-UNIFICATION ALGORITHM4.6 Uni�ability of Solved Form Uni�cation ProblemsThe value of pre-uni�cation in �! is that solved form disagreement sets (ones containing onlyexible-exible pairs) are always uni�able, and so pre-uni�ability implies uni�ability [36]. Bymaking vital use of the accounting in the de�nition of acceptability, we can generalize Huet'sconstructive proof of this fact to acceptable solved form uni�cation problems in ��. For thesimply typed subset of ��, the uni�er that we construct specializes to Huet's.17De�nition 4.74 For a weakly valid context �, the canonical uni�er �C� over � is the substi-tution assigning to each variablev : �x1:A1: � � ��xm:Am: cN1 � � �Nnin �, the term �x1:A1: � � ��xm:Am: hcN1 � � �Nnwhere the kind assigned to the constant c is �y1:B1: � � ��yn:Bn: Type, and hc is a variableof type �y1:B1: � � ��yn:Bn: c y1 � � � yn(Note that in the simply typed subset of ��, n = 0.)Proposition 4.75 If Q is a acceptable uni�cation problem in solved form with uni�cationcontext �, then �C� 2 U(Q).Proof: Let < be an accounting for Q. Since disagreement sets are �nite, < is a wellfounded ordering, and thus we will give an inductive argument. Let P = h	 ; M; M 0i be anarbitrary member or our disagreement set. (There are no exible-exible type disagreementpairs.) We want to show that �C� uni�es P . By induction, we may assume that �C� uni�esD<P , and so �C�P is well-typed. Let M = vM1 � � �MmM 0 = v0M 01 � � �M 0m0where v and v0 are variables in dom(�) with typesv : �x1:A1: � � ��xm:Am:�w1:C1: � � ��wl:Cl: cN1 � � �Nnv0 : �x01:A01: � � ��x0m0:A0m0:�w01:C 01: � � ��w0l:C 0l: cN 01 � � �N 0n17There is another notion of uni�ability, sometimes called \closed" (as opposed to \open") uni�ability,which requires the unifying substitutions to contain only closed substitution terms (i.e., ones with no freevariables). In our terminology, this would require a uni�er � 2 �[ ]� . This problem is discussed for �!in [48], but is much more di�cult in ��, because determining the existence of closed terms of a given typeis equivalent to general theorem proving [30].



4.7. AUTOMATIC TERM INFERENCE 73for c : �y1:B1: � � ��yn:Bn: TypeThe reason that the types of both v and v0 must involve the same type constant c, is that�C�M and �C�M 0 have the same type. To express these two instantiated terms, for 1 � j � n,let N̂j = [ (�C�M1)=x1; : : : ; (�C�Mm)=xm ]NjN̂ 0j = [ (�C�M 01)=x1; : : : ; (�C�M 0m0)=xm0 ]N 0jand, for 1 � i � l, let Ĉi = [ (�C�M1)=x1; : : : ; (�C�Ml)=xl ]CiĈ 0i = [ (�C�M 01)=x01; : : : ; (�C�M 0l )=x0l ]C 0iThen we have �C�M = �w1: Ĉ1: � � � �wl: Ĉl: hc N̂1 � � � N̂n�C�M 0 = �w01: Ĉ 01: � � � �w0l: Ĉ 0l: hc N̂ 01 � � � N̂ 0nSince �C�P , which is h�C�	 ; �C�M; �C�M 0i, is well-typed, we have�w1: Ĉ1: � � ��wl: Ĉl: c N̂1 � � � N̂n =� �w01: Ĉ 01: � � ��w0l: Ĉ 0l: c N̂ 01 � � � N̂ 0nIt then follows that each N̂j =� N̂ 0j, and also that each Ĉi =� Ĉ 0i, so �C�M =� �C�M 0. 24.7 Automatic Term InferenceIt is well known that �rst-order uni�cation provides for type inference in �! with typevariables and in similar languages [51]. Recently, it has been shown that HOU! is the keyingredient for the corresponding problem in the !-order polymorphic �-calculus [59]. In ��there is another problem of interest, namely term inference, which requires HOU�. Thisproblem has two important applications. One is making our uni�cation algorithm morewidely applicable, by initially establishing the required invariant, as mentioned at the endof Section 4.3, and made precise below. The other is to provide automatic type inference inencoded languages, as described in Chapter 7. As in the type inference algorithms mentionedabove, the basic idea is to combine type-checking and uni�cation, in this case, HOU�. Asimilar problem is addressed by Huet [33] and by Pollack [61] under the name of \argumentsynthesis".Given a signature �, context �, and a term M whose free variables are all typed by �,it may be the case that M is not well-typed, but it has well-typed substitution instances.The goal of term inference is to determine exactly which substitution instances (if any) of a



74 CHAPTER 4. A PRE-UNIFICATION ALGORITHMgiven term are well-typed. It does this by collecting pairs of types that have to be uni�edby any substitution instantiating M to a well-typed term.We will construct the type checking/term inference algorithm using two mutually recur-sive operations expressed as an inference system. We de�ne two judgments, \�;	 `� M 2A with D" and \�;	 `� A 2 K with D", where D is a disagreement set. For the �rstjudgment, M will be given and we will compute A and D. In the second, A will be givenand we will compute K and D. Uni�ers of D, if any, will lead to instantiations of M and A(or A and K), as will be made precise below. As usual, � is the uni�cation context, and 	is a universal context.There is a Standard ML [29] implementation based on this procedure extended to dealwith type variables [19].De�nition 4.76 Let the judgments \�;	 `� A 2 K with D" and \�;	 `� M 2 A with D"be de�ned by the following inference system.First for terms, c:A 2 ��;	 `� c 2 A with f gv:A 2 ��	�;	 `� v 2 A with f g�;	 `� A 2 Type with D �;	 � v:A `� M 2 B with D0�;	 `� �v:A: M 2 �v:A: B with D ]D0�;	 `� M 2 C with D C wh�� �v:A: B �;	 `� N 2 A0 with D0�;	 `� M N 2 [N=v ]B with fh	 ; A; A0ig ]D ]D0and then for types, c:K 2 ��;	 `� c 2 K with f g�;	 `� A 2 Type with D �;	� v:A `� B 2 Type with D0�;	 `� �v:A: B 2 Type with D ]D0�;	 `� A 2 Type with D �;	� v:A `� B 2 K with D0�;	 `� �v:A: B 2 �v:A: K with D ]D0�;	 `� A 2 �v:B: K with D �;	 `� M 2 B 0 with D0�;	 `� AM 2 [M=v ]K with fh	 ; B; B0ig ]D ]D0Once we construct A and D such that �;	 `� M 2 A with D, we will want to use ouruni�cation procedure to �nd uni�ers of D, and so it is necessary that the uni�cation problemh�; �id� ;Di be acceptable (in the sense of De�nition 4.38).



4.7. AUTOMATIC TERM INFERENCE 75Proposition 4.77 Let � be a valid signature, � and 	 valid uni�cation and universal con-texts respectively, and M a (possibly ill-typed) term. Let A and D be such that �;	 `� M 2A with D, and let Q = h�; �id� ;Di. Then (a) Q is acceptable, and (b) for every context�0 and solution � 2 ��0� of Q, it is the case that �0 � �	 `� �M 2 �A (and hence, byProposition 2.34, also that �0 � �	 `� �A 2 Type). Similarly for types.Proof: We will argue by induction on the derivation D of �;	 `� M 2 A with D:� If D consists of an instance of the �rst rule (for constants), then M = c for someconstant c:A 2 �, and D = f g, so Q is vacuously acceptable. (Cf. De�nition 4.38of acceptability, noting that �id� is trivially permanent.) Next, let �0 be a context, and� 2 ��0� . (Since D = f g, � uni�es D.) Then �c = c, and F(A) = f g, so we also have�A = A, and thus �0 � �	 `� �M 2 �A.� If D consists of an instance of the second rule (for variables), then M = v for somevariable v:A 2 ��	, and D = f g. The reasoning for part (a) is similar to the previouscase. For part (b), if v 2 dom(	), then the reasoning is the same as the previous case.Otherwise, v 2 dom(�), and, we simply rely on the de�nition of ��0� .� Assume that D ends in an instance of the third rule. Then M is an abstraction�v: Â: M̂ , and A is a type �v: Â: B̂, where for some disagreement sets D̂ and D̂0,18D contains subderivations of (a) �;	 `� Â 2 Type with D̂, and (b) �;	 � v: Â `�M̂ 2 B̂ with D̂0, and D = D̂ ] D̂0. By the induction hypothesis, Q̂ = h�; �id� ; D̂i andQ̂0 = h�; �id� ; D̂0i are acceptable, so there are accountings <̂ of Q̂ and <̂0 of Q̂0. Then theunion < of <̂ and <̂0 is an accounting for Q, and thus Q is acceptable. To see the secondcondition, let �0 be a context, and let � 2 ��0� be a uni�er of D. Since D = D̂ ] D̂0,� uni�es D̂ and D̂0 as well. Thus, by the induction hypothesis, �0 � �	 `� �Â 2 Typeand �0��	�v:�Â `� �M̂ 2 �B̂. Then from the typing rule for abstractions, it followsthat �0 � �	 `� �v:�Â: �M̂ 2 �v:�Â: �B̂, i.e., �0 � �	 `� �M 2 �A.� Assume D ends in an instance of the fourth rule. Then M is an application M̂ N̂ ,A = [ N̂=v ]B̂, D = fh	 ; Â; Â0ig ] D̂ ] D̂0, and D contains subderivations of theform �;	 `� M̂ 2 C with D̂ and �;	 `� N̂ 2 Â0 with D̂0, where C wh�� �v: Â: B̂.By the induction hypothesis, Q̂ = h�; �id� ; D̂i and Q̂0 = h�; �id� ; D̂0i are acceptable,having accountings <̂ and <̂0 respectively. Also by the induction hypothesis, for anycontext �0 and uni�er � 2 ��0� of D̂ and D̂0, we have �0 � �	 `� �C 2 Type, and�0��	 `� �Â0 2 Type. By substitutivity of wh� (Proposition 4.5), �Cwh���(�v: Â:B̂).Also, since wh� preserves typing (Corollary 4.4), we have �0��	 `� �v:�Â:�B̂ 2 Type,and thus �0� �	 `� �Â 2 Type. In other words, D̂ ] D̂0 \accounts for" h	 ; Â; Â0i, inthe sense of De�nition 4.37 of an accounting. Thus we can construct an accounting <18We are departing here from our convention of using \D̂" for disagreement sequences.



76 CHAPTER 4. A PRE-UNIFICATION ALGORITHMfor Q by P < X i� either (a) P <̂X, (b) P <̂0X, or (c) P 2 D̂] D̂0 and X = h	 ; Â; Â0i,and hence Q is acceptable.The second requirement is that for any uni�er � 2 ��0� of D, we have �0 � �	 `��(M̂ N̂) 2 �([ N̂=v ]B̂). By the induction hypothesis, �0 � �	 `� �M̂ 2 �v:�Â: �B̂and �0 � �	 `� �N̂ 2 �Â0. Since � uni�es D, it uni�es, in particular, h	 ; Â; Â0i,i.e., �Â =� �Â0, and so by the conversion typing rule, �0 � �	 `� �N̂ 2 �Â. Then,by the application typing rule, �0 � �	 `� (�M̂) (�N̂ ) 2 [ �N̂=v ](�B̂). However, byLemma 2.23, we know that [ �N̂=v ](�B̂) = �([ N̂=v ]B̂), so the conclusion follows.The cases for types are analogous. 2The previous proposition states that every solution of the constructed uni�cation problemleads to a typing of the given term or type. The following says that all possible typings canbe obtained this way.Proposition 4.78 Let � be a valid signature, � and 	 valid contexts, and M a term withall of its free variables in � � 	. For any context �0, substitution � 2 ��0� , and type A0,if �0 � �	 `� �M 2 A0, then there is a type A and a disagreement set D such that (a)�;	 `� M 2 A with D, (b) � 2 U(h�; �id� ;Di), and (c) A0 =� �A. Similarly for types.Proof: First consider the case that M is a variable v 2 dom(�). Then for some Â, wehave v : Â 2 � � 	. Therefore, �;	 `� v 2 Â with f g, and � 2 U(h�; �id� ; f gi). ByDe�nition 2.41 of ��0� and strengthening (Proposition 2.31), �0 � �	 `� �v 2 �Â. Then bytype unicity (Proposition 2.30), A0 =� �Â, so the result follows with A = Â and D = f g.19We now proceed by induction on the derivation D of �0 � �	 `� �M 2 A0, under theassumption that M 62 dom(�).� If D consists solely of an instance of the rule for typing constants, then �M is someconstant c such that c:A0 2 �. Since �M = c and we are assuming M 62 dom(�), itfollows that M = c. (Note that we are considering �M = c and not �M =� c.) Thenwe have (a) �;	 `� M 2 A0 with f g, (b) � 2 U(h�; �id� ; f gi, and (c) A0 = �A0 (sincethe types in a valid signature contain no free variables).� If D consists solely of an instance of the variable typing rule, then �M is a variable,and hence M is a variable u 2 dom(	) (since M 62 dom(�)). Then the result follows,with A being the type of u in 	 and D = f g.19Note that we have again relied on type unicity, which does not hold for the calculus ��� of the nextchapter. We will not deal with term inference for ���.



4.7. AUTOMATIC TERM INFERENCE 77� Assume that D ends in an instance of the rule for typing abstractions. Then �M isan abstraction, and since we are assuming that M 62 dom(�), M must also be anabstraction, say M = �v: Â: M̂ . Thus �M = �v:�Â: �M̂ , A0 = �v:�Â: B 0 for some B0,and D contains subderivations of (1) �0� �	 `� �Â 2 Type, and (2) �0� �	�v:�Â `��M̂ 2 B 0. By the induction hypothesis, there is a kind K, a type B̂0, and disagreementsets D̂ and D̂0 such that (a) �;	 `� Â 2 K with D̂ and �;	�v: Â `� M̂ 2 B̂ with D̂0,(b) � 2 U(h�; �id� ; D̂i) and � 2 U(h�; �id� ; D̂0i), and (c) B0 =� �B̂0 and Type =� �K(i.e., K = Type). Thus we have (a) �;	 `� �v: Â: M̂ 2 �v: Â: B̂ with D̂ ] D̂0 (byDe�nition 4.76), (b) � 2 U(h�; �id� ; D̂ ] D̂0i), and (c) A0 = �v:�Â: B0 =� �v:�Â: �B̂ =�(�v: Â: B̂). Thus, letting D = D̂ ] D̂0 and A = �v: Â: B̂, the conclusion follows.� Assume that D ends in an instance of the rule for typing applications. Then (sinceM 62 dom(�)),M is an application M̂ N̂ , so �M is (�M̂) (�N̂ ), where, for some v; Â0; B̂0,D contains subderivations of �0 � �	 `� �M̂ 2 �v: Â0: B̂0 and �0 � �	 `� �N̂ 2 Â0,where A0 = [ �N̂=v ]B̂0. By the induction hypothesis, there are types Ĉ and Â, anddisagreement sets D̂ and D̂0 such that (a) �;	 `� M̂ 2 Ĉ with D̂ and �;	 `� N̂ 2Â with D̂0, (b) � 2 U(h�; �id� ; D̂i) and � 2 U(h�; �id� ; D̂0i), and (c) �v: Â0: B̂0 =� �Ĉand Â0 =� �Â. Then Ĉ wh�� �v: Â00: B̂ for some Â00 and B̂, where �Â00 =� Â0 and�B̂ =� B̂0. Therefore, we have �;	 `� M̂ N̂ 2 [ N̂=v ]B̂ with fh	 ; Â00; Âig ] D̂ ] D̂0,and so the �rst condition follows, with D = fh	 ; Â00; Âig] D̂ ] D̂0 and A = [ N̂=v ]B̂.The second condition follows since � uni�es D̂ and D̂0 by our induction hypothesis, andbecause �Â00 =� Â0 =� �Â. The third condition, A0 =� �A, holds because B̂0 =� �B̂,and so A0 = [ �N̂=v ]B̂0 =� [ �N̂=v ](�B̂) = �([ N̂=v ]B̂) = �A.� Finally (for terms), assume that D ends in an instance of the conversion typing rule,i.e., D has the form...�0 � �	 `� �M 2 A00 ...�0 � �	 `� A0 2 Type A00 =� A0�0 � �	 `� �M 2 A0By the induction hypothesis, there are A and D such that (a) �;	 `� M 2 A with D,(b) � 2 U(h�; �id� ;Di), and (c) A00 =� �A. However, since A00 =� A0, we have A0 =� �A,so the result follows with the same choice of A and D. 2Given a term M in a context � we do type-checking/term inference as follows. If thereis no A;D such that �; [ ] `� M 2 A with D, then, by the proposition, M has no well-typed instance, so we indicate failure. Otherwise, for such an A;D, let Q be a �CSPof h�; �id� ;Di. If Q is empty, then M has no well-typed instance. Otherwise, for each



78 CHAPTER 4. A PRE-UNIFICATION ALGORITHMh�0; �0;D0i 2 Q, we return the instantiated term �0M and the instantiated type �0A, togetherwith the \constraint" D0. (Depending on the application, if Q has more than one element,and/or if D0 is nonempty for some h�0; �0;D0i 2 Q, it may be appropriate to request a userto provide a more constrained term.)If on the other hand we have two terms M and M 0 to be uni�ed in a context �, we canproceed as follows: If there is no A;D such that �; [ ] `� M 2 A with D or there is noA0;D0 such that �; [ ] `� M 0 2 A0 with D0, then indicate a typing error. Otherwise, for suchan A;D and A0;D0, construct a �CSP of h�; �id� ; fh[ ] ; M; M 0ig ]D ]D0 ] fh[ ] ; A; A0igi.In a practical implementation, it is better to exhaustively apply at least the non-branchingtransformations (4.1 through 4.3) to the type disagreement pairs produced in this process,rather than having completely separate collection and pre-uni�cation phases as describedabove.



Chapter 5ProductsIn this chapter, we extend the pre-uni�cation algorithm developed in the previous chapterto the calculus \���", which is �� enriched with a dependent version of Cartesian producttypes, often called \strong sum types", or simply \� types".1 The new algorithm thenfollows naturally from an analysis of weak head normal form terms and types, as guided byour development of HOU�. Finally, we present a commonly used notational variation thatwill make examples easier to read.Many of the de�nitions and propositions carry over from Chapters 2 and 4 to this calculus.We will point out the extensions needed. In general, the degree of detail presented in thischapter is lower than the preceding one.5.1 The Language ExtensionRather than stating the entire calculus, we will only state the new language constructs, typingrules and conversion rules. The new terms of ��� are for the construction and decompositionof pairs: M ::= M;Nj fstMj sndMwhere \," associates to the right and binds less tightly than application.Just as the type of the result of an application can depend on the value of the argument,the type of the second element of a pair can depend on the value of the �rst element. Thenew types of ��� are for these dependent pairs:A ::= �v:A: B1This use of � is not to be confused with the use of � for signatures.79



80 CHAPTER 5. PRODUCTSWe will often use the abbreviation \A� B" for �v:A: B when v is not free in B, and then\�" associates to the right and binds less tightly than \!".All of the typing rules from �� carry over to ���. The new typing rules areTypes � `� A 2 Type � � v:A `� B 2 Type� `� �v:A: B 2 TypeTerms � `� M 2 A � `� N 2 [M=v ]B� `� M;N 2 �v:A: B� `� M 2 �v:A: B� `� fstM 2 A� `� M 2 �v:A: B� `� sndM 2 [ fstM=v ]BAn interesting feature of ��� not occurring in �� is that well-typed terms do not haveunique types (modulo =�), as illustrated in the following:Example 5.1 Let our signature � includeh o:Type ; :̀o!Type ; >:o ; I>:` > iThen in � and the empty context, the term (>; I>) has both types �p:o: ` p and o� (` >).5.2 SubstitutionWe need to extend De�nition 2.7 of � given for ��:De�nition 5.2 Given variable sets V and V 0, and a substitution � 2 ��, let � be thefunction from �V�� to �V 0�� satisfying the properties listed in De�nition 2.7, together with thefollowing. First for terms, �(M;N) = (�M; �N)�(fstM) = fst (�M)�(sndM) = snd (�M)and then for types, �(�u:A: B) = �u:�A: �+uB if u 62 V [ V 0The properties of substitution proved in that section carry over directly to ���. We willcontinue to write \�" in place of \�", \�0 � �" in place of \�0 � �", and \�", in place of �+u,where the u is clear from the context.



5.3. CONVERSION 815.3 ConversionIn order for the � rules speci�ed in De�nition 2.16 to be meaningful in this calculus, themeaning of F(U) given in De�nition 2.1 is extended to our new language constructs in theobvious way.The new reduction relations are fst (M;N) �1 Msnd (M;N) �2 N(fstM; sndM) � MThe last rule is often referred to as \surjectivity".De�nition 5.3 Given a binary relation � on ���, the relation !� extends De�nition 2.18,with the following additional cases, �rst for types,A!� A0�v:A: B !� �v:A0: BB !� B0�v:A: B !� �v:A: B0and then for terms M !� M 0(M;N) !� (M 0; N)N !� N 0(M;N)!� (M;N 0)M !� M 0fstM !� fstM 0M !� M 0sndM !� sndM 0The relations !�� and $�� are again the reexitive transitive closure, and the equivalenceclosure, respectively, of !�.Then we extend our notion of convertibility:De�nition 5.4 The convertibility relation =� is $����1�2�.



82 CHAPTER 5. PRODUCTSThe well-typed terms in the analogous extension \�!�" of �! have the important nor-malization and Church-Rosser properties [62, 73]. Again, we will assume that the proofcan be carried through to ���, and again, we could eliminate this assumption by rede�ningconvertibility as discussed in Section 2.3.We will also need to extend Proposition 2.22, which states the substitutivity of � and �:Proposition 5.5 The reduction relations �1, �2, and � are substitutive.Proof: Simple consequence of the de�nition of �. 2It is also simple to extend the proof of Proposition 2.25 to show that for substitutiverelations �, the relations !�, !��, and $�� are substitutive.Finally, we must extend Proposition 2.36, which states that � and � preserve typing, tothe new reduction relations �1 and �2.Proposition 5.6 The reduction relations �1 and �2 preserve typing.Proof: Of the two, �2 is the trickier. Let D be a derivation of � `� snd (M;N) 2 Cfor some type C. Then D ends in an instance of the typing rule for snd, followed by zeroor more type conversions. Thus for some v;A;B, (a) D contains a subderivation D1 of� `� (M;N) 2 �v:A: B, and (b) C =� [ fst (M;N)=v ]B and thus C =� [M=v ]B. Also,D1 ends in an instance of the pair typing rule, followed by zero or more type conversions.Thus for some v0; A0; B 0, (a) D1 contains a subderivation of � `� N 2 [M=v0 ]B0, and (b)�v:A:B =� �v0:A0:B0. By consideration of normal forms then, A0 =� A and B0 =� [ v0=v ]B.Thus, [M=v0 ]B0 =� [M=v0 ]([ v0=v ]B) = [M=v ]B =� C, so � `� N 2 C by the conversiontyping rule. 25.4 Normal FormsWe need new normal forms to accomodate the new reduction rules. Recall that in HOU� weused the � rule to weakly head normalize terms and types. In HOU�� we will want to usethe �1 and �2 rules also:



5.4. NORMAL FORMS 83De�nition 5.7 The \weak head reduction" relation wh��1�2 extends wh� (De�nition 4.1) asfollows. In place of the �rst rule of De�nition 4.1, we haveU��1�2U 0U wh��1�2 U 0Then for types, A wh��1�2 A0AM wh��1�2 A0Mand for terms, M wh��1�2 M 0M N wh��1�2 M 0NM wh��1�2 M 0fstM wh��1�2 fstM 0M wh��1�2 M 0sndM wh��1�2 sndM 0Proposition 5.8 If U wh��1�2 V then U !��1�2 V .Proof: A simple induction of the derivation of U wh��1�2 V . 2Corollary 5.9 wh��1�2 preserves types.As in Proposition 4.5, it is easy to showProposition 5.10 wh��1�2 is substitutive.Then we have the new version of WHNF and body:De�nition 5.11 A term or type U is in (��1�2) weak head normal form (WHNF) i� thereis no V such that U wh��1�2 V .Example 5.12 We have the following reductionsfst (snd (x; (�w: i: g w w)) y) z wh��1�2 fst ((�w: i: g ww) y) zfst ((�w: i: g ww) y) z wh��1�2 fst (g y y) zand the �nal term is in WHNF.



84 CHAPTER 5. PRODUCTSDe�nition 5.13 A body is a (possibly ill-typed) WHNF term or type that is neither anabstraction nor pair.Similarly to Proposition 4.8, we will need the following.Proposition 5.14 A well-typed term body is either� a variable,� a constant,� M N for a well-typed body M , or� fstM or sndM for a well-typed body M .and a well-typed type body is either� a type constant,� �v:A: B or �v:A: B, or� AM for a well-typed body A that is neither a � nor a � type,Proof: Follows easily from De�nitions 5.11 and 5.7. The restriction of well-typedness en-sures that, (a) in M N , M is not a pair, (b) in fstM or sndM , M is not an abstraction, and(c) in AM , A is not a � or � type. 25.5 Some Useful Properties of ConvertibilityAs in Chapter 4, we present some methods for decomposing questions of convertibility of dis-agreement pairs into questions of simultaneous convertibility of \simpler" sets of constructeddisagreement pairs.



5.5. SOME USEFUL PROPERTIES OF CONVERTIBILITY 85De�nition 5.15 Extend the notion of the size of a ��1�2 normal form term or type U(De�nition 4.16) by the following. First for types,size(fstM) = 1 + size(M)size(sndM) = 1 + size(M)size((M;N)) = size(M) + size(N) + 1Then for types, size(�v:A: B) = size(A) + size(B) + 1The de�nition is extended to well-typed terms and types (not necessarily in normal form),and to disagreement pairs, as in De�nition 4.16.Note that well-typedness is crucial for the notion of size to be well de�ned.The meaning of \P < D" is as given in De�nition 4.18, given this new de�nition of size.5.5.1 Weak Head RedicesThis case is handled in analogy to Section 4.2.1, using wh��1�2 instead of wh�:De�nition 5.16 The decomposition method ;wh is given byU wh��1�2 Vh	 ; U; U 0i;wh hh h	 ; V; U 0i iiU 0 wh��1�2 V 0h	 ; U; U 0i;wh hh h	 ; U; V 0i iiThen we haveProposition 5.17 Let P be a well-typed disagreement pair and D̂ a disagreement sequencesuch that P ;wh D̂. Then P < D̂.Proof: The argument goes exactly as with of Proposition 4.20, replacing � by ��1�2. 2



86 CHAPTER 5. PRODUCTS5.5.2 Abstractions and pairsThe treatment of pair terms is conceptually similar to the treatment given to abstractionsin Section 4.2.2, and so we treat them together. This is the only form of � or � conversionused by the algorithm.De�nition 5.18 Let the syntactic decomposition relation \;��" be de�ned by the union ofthe relation ;� (De�nition 4.21) and the relation de�ned by the following rules:h	 ; (M;N); (M 0; N 0)i;�� hh h	 ; M; M 0i ; h	 ; N; N 0i iiM 0 is a bodyh	 ; (M;N); M 0i;�� hh h	 ; M; fstM 0i ; h	 ; N; sndM 0i iiM is a bodyh	 ; M; (M 0; N 0)i;�� hh h	 ; fstM; M 0i ; h	 ; sndM; N 0i iiProposition 5.19 Let P be a well-typed disagreement pair and D̂ a disagreement sequencesuch that P ;�� D̂. Then P < D̂.(Proof below.)Example 5.20 Let our signature � = h i:Type ; a: i ; b: i ; c: i� i i, and our uni�cation con-text � = [ x: i ; y: i ]. Let P1 = h[ ] ; (x; a); ci. ThenP1 ;�� hh h[ ] ; x; fst ci; h[ ] ; a; snd ci iiNext, let P2 = h[ ] ; (x; c); (b; y)i. ThenP2 ;�� hh h[ ] ; x; bi; h[ ] ; a; yi iiProof of Proposition 5.19: The abstraction cases have already been proved in Propo-sition 4.22. We will prove the claim for the second pair case. Thus P = h	 ; (M;N); M 0iand D̂ = hh h	 ; M; fstM 0i; h	 ; N; sndM 0i ii, where M 0 is a body. To prove that the�rst condition of De�nition 4.18 of < is satis�ed, �rst assume that (M;N) =� M 0. ThenM =� fst (M;N) =� fstM 0 and N =� snd (M;N) =� sndM 0. Next, assume thatM =� fstM 0and N =� sndM 0. Then (M;N) =� (fstM 0; sndM 0) =� M 0.For the second part, we must show that P 01 = h	 ; M; fstM 0i is well-typed, and that ifM =� fstM 0 then P 02 = h	 ; N; sndM 0i is well-typed. Since P is well-typed, there must besomeB such that (M;N) andM 0 both have type B in ��	. But then B must be convertibleto the form �v: Â: B̂, where (a) � � 	 `� M 2 Â, and (b) � � 	 `� N 2 [M=v ]B̂. But



5.5. SOME USEFUL PROPERTIES OF CONVERTIBILITY 87also (a) ��	 `� fstM 0 2 Â, which shows that P 01 is well-typed, and (b) ��	 `� sndM 0 2[ fstM 0=v ]B̂, which shows that if M =� fstM 0 then P2 is well-typed.The size requirement follows sincesize(h	 ; (M;N); M 0i) = size(M) + size(N) + 1 + size(M 0)while size(h	 ; M; fstM 0i) = size(M) + size(M 0) + 1(recalling that size(N) > 0 for all N), and similarly for h	 ; N; sndM 0i.The third pair decomposition case is analogous, and the �rst case is simpler. 25.5.3 BodiesTo treat bodies, we will need a new version of \;rr":De�nition 5.21 Given a disagreement pair P relating bodies, and a disagreement sequenceD̂, P rigidly decomposes to D, written \P ;rr D̂", according to the inference system ofDe�nition 4.28, plus the following new inference rules. First for terms,h	 ; M; M 0i;rr D̂h	 ; fstM; fstM 0i;rr D̂h	 ; M; M 0i;rr D̂h	 ; sndM; sndM 0i;rr D̂and then for typesh	 ; �v:A: B; �v:A0: B0i;rr hh h	 ; A; A0i; h	� v : A ; B; B0i iiWe de�ne \U � U 0" and \topeq(P )" as before.Again we will useProposition 5.22 Let P be a disagreement pair relating bodies. If eq�(P ), then topeq(P ).Otherwise, let P ;rr D̂. Then P < D̂.Proof of Proposition 5.22: Similar to the proofs of Propositions 4.32 and 4.34. 2



88 CHAPTER 5. PRODUCTSExample 5.23 Let the disagreement pairP = h[ ] ; snd ((fst g)x y) z; snd ((fst g)u v)wiThen P ;rr hh h[ ] ; x; ui ; h[ ] ; y; vi ; h[ ] ; z; wi iiExample 5.24 Changing the previous example, letP = h[ ] ; snd ((fst g)x y) z; fst ((snd g)u v)wiThen :topeq(P ).5.6 The TransformationsThe meaning of solved form carries over without change from De�nition 4.46.As in Section 4.4, the following fact will play an important roleProposition 5.25 Let Q = h�; �0;D ] fP gi be acceptable, D̂ be such that for any � 2 ��such that �P is well-typed, �P < �D̂, and Q0 be h�; �0;D]D̂i. Then the transition Q 7! fQ0gis valid.Proof: The proof of Proposition 4.47, which did not depend on the particulars of ��,applies here. 2We will also need an extended notion of head:De�nition 5.26 The head of a body, which is an atom or one of the symbols � or �, isgiven by, �rst for terms,� head(v) = v,� head(c) = c,� head(M N) = head(M),� head(fstM) = head(sndM) = head(M),



5.6. THE TRANSFORMATIONS 89and then for types� head(c) = c,� head(AM) = head(A),� head(�v:A: B) = �,� head(�v:A: B) = �,Example 5.27 The head of snd ((fst f)x y) z is f .The meanings of exible and rigid are as in De�nition 4.45 (extending rigid to cover thepossibility of � as a head), given this new notion of head. Another change is to De�nition 4.43of weak validity of a context � = [ u1:B1; : : : ; un:Bn ]. We will require that each Bi is of theform Qx1:A1: � � �Qxm:Am: A0, where (a) each Qi is � or �, and (b) A0 is atomic.5.6.1 RedicesThe treatment of weak head redices is the same as in HOU�, given the new de�nition of;wh:Transformation 5.1 Let Q = h�; �0;D ] fP gi and let D̂ be such that P ;wh D̂. Thenmake the transition Q 7! fh�; �0;D ] D̂igProposition 5.28 Transformation 5.1 is valid.Proof: The argument goes as for Transformation 4.1. 2



90 CHAPTER 5. PRODUCTS5.6.2 Abstractions and PairsWe will treate these two together, extending the treatment given for HOU�.Proposition 5.29 Let P be a disagreement pair and D̂ a disagreement sequence such thatP ;�� D̂. Then for any � 2 ��, �P ;�� �D̂, and in particular if �P is well-typed then�P < �D̂ .Proof: We have already treated the abstraction cases in Proposition 4.50. To treat a dis-agreement pair involving a pair let P = h	; (M;N);M 0i and D̂ = hh h	;M; fstM 0i; h	; N; sndM 0i ii,and reason �P = �h	 ; (M;N); M 0i= h�	 ; �(M;N); �M 0i= h�	 ; (�M; �N); �iM 0;�� hh h�	 ; �M; fst (�M 0)i; h�	 ; �N; snd (�M 0)i ii= hh h�	 ; �M; �(fstM 0)i; h�	 ; �N; �(sndM 0)i ii= �D̂The �nal conclusion follows from Proposition 5.19.The other pair decomposition cases are similar. 2Transformation 5.2 Let Q = h�; �0;D ] fP gi, and let D̂ be such that P ;�� D̂. Thenmake the transition Q 7! fh�; �0;D ] D̂igProposition 5.30 Transformation 5.2 is valid.Proof: Immediate from Propositions 5.25 and 5.29. 2



5.6. THE TRANSFORMATIONS 915.6.3 Rigid-rigidThe treatment of this case is exactly as in Section 4.4.4, given the extended meaning of\;rr":Proposition 5.31 Let P be a rigid-rigid disagreement pair. If :topeq(P ), then P is nonuni�-able. If P ;rr D̂, then for all � 2 ��, �P ;rr �D̂, and in particular if �P is well-typed, then�P < �D̂, and hence �P < �D̂.Proof: Refer to proof of Proposition 4.53. The new cases (fst, snd, and �) present no newdi�culties. 2Transformation 5.3 Let Q = h�; �0;D ] fP gi be acceptable, where P is rigid-rigid. If:topeq(P ) then make the transition Q 7! f gOtherwise, let P ;rr D̂, and make the transitionQ 7! fh�; �0;D ] D̂igProposition 5.32 Transformation 5.3 is valid.Proof: Immediate from Propositions 5.25 and 5.31. 25.6.4 Pair-producing VariablesThe purpose of this case is just to simplify treatment of the exible-rigid case, by eliminatingcertain types of variables. It is di�erent from the other transformations, in that it is possiblefor a uni�cation problem to be in solved form even when this transformation applies.De�nition 5.33 A pair-producing type is one that is convertible to the form�x1:A1: � � ��xm:Am: �u: Â: B̂where m is possibly zero.



92 CHAPTER 5. PRODUCTSConsider a uni�cation problem Q = h�; �0;Di, where � contains a variable of pair-producing type. We will treat this case using a simpli�cation of the ideas in Section 4.4.5,introducing an approximating substitution, having the e�ect of replacing a uni�cation vari-able of pair-producing type by two new variables of simpler type.De�nition 5.34 Given a uni�cation context � = �1�v:A��2, where A is a pair-producingtype convertible to �x1:A1: � � ��xm:Am:�u: Â: B̂, letN� = �x1:A1: � � ��xm:Am: (v1 x1 � � �xm; v2 x1 � � � xm)where f v1; v2 g \ (dom(�1) [ dom(�2)) = f g. Then de�ne the approximating substitution�� = [N�=v ]dom(�1)[fv1;v2 g[dom(�2)dom(�)For the types of the new variables v1; v2, letC1 = �x1:A1: � � ��xm:Am: ÂC2 = �x1:A1: � � ��xm:Am: [ (v1 x1 � � �xm)=u ]B̂and de�ne the new context�� = �1 � [ v1:C1 ; v2:C2 ]� (���2)(Note that these are all well-de�ned up to convertibility.)Similarly to Propositions 4.59 and 4.64, we will need the following:Proposition 5.35 Let Q = h�; �0;Di, where � is as above. For any � 2 �� (and inparticular for any such � that uni�es D), � is an instance of ��, i.e., there is a �0 such that� =� �0 � ��. Furthermore, we can choose such a �0 such that �� �0 (see De�nition 4.63).Proof: The key observation is that for any � 2 ��, �v is convertible to a term of the form�x1:A1: � � ��xm:Am: (N1; N2)and that this is equivalent to saying that � =� �0 � ��, where�0v1 = �x1:A1: � � ��xm:Am: N1�0v2 = �x1:A1: � � ��xm:Am: N2and �0 agrees with � on dom(�)� fvg. In particular, this is true for any uni�er � of D. 2Now we can state our transformation:



5.6. THE TRANSFORMATIONS 93Transformation 5.4 Let Q = h�; �0;Di be a uni�cation problem, with � and �� as above.Then make the transition Q 7! fh�� ; �� � �0; ��DigExample 5.36 Let the signature be� = h a:Type ; b:Type ; c:Type ; d:Type ; g:c!a!d iand the uni�cation context be � = [ f:a!b� (c!d) ]Let our uni�cation problem beQ = h�; �id� ; fh[ x:a ; y:c ] ; snd (f x) y; g y xigiApplying Transformation 5.4 gives fh��; ��; fP 0gig, where�� = [ f1:a!b ; f2:a!c!d ]�� = [ (�z:a: f1 z; f2 z)=f ]P 0 = h[ x:a ; y:c ] ; snd ((�z:a: f1 z; f2 z)x) y; g y xiThen applying Transformation 5.1 for weak head reduction gives the disagreement pairh[ x:a ; y:c ] ; f2 x y; g y xiThe proof of validity of this transformation is similar to but simpler than the exible-rigidtransformation proof in Section 4.4.5. Recall the de�nition of U(Q) from De�nition 3.5:f �̂ j 9�: �̂ =� � � �0 ^ � 2 �� ^ � uni�es D gFrom Proposition 5.35, we know that the condition � 2 �� implies the additional condition9�0: � =� �0 � ��As before, we can thus add this condition without changing the meaning of the set expression.Then, by steps similar to those on page 66, we get the equivalent form of U(Q):f �̂ j 9�0: �̂ =� �0 � (�� � �0) ^ �0 � �� 2 �� ^ �0 uni�es ��D gAgain, this is almost in the right form to be collapsed into h��; �� � �0; ��Di. The onlyproblem is the condition �0 � �� 2 ��, instead of �0 2 ��� . Reasoning as before, we can seethat �0 � �� 2 �� i� (a) for each u: B̂ 2 ��, excepting u 2 f v1; v2 g, we have �0 `� �0u 2 �0B̂,and (b) �0 `� �0N� 2 �0A. The following lemma shows that this is exactly what we need.(Note that, unlike Proposition 4.67, we do not also need to add a type pair.)



94 CHAPTER 5. PRODUCTSLemma 5.37 Given ��, C1, C2, : : :as above, we have �0 `� �0N� 2 �0A i� �0 `� �0v1 2 �0C1and �0 `� �0v2 2 �0C2.Proof: Note that�N� = �x1:�0A1: � � ��xm:�0Am: ((�0v1)x1 � � �xm; (�0v2)x1 � � � xm)and �0A = �x1:�0A1: � � ��xm:�0Am: �u:�0Â: �0B̂thus �0 `� �0N� 2 �0A i��0 � [ x1:�0A1; : : : ; xm:�0Am ] `� (�0v1)x1 � � � xm 2 �0Âand �0 � [ x1:�0A1; : : : ; xm:�0Am ] `� (�0v2)x1 � � �xm 2 [ (�0v1)x1 � � �xm=u ](�0B̂)By a simple inductive argument, the latter type is the same as �0([ v1 x1 � � �xm=v ]B̂). Thenusing the abstraction rule and � reduction m times, this is equivalent to�0 `� �0v1 2 �x1:�0A1: � � ��xm:�0Am: �0Âand �0 `� �0v2 2 �x1:�0A1: � � ��xm:�0Am: �0([ v1 x1 � � � xm=Â ]B̂)but given the de�nitions of C1 and C2, this is just �0 `� �0v1 2 �C1 and �0 `� �0v2 2 �C2. 2Now we are ready to show the validity of our transformation.Proposition 5.38 Transformation 5.4 is valid.Proof: The reasoning is much the same as in the exible-rigid case for HOU�, but simplersince there is no branching. Correctness then follows from Proposition 5.35 and Lemma 5.37.Acceptability is shown as for Transformation 4.4. Finally, minimality is vacuous. 2



5.6. THE TRANSFORMATIONS 955.6.5 Flexible-rigidBecause of the previous transformation, we may specialize the exible-rigid case to handleonly exible heads not of pair-producing type. As in Section 4.4.5, assume that our accept-able uni�cation problem Q is h�; �0;Di, where D contains a exible-rigid disagreement pairP = h	 ; M; M 0i or a rigid-exible disagreement pair P = h	 ; M 0; Mi. Let the uni�cationvariable v be the head of M . Let � = �1 � v:A � �2, where, by weak validity of �, A isconvertible to the form �x1:A1: � � ��xm:Am: A0, for an atomic A0. (Recall we are assumingA not to be a pair producing type.) Then, for every substitution � 2 ��, �v is convertibleto a term of the form �v =� �x1: Â1: � � � �xm: Âm: Nfor some body N . As in Section 4.4.5, our analysis is based on examining the possibletop level structure of N . In ���, we cannot simply express N in the form bN1 � � �Nnbecause there may also be occurrences of fst and snd involved (as in Example 5.12). Let�x = [ x1:A1; : : : ; xm:Am ] and assume that � uni�es P . With respect to �x, N is either rigidor exible. If rigid (i.e., head(N) 62 fx1; : : : ; xm g), then�M =� (�x1: Â1: � � ��xm: Âm: N) (�M1) � � � (�Mm)=� [ �M1=x1; : : : ; �Mm=xm ]N � NBut also �M =� �M 0 �M 0by Proposition 4.52, sinceM 0 is rigid, so N �M 0. (The other possibility is that head(N) = xifor some 1 � i � m.) We will now show how to construct an approximating imitationsubstitution reecting the restriction that N �M 0. (An example follows.)De�nition 5.39 Given �1;�2 and �x = [ x1:A1; : : : ; xm:Am ], de�ne the relation \M̂ =)�new ; ~M 2 B" as follows. (In practice, M̂ will be given, and we will construct the \template"~M and its type B, in which some subterms of M̂ have been replaced by placeholders of the form(wx1 � � � xm). The constructed context �new accumulates typings for these new w variables.)�x `� v 2 Bv =) [ ] ; v 2 B[ ] `� c 2 Bc =) [ ] ; c 2 BM̂ =) �new ; ~M 2 Â Âwh��1�2 �v:A: B w 62 dom(�1) [ dom(�new) [ dom(�2)M̂ N̂ =) �new � w:�x1:A1: � � ��xm:Am: A ; ~M (w x1 � � � xm) 2 [ (w x1 � � � xm)=v ]BM̂ =) �new ; ~M 2 �v:A: BfstM̂ =) �new ; fst ~M 2 AM̂ =) �new ; ~M 2 �v:A: Bsnd M̂ =) �new ; snd ~M 2 [ fst ~M=v ]B̂



96 CHAPTER 5. PRODUCTSGiven �1;�2;�x, and M̂ , this de�nition suggests a simple recursive procedure for con-structing ~M;B, and �new such that M̂ =) �new ; ~M 2 B. Moreover, ~M;B, and �new areuniquely determined, modulo type convertibility and the choice of new variable names in�new.Example 5.40 Let our signature include q: (a!b!c� (d!e))� f. Let �x = [ y: i ; z:o ]and M̂ = snd ((fst q)M1M2)M3, for some terms M1;M2;M3. ThenM̂ =) �new ; snd ((fst q) (w1 y z) (w2 y z)) (w3 y z) 2 ewhere �new = [w1: i!o!a ; w2: i!o!b ; w3: i!o!d ]The property we will make use of isProposition 5.41 Let � = �1�v:A��2, where A = �x1:A1: � � ��xm:Am:A0 for an atomicA0. Let � 2 �� and suppose �v =� �x1:A01: � � � �xm:A0m: Nwhere N is a body, and for a given body M̂ , N � M̂ . Suppose for some �M̂ , ~M , and BM̂ ,we have (with respect to �1;�2 and [ x1:A1; : : : ; xm:Am ])M̂ =) �new ; ~M 2 BM̂Let �M̂ = [ (�x1:A1: � � ��xm:Am: ~M)=v ]dom(�1)[dom(�new)[dom(�2)dom(�)and �M̂ = �1 � �new � �M̂�2Then there is a �0 such that � =� �0 � �M̂ . Furthermore �0 can be chosen such that �� �0.Proof: Similar to the proofs of Propositions 4.59 and 4.64, although the actual constructionof �0 is somewhat more complicated. Let f v1; : : : ; vn g = dom(�new). (The order will beunimportant.) In the derivation of M̂ =) �new ; ~M 2 BM̂ , each vj is introduced in aninstance of the third rule of De�nition 5.39, which applies to an application M̂j N̂j. (This N̂jis replaced by (wj x1 � � � xm).) As before, let f v̂1; : : : ; v̂l g = dom(�1)[dom(�2) and �v̂i = M̂i,for 1 � i � l. Then the following su�ces for �0:[ (�x1:A01: � � ��xm:A0m: N1)=v1; : : : ; (�x1:A01: � � ��xm:A0m: Nn)=vn ; M̂1=v̂1; : : : ; M̂l=v̂l ]



5.6. THE TRANSFORMATIONS 972The remaining possibilities are where the head of �v is among fx1; : : : ; xm g. In HOU�,each of these possible heads leads to a single projection substitution. This is because in ��,every well-typed body of atomic type with the same head has the same top level structure.In ���, however, this is not the case. As a simple example, given a variable x: i � i, thetwo terms fstx and sndx have the same head but di�erent top level structure. Fortunatelythough, there is always a �nite set of \top level structures", as the following propositionmakes precise.Proposition 5.42 Given contexts � and �x, with �x containing a typing xi:Ai, there is a�nite set Mi of terms such that for any body N of atomic type in � � �x having head xi,there is exactly one N 0 2 Mi for which N � N 0. Moreover, we can e�ectively construct sucha Mi.Proof: We use Mi = bt(xi; Ai), where the function bt (\build template") is de�ned asfollows. First let 2 be an arbitrary term (not necessary well-typed). The idea here is that weare building up templates, representing top level structure equivalence classes, while reducingtype. bt(M;A) = bt(M;A0) if A wh��1�2 A0bt(M;A0) = fMg if A0 is atomicbt(M;�x:A: B) = bt(M 2; B)bt(M;�x:A: B) = bt(fstM;A) [ bt(sndM;B)Then we reason by induction on the structure of Ai. The reason we can use an arbitraryterm 2 here is that we will the members M̂ of these constructed Mi in applications ofDe�nition 5.39, where the occurrences of 2 will be ignored. 2Example 5.43 Let �x = [ y:a� b ; h:a!b � (c!d) ]. Then we can useM1 = f fsty; snd y gM2 = f fst (h2); snd (h2)2 gDe�nition 5.44 Let the set H of terms be S1�i�mMi, together with M 0 if head(M 0) isa constant. (Recall that M 0 is the rigid body in the chosen disagreement pair.) For eachM̂ 2 H, let �M̂ ; BM̂ , and �M̂ be as in Proposition 5.41, and de�ne the uni�cation problemQM̂ = h�hM;�M̂ � �0;D [ fh[ ] ; A; BM̂ igi



98 CHAPTER 5. PRODUCTSNow we can state our transformation:Transformation 5.5 Let Q and H be as above. Then make the transitionQ 7! fQM̂ j M̂ 2 H gProposition 5.45 Transformation 5.5 is valid.Proof: Similar to the validity proof of Transformation 4.4. 2Example 5.46 Let � = [ f:a� b!a ], andQ = h�; �id� ; fh[ y:a ; z:b ] ; f (y; z); yigiLet �x = [ x:a� b ] Then H = f fstx; sndx g, and our set of approximating substitutions isf [ �x:a� b: fstx=f ]; [ �x:a� b: sndx=f ] gThe �rst of these is well-typed and will lead to a solution. The second is ill-typed and doesnot.5.7 Completeness and Uni�abilityNow that we have our collection of valid transformations, we have two remaining issues:completeness of the combined transformation, and uni�ability of solved form uni�cationproblems. The completeness proof is similar to the proof of Proposition 4.73.For uni�ability, we have an additional complication over the proof of Proposition 4.75:Flexible bodies are not necessarily of the form vM1 � � �Mm, because v might be of pair-producing type. Fortunately however, we may appeal to the validity of Transformation 5.4.LetQ = h�; �0;Di be in solved form, and suppose that � contains a variable of pair-producingtype. Let fQ0g result from Q by Transformation 5.4. By correctness of that transformation,Q has a solution i� Q0 does. (In fact they have the same solutions, but this is not relevant.)We then appeal to this argument until there are no remaining variables of pair-producingtype. At this point, the proof of Proposition 4.75 applies.



Chapter 6PolymorphismIn this chapter, we informally sketch an extension of the pre-uni�cation algorithm for ��� toa calculus ���� with implicit polymorphism, i.e., type variables but no explicit type abstrac-tion, and a very limited form of type application. The resulting algorithm is, unfortunately,incomplete. However, considerable experience has shown it to be useful in practice. Formany uni�cation problems of interest, the algorithm does indeed construct minimal com-plete sets of pre-uni�ers, and the cases in which the algorithm is incomplete can always bedetected.6.1 The Language ExtensionThere are two changes in the language of types. The �rst is the presence of type variables,which we denote by � and �. The second is that we generalize type constants to instantiatedtype constructors, which we notate by subscripting. To reduce confusion between terms andtypes, we will often use \a" instead of \c" for type constructors.A ::= aA1���AnSimilarly, constant terms result from type-instantion of polymorphic constants:M ::= cA1���AnOf course, this calculus could be made more uniform by allowing general application oftypes to types and terms to types, and by having corresponding abstractions. The resultingcalculus, which would resemble the second- or !-order polymorphic �-calculus [25, 24, 65, 45],or the Calculus of Constructions [11], is very powerful computationally. However, uni�cationis a topic for future research. 99



100 CHAPTER 6. POLYMORPHISM6.1.1 Substitution and ConversionThe meaning of applying substitutions to terms, types, and kinds carries over from De�ni-tion 2.7, with the obvious extensions. In particular, for instantiated polymorphic constants,�(cA1���An) = c�A1����AnAs always, we will generally write \�" in place of \�".There are no new reduction rules. The meanings of (a) !�� for a reduction relation �,and (b) wh��1�2 , are extended in the obvious way. Weak head normal forms are the same asbefore, except that a type body may also be of the form aA1���An, and a term body may alsobe of the form cA1���An .6.1.2 Typing RulesSignatures for this language assign kind and type schemas to type constructors and poly-morphic constants; we write these as \��1 � � � �n: K" and \��1 � � � �n: A" where the onlytype variables occurring in K or A are among the �i. The instantiation rules show how theseschema are interpreted. Similarly to our abbreviations with � types and kinds, we will, e.g.,write \Type!L" in place of \��: L" if � 62 F(L).Valid Signatures In place of the rules in De�nition 2.29 for adding kind and type con-stants, we have` � sig [ �1:Type ; : : : ; �k:Type ] `� K 2 Type a 62 dom(�)` �� a:��1 � � � �k: K sig` � sig [ �1:Type ; : : : ; �k:Type ] `� A 2 Type c 62 dom(�)` �� c:��1 � � � �k: A sigValid Types`� � context a:��1 � � � �k: K 2 � � `� A1 kind : : : � `� An kind� `� aA1���An 2 [A1=�1 ; : : : ; An=�n ]K`� � context �:Type 2 �� `� � 2 Type



6.2. THE TRANSFORMATIONS 101Valid Terms`� � context c:��1 � � � �k: A 2 � � `� A1 kind : : : � `� An kind� `� cA1���An 2 [A1=�1 ; : : : ; An=�n ]A6.2 The TransformationsMost of the transformations developed for HOU�� are valid for HOU��� as well. Ratherthan formally restating and proving every transformation, we will focus on what has to bechanged.The transformations for handling wh��1�2 redices, abstractions and pairs, and pair-producing types, i.e., Transformations 5.1, 5.2, and 5.4, carry over with their proofs un-changed.6.2.1 Rigid-rigidThe rigid-rigid case carries over with one change, which is to the de�nition of the rigiddecomposition relation ;rr (De�nition 5.21). The new rules are, for types,h	 ; aA1���An ; aA01���A0ni ;rr f h	 ; A1; A01i; : : : ; h	 ; An; A0ni gand, for terms, h	 ; cA1���An ; cA01���A0ni;rr f h	 ; A1; A01i; : : : ; h	 ; An; A0ni gIt is then simple to extend the proof of Propositions 4.34 and 5.22 to this new de�nitionof ;rr.It is worth pointing out that we bene�t here from the use of weak head normal form asopposed to the long (� and � expanded) head normal form. The reason for this is evidentin the following example:Example 6.1 Consider the rigid-rigid disagreement pairh[ g: i!� ] ; g M; gM 0iover a uni�cation context � with � 2 dom(�). If our notion of top level structure dependedon the long head normal form, we could not say that applying a substitution to these rigidterms leaves the top level structure unchanged. Instantiating � to a functional type, say, i!i,followed by the required �-expansion, would result inh[ g: i!i!i ] ; �x: i: g M x; �x: i: g M 0 xi



102 CHAPTER 6. POLYMORPHISM6.2.2 Type Flexible-rigidWith the addition of type variables, we now have exible types. Our uni�cation algorithmmust then handle the type exible-rigid case. This case is simpler than the correspondingcase for terms, because we need only to consider imitations and not projections.Given a uni�cation problem h�; �0;Di, suppose D contains a exible-rigid type disagree-ment pair h	; A;A0i or rigid-exible type disagreement pair h	; A0; Ai. Call this disagreementpair P . Then A has the form � M1 � � �Mm, where � = �1 � �:�x1:A1: � � ��xm:Am: K � �2.Also, A0 is either a � or � type or has the form a0B01���B0l0 M 01 � � �M 0m0. For now, we will assumethe latter. Let � 2 �� and let �� be�x1:A1: � � � �xm:Am: aB1���Bl N1 � � �NnIf � uni�es D, and hence P , then �A =� �A0 � A0, so the WHNF of �A has head a0.However, because of the form of ��, the head of �A is a whether or not � is a uni�er, soa = a0. Therefore, a single approximating substitution (an imitation) handles this case. LetCI = �x1:A1: � � ��xm:Am: a0B̂1���B̂l M̂1 � � � M̂m0�I = [ CI=� ]dom(�1)[f�1 ;:::;�n;v1;:::;vm0 g[dom(�2)dom(�)for \new" distinct type variables �1; : : : ; �n 62 dom(�) � f�g, where for 1 � k � lB̂k = �k x1 � � �xmand for new distinct term variables v1; : : : ; vm 62 dom(�), where, for 1 � j � m0,M̂j = vj x1 � � � xmThe kinds K1; : : : ;Kl of �1; : : : ; �l, the types C1; : : : ; Cm0 of v1; : : : ; vm0, and the kind KI ofCI are constructed similarly to De�nition 4.58. Then we de�ne our new context as�I = �1 � [ �1:K1; : : : ; �l:Kl; v1:C1; : : : ; vm0:Cm0 ]� �2For the case that A0 is a � or � type, the construction is simpler. For instance, suppose thatA0 = �u:B0: C 0. Then we would useCI = �x1:A1: � � � �xm:Am:�u:�1 x1 � � � xm: �2 ux1 � � � xmFollowing the same reasoning as in Section 4.4.5, we getTransformation 6.1 Let A; �I;KI , and �I be as above. Then make the transitionQ 7! fh�I ; �I � �0; �ID ] fh[ ] ; K; KIigig(Note that we are now adding a kind disagreement pair. This requires an obvious and verysimple extension to the rigid-rigid case, which handles these disagreement pairs immediately.)



6.2. THE TRANSFORMATIONS 1036.2.3 Term Flexible-rigidWe adopt the exible-rigid transformation from HOU��, although it is incomplete in thepresence of polymorphism. In this section, we show under what conditions completeness islost. Extensive experience with �Prolog [54], which uses a similarly incomplete algorithm(without dependent types), has shown that these conditions are rare in practice, but dooccur.Let our disagreement pair be h	 ; M; M 0i where M is a exible term body with headv and M 0 is a rigid term body. Let the uni�cation context � = �1 � v : A � �2, whereA = �x1:A1: � � ��xm:Am: A0. In ���, we made the assumption that A0 is atomic,1 but it isno longer helpful to assume this, since A0 might still be instantiated to a � type. For any� 2 ��, �v is convertible to a term�x1:A01: � � ��xm+k:A0m+k: Nwhere N is a body or pair, and �A =� �x1:A01: � � ��xm+k:A0m+k: A00 where A00 is atomic.Again, we consider the possibilities for N when � is a uni�er: If a pair, then since M 0 is arigid body (not a pair), and � uni�es M and M 0, N must be convertible to a body. Thuswithout loss of generality we can assume that N is a body. Then as in Section 5.6.5, either(a) N �M 0 and head(M 0) is a constant, or (b) head(N) = xj where 1 � j � m+k. Howeverfor m < j � m+ k, � would not be a uni�er, since � reduction leaves�xm+1:A0m+1: � � � �xm+k:A0m+k: xj N̂1 � � � N̂nbut head(M 0) is not xj. Thus it is su�cient to consider only the �rst m projections.The imitation substitution must be generalized to accomodate polymorphic type con-stants. The construction is as in the type exible-rigid case above.In HOU��, we were able to re-express these possibilities as an equivalent condition onuni�ers � that � =� �0 � �b for some constructed �b (Proposition 5.41). A simple exampleshows why this is harder with polymorphism.Example 6.2 Let our signature and uni�cation context be� = h c:��: �!� i� = [ �:Type ; f: (i!i)!� ]and consider the disagreement set h[ ] ; f (�z: i: z); c�i. For projections, as we have said, weneed only consider the �rst. However the following approximating substitution[ (�g: i!i: g (f1 g))=f ]1We extend \atomic" to include the form �M1 � � �Mm.



104 CHAPTER 6. POLYMORPHISMis not su�cient, because then we would fail to �nd the following uni�er:[ i!i=� ; (�g: i!i: �y: i: g (ci y))=f ]Similarly, if our approximating substitution were[ (�g: i!i: c(� g) (f1 g))=f ]then we would miss the solution[ i!i=� ; (�g: i!i: �y: i: ci (g y))=f ]Thus we see that the exible-rigid transformation for HOU�� can cause loss of uni�ers in����. Fortunately however, no incorrect uni�ers are introduced, and minimality still holds.Furthermore, we can easily detect the cases that can lead to loss of uni�ers. One case thatcauses loss of uni�ers is as in the example, in which the target type A0 is exible (has a typevariable as head. The other is when the head b being used to build up the approximatingsubstitution has a exible target type.



Chapter 7ApplicationsThis chapter explores applications of the pre-uni�cation procedures we developed in thepreceding chapters. These applications all have in common that they use a typed �-calculusas a meta-language, i.e., a calculus in which to encode other languages, which we will callobject-languages. The rich structure of a typed �-calculus as opposed to the traditional,�rst-order abstract syntax trees allows us to express rules, e.g., program transformation andlogical inference rules, that are more succinct, more powerful, and easier to reason about.We can then use uni�cation in the meta-language to mechanize application of these rules.As we will demonstrate in the examples below, there are three primary beni�ts of thiskind of meta-language.� By exploiting the � of the meta-language, and its corresponding functional type, onecan directly capture the scoping rules of many object-languages. As we will see, thisallows for object-language independent mechanisms (�-reduction and �-conversion)for substitution and bound variable renaming that work correctly for even the bindingconstructs of a (correctly encoded) object-language.� Using dependent types, when the object-language is a logic (an object-logic) one cancapture the theorem/proof relationship, as convincingly demonstrated by the work onthe Logical Framework [30]. This allows for object-logic independent proof checkingand interactive proof construction, but also some degree of automated theorem proving,given a suitable uni�cation-based language, such as Elf [58].� Again, using the dependent features of the type system, we can internalize object-language typing rules, so that only object-language terms that are well-typed accordingthe the object-language typing rules have meta-language representations that are well-typed acording to the meta-language typing rules. This property allows for object-language independent mechanisms for object-language type checking and inference.105



106 CHAPTER 7. APPLICATIONSWe will often refer to this kind of encoding as \higher-order abstract syntax" (HOAS) inconstrast with (�rst-order) abstract syntax trees, when we are emphasizing the �rst of thesebene�ts, and \dependent HOAS" when emphasing the others.The general idea goes back to Church, who expressed all of the binding constructs ofhigher-order logic in terms of the � of the simply typed �-calculus [8]. The use of second-order matching and substitution for transformation of programs represented in the simplytyped �-calculus was suggested in [37]. In recent years the idea has appeared in severalguises: In Isabelle [56, 57] the syntax of logics are encoded as simply typed terms and theirinference rules are encoded as formulas in intuitionistic higher-order logic. In �Prolog therepresentation is enriched to include implicit polymorphism, and the logic programmingframework allows one to program control of the selection and application of rules [50]. InLF [30] a �-calculus with dependent types is used as a meta-logic to encode the \languageof a logic, its axiom and rule schemes, and its proofs", but uni�cation is not used. In [60]the value of products together with polymorphism is demonstrated. The basic idea is alsopresent in Martin-L�of's system of arities [43].7.1 Some Motivating ExamplesIn this section we highlight some of the problems that arise in matching and substitutiondue to the presence of binding constructs in a language. Almost all languages have thesebinding constructs, though sometimes they are not immediately apparent. For example, inProlog the \free" variables in a clause are actually bound over that clause, since they areclearly distinct from variables with the same name in other clauses. A function de�nitionstated as f(x) = b actually binds x and f (see the beginning of Section 7.3.2).The rules we present throughout this paper are stated without any semantic side condi-tions such as strictness or termination. Depending on the language semantics (in particular,call-by-name vs call-by-value), such conditions may still be necessary to ensure semanticequivalence between the transformed programs. However, it should be noted that in allthe examples the syntactic side conditions on the rules disappear without compromising thevalidity of the rule.7.1.1 Correct Matching and SubstitutionThis problem of variable capture is very common. It appears in two di�erent forms: duringmatching and during substitution. Consider the rule of let-conversion1:\let x = e in b" , \[ e=x ]b"1We use quotation marks, \: : :", to distinguish concrete syntax from representations.



7.1. SOME MOTIVATING EXAMPLES 107Here are two incorrect applications of this rule. Note that reading them from right toleft shows the problem of doing correct matching against \[ e=x ]b".\let x = y in let y = 5 in x � y" /, \let y = 5 in y � y"\let x = 5 in let x = x � x in x" /, \let x = 5 � 5 in 5"What is required for correct substitution is recognition of name conicts and renamingof bound variables. If this rule is read from right-to-left, it is clear that there are manypossible ways of abstracting an expression from a program, and that therefore straightforwardmatching on any representation would be very non-deterministic. In a situation like this thesolution is to partially instantiate the pattern before matching.7.1.2 Variable Occurrence RestrictionVariable occurrence restrictions again require renaming of bound variables during substitu-tion, or failure of matching. The following example is taken from a formalization of a naturaldeduction system to show the variety of circumstances in which these problems occur.\ � ` P� ` 8xP 8I where x not free in � "If this rule is used by matching against the lower line, the restriction on xmust be checkedseparately. Ideally, x would be renamed to a new variable if x is already free in �. If therule is used in the other direction, it should simply not match if x appears in �. As we willsee in Section 7.5, rules incorporating occurrence conditions can be formulated easily andapplied correctly using higher-order abstract syntax.Note that in a system that uses �rst-order abstract syntax, not only must the rule beconditional, but the language implementor must somehow de�ne a predicate not-free-in forthe language in question.7.1.3 Correct Treatment of ContextsMany program transformation rules can be stated naturally through the use of contexts.Correct applications of these rules, however, is tricky. For example, a rule propagatingcomputation into the branches of an if expression could be written as\C[if p then a else b]" , \if p then C[a] else C[b]"Consider the following incorrect application.



108 CHAPTER 7. APPLICATIONS\let p = false in if p then 1 else 2" /,\if pthen let p = false in 1else let p = false in 2"As noted in [52] syntactic conditions on C are di�cult to formulate if one wishes toeliminate the possibility of incorrect rule application as in the example. The use of higher-order abstract syntax solves this problem by allowing the statement of the rule as above,but automatically prohibiting the incorrect use below without any additional conditions.7.1.4 Object-language TypingFor typed object-languages, correct formulation of rules often require taking object-typesinto account. For example, consider the following rule of existential introduction:\ A ` [ t=x ]PA ` 9x:�: P 9I where t has type � "To formalize a rule like this without dependent types would require a mechanism for de�ningand checking object-language typing. However, even this wold be insu�cient in practice. Avery convenient way to use this kind of rule, in a uni�cation based language as discussedin [23, page 8], is to introduce a new uni�cation variable, which will be instantiated later,when the desired value for t becomes known. We would like the condition that the in-stantiation term t must have object-type � to act as a constraint to reduce the possibleinstantiations rather than as a �lter to reject the choices later, as the latter can lead to muchmore search.7.2 A Convenient NotationThe calculus notation used in the previous chapters works very well for formal manipulation,but can be improved on for ease of reading and writing. Consider the following the followingfunction for reversing a pair: �z: i � o: snd z; fst zMany modern functional programming languages provide a convert notation for functionsthat operate on structured information [6, 29, 74]. In the fashion of these languages, we canwrite the above as �(x; y): i� o: y; xWe will use such expressions in the examples of this chapter, as an abbreviation for termslike the previous one (that binds z).



7.3. LANGUAGE REPRESENTATION 1097.3 Language RepresentationIn this section we demonstrate how to use ���� as a meta-language for encoding typedprogramming languages. (It is simpler to represent untyped languages, which is a degeneratecase.)7.3.1 A Simple Expression LanguageWe begin with a simple language of expressions given by the following grammar:e ::= vj 0 j 1 j : : :j true j false j nilj e+ e j e � e j e :: e j e = e j : : :j hd(e) j tl(e) j : : :j if e then e else eFor now, types in this language will be simply integer, boolean, and lists of elements of thesame type: tp ::= intj boolj tp listThere is a lot of exibility in choosing how to represent such a language, and we giveone possibility. What we mean by choosing a representation for an object-language L isconstructing a signature �L and a correspondence between expressions in L and terms inthe meta-language (in this case ����). We will be informal about what this correspondenceis, prefering to describe it by means of examples. First we must choose a representation ofobject-language types, and so introduce a (meta-language) type constanttp : TypeThen, to represent the object-types, add the following new constants2int; bool : tplist : tp!tpFor example, the object-type \int list" is represented by (list int).2For brevity in specifying signatures, we use \c; c0 : A" as an abbreviation for \c : A; c0 : A". Also, forreadability, we stack these typings vertically rather than presenting them linearly and separating them bycommas.



110 CHAPTER 7. APPLICATIONSNext we need a type to represent expressions. In fact, we will use a type family, indexedby object-type: e : tp!TypeThe idea is that the meta-language type (e s) is the type of terms representing well-typedobject-language expressions whose object-type is represented by s. As it turns out, it isimportant to represent object-language variables directly as meta-language variables. Toconstruct representations of other expressions, we begin by introducing constants for basicinteger and boolean values. Booleans are straightforward:true; false : e boolNumber expressions are constructed by a \coercion" constant:num : integer!e intwhere integer is the type of integers (as opposed to integer expressions). The other basicvalue, the empty list, exists for all list object-types, so we will use a constant of functionaltype. Here we have our �rst use of dependent function types:nil : �s: tp: e (list s)For instance, the empty integer list is represented by (nil int). Next we add constants for allof the \built-in" operations of the language, e.g.,plus; times : e int!e int!e intgtr : e int!e int!e booland; or : e bool!e bool!e boolAgain, we must handle the object-type polymorphism of operators like equality and list cons:equal : �s: tp: e s!e s!e boolcons : �s: tp: e s!e (list s)!e (list s)Similarly for conditional expressions:ite : �s: tp: e bool!e s!e s!e sExample 7.1 The expression \if a > b then a else b", where a and b are integer variables,is represented ite int (gtr a b) a bBy using dependent types in our representation, we have internalized the typing rulesof the object-language. Thus for each well-typed term s of type tp, there is a one-to-onecorrespondence between long normal form terms of type (e s) and well-typed object-languageexpressions whose type is represented by s. (See [30] for a de�nition of these normal formsand a rigorous account of the correspondence.) A fortunate consequence is that when thesetechniques apply, object-language type checking is reduced to meta-language type checking,which may be implemented once, independently of any object-language. However, in orderto accomplish this, the representation has to contain much more information.



7.3. LANGUAGE REPRESENTATION 111Example 7.2 The representation of \(1 :: 2 :: nil) = (2 :: 1 :: nil)" isequal (list int)(cons int (num 1) (cons int (num 2) (nil int)))(cons int (num 2) (cons int (num 1) (nil int)))Fortunately, as we will see in Section 7.4, this extra information can usually be automaticallygenerated.Now we will add a statically scoped variable binding expression:e ::= let v = e in eIt will be important to directly capture the scope of this variable binding. In general, wedo this by using the meta-language � for all statically scoped binding constructs. In therepresentation of a let expression, we will need to take into account the object-type of theexpression being bound to the variable and of the whole expression:let : �s: tp:�t: tp: (e s!e t)!e s!e tExample 7.3 The expression \let x = 2 in x > 1" is representedlet int bool (�x:e int: gtr x (num 1)) (num 2)Note that although this let is (object language) polymorphic, it is not \genericly polymor-phic" as is ML [51, 7].In languages with this kind of binding construct, such as ML [29], Scheme [72], andLisp [71], it is often possible to bind many variables in parallel, so that the general form isinstead e ::= let v = e; : : : ; v = e in eOne way of dealing with this exibility is to have an in�nite (or for practical purposes,reasonably large) family of constants. For each n � 0, we would declareletn : �s1: tp: � � ��sn: tp:�t: tp: (e s1!� � �!e sn!e t)!e s1!� � �!e sn!e tAside from the general awkwardness of this approach, it has the serious drawback that eachrule for manipulating let expressions must also have an in�nite number of versions. Theseproblems may be avoided by using pair types and polymorphism in our representation:let : ��:�t: tp: (�!e t)!�!e twhere we will instantiate � to a type of the form (e s1 � � � � � e sn). (This ability was ouroriginal motivation to explore higher-order uni�cation with pair types.)



112 CHAPTER 7. APPLICATIONSExample 7.4 The expression \let n = 1; b = true in b and n > 0" is represented (usingthe varstruct notation introduced in Section 7.2)lete int�e bool bool (�(n; b):e int� e bool: gtr n (num 0)) (num 1; true)There is a theoretical problem with this representation, however. In the type of let, thereis no simple way to restrict the type parameter � to be instantiated to types of the form(e s1� � � � � e sn). As a consequence, there are well-typed LNF meta-language terms of type(e s) that do not correspond to terms in our object-language. We will show how to eliminatethis problem in Section 7.3.3.7.3.2 Adding ProgramsIn the previous section we developed a simple language of typed expressions. We now extendit to a language of recursive function de�nitions of a simple form:p ::= rec v(v; : : : ; v) = e; : : : ; v(v; : : : ; v) = eand add a form of expression for invoking a de�ned functione ::= v(e; : : : ; e)Observe that a program may involve any number of function de�nitions, and each functionmay take any number of arguments. Again we will use polymorphism:rec : ��: (�!�)!�Example 7.5 Consider the following simple list reversal programrec rev(l) = ra(l;nil) ;ra(l; z) =if null(l) then z else ra(tl(l);hd(l) :: z)The complete representation (see below for the values of A and B) isrecA (�(rev; ra):A: ((�l:B: ra(l; nil s)) ;(�(l; z):B �B: ite (list s) (null s l) z (ra(tl s l; cons s (hd s l) z))))where s is an arbitrary term of type tp, andA = (B!B)� (B �B!B)B = e (list int)



7.3. LANGUAGE REPRESENTATION 1137.3.3 Syntactic JudgmentsThe encodings in the previous section that use polymorphism are too liberal, in that theyallow for well-typed terms that do not correspond to legitimate expressions. Consider againthe constant used in representing parallel binding let expressions:let : ��:�t: tp: (�!e t)!�!e tOur intent is that the type argument to let be of the form (e s1� � � �� e sn), for object-typess1; : : : ; sn.3 How can this intent be enforced, so that non-legitimate let expressions do nothave well-typed encodings?Our solution is similar to Mason's technique of \syntactic judgments" used in the encod-ing of Hoare logic [2, 44]. One problem in representing Hoare logic is that there are booleanexpressions (used in constructing statements of the imperative programming language) and�rst-order formulas (used in assertions), and the boolean expressions are identi�ed with thequanti�er-free �rst-order formulas. Mason's representation uses a (syntactic) judgment QFindexed over the type o of formulas, and declares, e.g., the conditional statement constructoras if : �e:o: QFe!w!w!wwhere w is the type used for representing statements. That is, if now takes an additionalargument, which is a proof that the �rst argument is a quanti�er-free expression. Thesignature is extended to include constant declarations that encode an inference system forproving formulas to be quanti�er-free, e.g.,QF2 : �e:o: QF e!QF (:e)This constant represents the rule that :e is quanti�er-free if e is. He also uses a syntacticjudgment for non-interference conditions.Our situation is slightly di�erent, because we want to restrict type arguments, ratherthan term arguments, but the essential idea is the same. We introduce a syntactic judgmentok : Type!TypeThe intent is that, for a given type �, there is a term of type ok� i� � is of the appropriateform. This intent is formalized via the following declarationsoke : �s: tp: ok(e s)okx : ���: ok�!ok�!ok���We would then replace the old typing for let bylet : ��: ok�!�t: tp: (�!e t)!�!e t3For uniformity, we might like to allow n = 0. This would be neatly handled by introducing the unittype.



114 CHAPTER 7. APPLICATIONSExample 7.6 Returning to Example 7.4, the expression\let n = 1; b = true in (b and n > 0)"is now represented aslete int�e bool (okxe int;e bool (oke int) (oke bool))bool(�(n; b):e int� e bool: and b (gtr n (num 0)))(num 1; true)As discussed in [44] in reference to the representation of quanti�er-freeness and inter-ference, all proofs of a given syntactic judgment (i.e., terms of the representing type) areconvertible, and moreover could be constructed automatically. This is signi�cantly di�erentfrom the process of term inference de�ned in Section 4.7 and illustrated in the next section,where uni�cation is su�cient for inferring terms. Automatically proving syntactic judgmentsrequires searching for constants of relevant types and recursively trying to construct their ar-gument terms. A very elegant framework for this kind of automatic proof term constructionis provided by Pfenning's programming language Elf, which \uni�es logic de�nition (in thestyle of LF) with logic programming (in the style of �Prolog)" [58]. (As described in [58], Elfdoes not allow polymorphism. However, the implementation currently under developmentat Carnegie Mellon University is based on our prototype implementation of HOU�� (HOU���without � types), and so does allow polymorphism.)We can use a similar syntactic judgment for restricting the type argument of rec:okr : Type!TypeThe restriction we want to enforce here is that a given type is of the form �1 � � � � � �m,where each �i is of the form (e s1 � � � � � e sn)!e t. Our formalization makes use of theprevious syntactic judgment ok:okro : ��: ok�!�t: tp: okr�!e tokrx : ���: okr�!okr�!ok���The new version of rec is then rec : ��: okr�!(�!�)!�7.4 Object-language Type Checking and InferenceThe example language encodings in the previous section contain a lot of information thatis not directly present in the concrete syntax. This extra information is in the form ofarguments of type tp, i.e., object-types. Fortunately, these arguments can be synthesizedautomatically by using the term inference algorithm de�ned in Section 4.7. The followingvery simple example illustrates how and why this process works.



7.5. PROGRAM TRANSFORMATION 115Example 7.7 Consider the expression \1 :: nil". We begin by constructing a \partial rep-resentation", in which the object-type components are just new distinct uni�cation variablesof type tp: cons s1 (num 1) (nil s2)We then apply term inference, which, recall, is a combination of type-checking and uni�ca-tion. In this process, we discover the typings`� cons s1 2 e s1!e (list s1)!e (list s1)`� num 1 2 e intso we unify (e s1) with (e int). Next the process discovers that`� cons int (num 1) 2 e (list int)!e (list int)`� nil s2 2 e (list s2)and so we unify e (list int) with e (list s2). We then instantiate our original encoding to(cons int (num 1) (nil int))which has type (list int).The previous example required only very simple �rst-order uni�cations. An object-language whose type inference problem requires truly higher-order uni�cation is the poly-morphic �-calculus [25, 24, 65, 45], which we will refer to as \��".4 The undecidability ofthis type inference problem for even the second-order polymorphic �-calculus was shown byBoehm in [4], by reducing it to second-order uni�cation. In [59], Pfenning shows a more gen-eral converse, namely that partial type inference for the nth order polymorphic �-calculusreduces to nth order uni�cation. He then gives an implementation in �Prolog, based on anencoding of �� in �!� (�! plus implicit polymorphism). If instead we encode �� in ���, wecan use ��� term and type inference to do �� type inference. (To encode the second-orderpolymorphic �-calculus, meta-language polymorphism is not necessary, so �� term inferencesu�ces.)7.5 Program TransformationNow that we have explored representing languages, we want to construct and apply pro-gram transformation rules. To do so, we will also need to introduce concrete syntax for4Note that we mean what is sometimes referred to as \partial type inference", in which we are onlyallowed to �ll in types, but not construct new type abstractions and applications.



116 CHAPTER 7. APPLICATIONSthe �-calculus abstraction, application, and pairing. We will use the following additionalexpressions: e ::= �v1; : : : ; vn: ej e1[e2]j e1; e2We express the concrete syntax of rules in the form\LHS" , \RHS"and their meta-language representation as� `M , Nwhere � provides types for the variables in M and N , which are the representations of LHSand RHS .Let ConversionWe start with the rule of let-conversion. It is simply\let x = a in b[x]" , \b[a]"which is represented as[ �:Type ; q:ok� ; s: tp ; b:�!e s ; a:� ] ` let� q s (�x:�: b x) a , b aWe can match the left hand side of this rule against, for example, the term from Example 7.6giving the substitution [ e int� e bool=� ;(okxe int;e bool (oke int) (oke bool))=q ;bool=s ;(�(n; b):e int� e bool: gtrn (num 0))=b ;(num 1; true)=a ]We could even apply this rule from right to left, but we would have to specialize it �rstto reduce the nondeterminism to a manageable level. For instance, we could instantiate thetype variable � to e, saying that we want to introduce one variable in the let. (Leavings uninstantiated, we leave open the object-type of the introduced variable.) Matching this



7.5. PROGRAM TRANSFORMATION 117specialization of the RHS against the term 2 + 3 � 2 gives several substitutions, resulting inthe following corresponding instances of the LHS:let x = 2 + 3 � 2 in xlet x = 2 in x+ 3 � xlet x = 2 in x+ 3 � 2let x = 3 � 2 in 2 + xlet x = 3 in 2 + x � 2let x = 2 in 2 + 3 � xlet x = a in 2 + 3 � 2Of course this rule assumes a call-by-name semantics. A call-by-value version would havean attached semantic condition that a terminates or b is strict. Otherwise the rule can gaintermination applied from left to right.Context PropagationLet us now return to the example from Section 7.1.3:\c[if p then a else b]" , \if p then c[a] else c[b]"Using higher-order abstract syntax, the variable c simply becomes a second-order variable.Higher-order matching ensures that bound variables cannot leave their scope. The represen-tation of this rule is[ s: tp ; t: tp ; a:e s ; b:e s ; p:e bool ; c:e s!e t ] ` c (ite s p a b) , ite s p (c a) (c b)On the other hand, there are similar conversions that we would like to do, but which arenot covered by this rule. For instance, it is correct to transform the expressionlet x = y � y inlet z = x � y inif y > 0 then z else xintoif y > 0then let x = y � y in let z = x � y in zelse let x = y � y in let z = x � y in x



118 CHAPTER 7. APPLICATIONSThis does not match the context propagation rule from above, since a substitution like[ z=a ] would be captured by the binding on z. A general solution in a case like this is toraise the order of the rule through explicit abstraction. This solution is inspired by Paulson's8-lifting [56], which was discovered independently by Miller and called raising [48]. Bothincrease the order of some of the variables involved. Raising requires that we be able toexplicitly mention the \l" of the l-calculus representation in the pattern. The following is araised version of context propagation.\c[�u: if p then a[u] else b[u]]" , \if p then c[�u: a[u]] else c[�u: b[u]]"A match of this pattern against its motivating example is given through the substitution[ e int� e int=� ; y > 0=p ; �u; v: v=a ; �u; v: u=b ;�f : \let x = y � y in let z = x � y in f [x; y]"=c ]Again note the use of polymorphism in the rule description, and the instantiation of typevariables to product types, to capture the fact that this rule should apply to any number ofbound variables that may appear in the branches of the if, but not in the test p.This also illustrates how variable occurrence conditions become unnecessary. The factthat p could not depend on any variable bound in the context is implicit in the formulationof the rule.Condition PropagationAnother useful rule that is handled easily in our framework is that of condition propagation:when evaluating the then branch of a conditional expression, we know that the test suc-ceeded, and when evaluating the else branch, we know it failed. We can use this to simplifythe subexpressions.The way we use this idea in an expression \if p then a else b" is to replace some instancesof p in a by true and some instances of p in b by false.5 The higher-order term structurelets us do this very naturally:\if p then a[p] else b[p]" , \if p then a[true] else b[false]"UnfoldingThe unfold rule, described in [5], transforms a set of mutually recursive function de�nitions,by replacing a call to one of the functions by that function's body, with formal parameters5This formulation is due to Tim Freeman.



7.5. PROGRAM TRANSFORMATION 119replaced by actual parameters. The rule below is a very general version of unfold thatcan simultaneously unfold any subset of the de�ned functions at any subset of their callinginstances. In practice, we would probably want to specialize this rule before applying it. Asalways, the validity of all specializations are insured by the validity of the general rule. Inconcrete syntax, it is \rec f = b[f ][f ]" , \rec f = b[b[f ][f ]][f ]"(In a call-by-value semantics, this rule might gain termination.) The way this works is thatthe uses of all of the functions (represented en masse by f) will be partitioned in any matchbetween the �rst and second argument of b. Its representation is[ �:Type ; q:ok� ; b:�!�!� ] ` rec� q (�f:�: b f f) , rec� q (�f:�: b (b f f) f)As an example, consider the following program, which arises partway into the derivation ofan e�cient program for list-reversal. We use \l @ l0" for the result of appending the lists land l0, and \a :: l" for the new list made up of a followed by the elements of the list l.rec rev(u) = if null(u) then nil else rev(tl(u)) @ (hd(u) :: nil) ;ra(u; v) = rev(u) @ vThe representation of this program isrecAM (�(rev; ra):A: (�u:e: ite (null u) nil (app (rev (tl a))(cons (hdu)nil)));(�u:e; v:e: app (rev u)v))Where A = (B!B)� (B �B!B)B = e (list s)M = okrx(B!B);(B�B!B) (okroB (oke s) s) (okroB�B (okxB;B (oke s) (oke s)) s)and s is a variable of type tp. We can tell at once that the type part of the unifyingsubstitution must be [ (B!B)� (B �B!B)=� ]There are two applications of rev and none of ra. There are thus four possible rewritings,depending on whether each of the two calls is unfolded. The one that unfolds just the secondcall gives the new programrec rev(u) = if null(u) then nil else rev(tl(u)) @ (hd(u) :: nil) ;ra(u; v) = (if null(u) then nil else rev(tl(u)) @ (hd(u) :: nil)) @ vWe can then simplify the body of ra using simpli�cation rules for lists.



120 CHAPTER 7. APPLICATIONS7.5.1 Subterm RewritingA very useful ability in program transformation and theorem proving is rewriting one ormore subexpressions of a given expression according to a set of simpli�cation rules. For ex-ample, simple program derivations are often unfolding, followed by simpli�cation, followedby folding. Similarly, simple proofs are often induction accompanied by simpli�cation [55].Higher-order abstract syntax and uni�cation provides a simple way to do such subexpres-sion rewriting. Suppose our simpli�cation rule set consists of the following facts about listappending: (a :: l) @ l0 = a :: (l @ l0)nil@ l = lWe can make these into a single rule, capable of rewriting subexpressions as follows:\f [(a :: l) @ l0][nil@ l00]" , \f [a :: (l@ l0)][l00]"Note that we had to rename l to l00 from the second simpli�cation rule to avoid interferencewith the �rst.This method works, but it has two drawbacks. The �rst is that it cannot rewrite di�erentsubexpressions of the same LHS pattern. For instance, in the expression\length(nil@ u)� length(nil@ v)"we could rewrite \nil@u" to \u" or \nil@v" to \v", but not both. This problem is not veryserious, since we could just do the subexpression rewriting repeatedly. The second problem,however, is more serious, and is related to the problem with the simple version of contextpropagation for conditionals (Section 7.1.3). Consider an expression like\let u = 1 :: 2 :: nil in nil@ u"Our rule above cannot match this expression nontrivially because the subexpression \nil@u"contains a variable, u, that is bound between the top of this expression and the top of thesubexpression. The solution to both problems is, again, to use a third-order rule:\f [�a: �l: �l0: (a :: l) @ l0][�l: nil@ l]" , \f [�a: �l: �l0: a :: (l @ l0)][�l: l]"We call this the raising of the two �rst-order rules.6 To see how a rule like this works,consider matching its LHS against the expression\nil@ (let u = nil@ (1 :: 2 :: nil) in (1 :: u) @ (4 :: nil))"We would get eight possible values for f , one of which is\�g: �h: h[let u = h[1 :: 2 :: nil] in g[1][u][4 :: nil]]"6The representation of this rule would require f to have three additional tp arguments, which we leaveimplicit in the concrete syntax.



7.5. PROGRAM TRANSFORMATION 121which would cause the RHS to be instantiated to\let u = 1 :: 2 :: nil in 1 :: (u@ 4 :: nil)"The other seven uni�ers result in less simpli�cation. The last of these is a trivial uni�er thatleaves the expression unchanged.Clearly, these raised rules can be highly nondeterministic. In practice, we would want tointeractively specialize them before application.7.5.2 Generalized Rewriting via Uni�cationThe conventional view of rewriting, as matching against a rule's LHS, followed by substitu-tion into its RHS, is subsumed and generalized by uni�cation. For example, take the rule ofassociativity of addition: \(x+ y) + z" , \x + (y + z)"We can internalize the rewriting relation,,, into the expression language and use the singleexpression \(x+ y) + z , x+ (y + z)"Then, to rewrite a given expression, say \(3 + 4) + 5", we unify our rule expression againstthe expression \(3 + 4) + 5, z"where z is a new variable that will get bound by uni�cation to the desired result.In this simple use of uni�cation, the second expression is always of the form \e1 , e2"where e1 is completely instantiated and e2 is completely uninstantiated (i.e., a variable). Butnow we have the freedom to make e1 and e2 instantiated or uninstantiated to any degree.Taking the opposite extreme (e1 uninstantiated and e2 instantiated) is equivalent to using arewrite rule backwards.One possibility this approach suggests is doing transformation on program schema, i.e.,programs with free variables that are subject to instantiation. Then the two-way natureof uni�cation, as opposed to matching, would allow the application of a transformation orsimpli�cation rule to partially instantiate the program it is transforming as well as the ruleit is using. A natural example of how program schema come into existence is the rule ofcase-introduction: \w , if p then w else w"Note that the variable p is not mentioned on the LHS. This rule is useful when the com-putation of a expression can be optimized in the presence of an assertion p or its negation.(Interestingly, this rule turns out to be a instance of the context propagation rule\c[if p then a else b], if p then c[a] else c[b]"by taking c to be �x: w for a variable w.)



122 CHAPTER 7. APPLICATIONS7.6 Theorem ProvingAnother general area of application for the uni�cation algorithms developed in the precedingchapters is theorem proving in various logics. In [30], the Logical Framework (LF) is presentedas a \�rst step towards a general theory of interactive proof checking and proof construction."The key ingredients are the calculus �� and the judgments as types principle, forming thebasis of a very elegant and expressive system encompassing the syntax, rules, and proofsfor a wide class of object-logics. Our uni�cation algorithms allow us to go beyond purelyinteractive theorem proving, to do automated (and semi-automated) theorem proving in LFencoded logics. These theorem provers could be expressed, e.g., in a �Prolog based on �� (or��� or ����), or in Elf, a language for logic de�nition and veri�ed meta-programming [58].



Bibliography[1] Peter B. Andrews. Theorem proving via general matings. Journal of the ACM, 28:193{214, 1981.[2] Arnon Avron, Furio A. Honsell, and Ian A. Mason. Using Typed Lambda Calculus to Im-plement Formal Systems on a Machine. Technical Report ECS-LFCS-87-31, Laboratoryfor Foundations of Computer Science, University of Edinburgh, Edinburgh, Scotland,June 1987.[3] Hendrik P. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. North-Holland, 1980.[4] Hans-J. Boehm. Partial polymorphic type inference is undecidable. In 26th AnnualSymposium on Foundations of Computer Science, pages 339{345, IEEE, October 1985.[5] R. M. Burstall and John Darlington. A transformation system for developing recursiveprograms. Journal of the Association for Computing Machinery, 24(1):44{67, January1977.[6] R. M. Burstall, D. B. MacQueen, and D. T. Sanella. HOPE: an Experimental Ap-plicative Language. Technical Report CSR-62-80, Department of Computer Science,University of Edinburgh, Edinburgh, U.K., 1981.[7] Luca Cardelli. Basic polymorphic typechecking. Polymorphism Newsletter, 1986.[8] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,5:56{68, 1940.[9] A. Colmerauer, H. Kanoui, and M. van Caneghem. Un Systeme de CommunicationHomme-machine en Francais. Research Report, Groupe Intelligence Arti�cielle, Uni-versite Aix-Marseille II, 1973.[10] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof Develop-ment System. Prentice-Hall, Englewood Cli�s, New Jersey, 1986.123



124 Bibliography[11] Thierry Coquand and G�erard Huet. The Calculus of Constructions. Information andComputation, 76(2/3):95{120, February/March 1988.[12] Thierry Coquand and G�erard Huet. Constructions: a higher order proof system formechanizing mathematics. In EUROCAL85, Springer-Verlag LNCS 203, 1985.[13] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam, 1958.[14] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for auto-matic formula manipulation with application to the Church-Rosser theorem. Indag.Math., 34(5):381{392, 1972.[15] N. G. de Bruijn. A survey of the project Automath. In J. P. Seldin and J. R. Hindley,editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-ism, Academic Press, 1980.[16] Scott Dietzen and Frank Pfenning. Higher-order and modal logic as a framework forexplanation-based generalization. In Alberto Maria Segre, editor, Sixth InternationalWorkshop on Machine Learning, pages 447{449, Morgan Kaufmann Publishers, SanMateo, California, June 1989. Expanded version available as Technical Report CMU{CS{89{160, Carnegie Mellon University, Pittsburgh.[17] Michael R. Donat and Lincoln A. Wallen. Learning and applying generalised solutionsusing higher order resolution. In Ewing Lusk and Ross Overbeek, editors, 9th Interna-tional Conference on Automated Deduction, Argonne, Illinois, pages 41{60, Springer-Verlag LNCS 310, Berlin, May 1988.[18] Conal Elliott. Higher-order uni�cation with dependent types. In Rewriting Techniquesand Applications, pages 121{136, Springer-Verlag LNCS 355, April 1989.[19] Conal Elliott and Frank Pfenning. A Standard ML implementation of extended higher-order uni�cation, �Prolog and Elf. 1990. Send mail to fp@cs.cmu.edu on the Internetfor further information.[20] Fran�cois Fages and G�erard Huet. Complete sets of uni�ers and matchers in equationaltheories. Theoretical Computer Science, 43(2,3):189{200, 1986.[21] William M. Farmer. A Uni�cation Algorithm for Second-Order Monadic Terms. Tech-nical Report, Mitre Corporation, Bedford, Massachusetts, June 1986. To appear in theJournal of Pure and Applied Logic.[22] Amy Felty. Implementing Theorem Provers in Logic Programming. Technical Re-port MS-CIS-87-109, University of Pennsylvania, Philadelphia, December 1987.[23] Amy Felty and Dale A. Miller. Specifying theorem provers in a higher-order logicprogramming language. In Ewing Lusk and Ross Overbeek, editors, 9th International



Bibliography 125Conference on Automated Deduction, Argonne, Illinois, pages 61{80, Springer-VerlagLNCS 310, Berlin, May 1988.[24] Jean-Yves Girard. Interpr�etation fonctionelle et �elimination des coupures de l'arithm�e-tique d'ordre sup�erieur. PhD thesis, Universit�e Paris VII, 1972.[25] Jean-Yves Girard. Une extension de l'interpr�etation de G�odel �a l'analyse, et son ap-plication a l'�elimination des coupures dans l'analyse et la th�eorie des types. In J. E.Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages 63{92,North-Holland Publishing Co., Amsterdam, London, 1971.[26] Warren D. Goldfarb. The undecidability of the second-order uni�cation problem. The-oretical Computer Science, 13:225{230, 1981.[27] J. R. Guard. Automated Logic for Semi-Automated Mathematics. Scienti�c Report 1,AFCRL 64{411, 1964.[28] John J. Hannan. Proof-theoretic Methods for Analysis of Functional Programs. Tech-nical Report MS-CIS-89-07, University of Pennsylvania, Philadelphia, January 1989.Dissertation Proposal.[29] Robert Harper. Standard ML. Technical Report ECS-LFCS-86-2, Laboratory for theFoundations of Computer Science, Edinburgh University, March 1986.[30] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics.January 1989. Submitted for publication. A preliminary version appeared in Symposiumon Logic in Computer Science, pages 194{204, June 1987.[31] Jacques Herbrand. Recherches sur la th�eorie de la d�emonstration. Travaux de la Soci�et�edes Sciences et de Letrres de Varsovic, 33, 1930.[32] W. A. Howard. The formulae-as-types notion of construction. Unpublished manuscript,1969. Reprinted in To H. B. Curry: Essays on Combinatory Logic, Lambda Calculusand Formalism, 1980.[33] G�erard Huet. Formal structures for computation and deduction. May 1986. Lecturenotes for a graduate course at Carnegie Mellon University.[34] G�erard Huet. R�esolution d'�equations dans des langages d'ordre 1; 2; : : : ; !. PhD thesis,Universit�e Paris VII, September 1976.[35] G�erard Huet. The undecidability of uni�cation in third order logic. Information andControl, 22(3):257{267, 1973.[36] G�erard Huet. A uni�cation algorithm for typed �-calculus. Theoretical Computer Sci-ence, 1:27{57, 1975.



126 Bibliography[37] G�erard Huet and Bernard Lang. Proving and applying program transformations ex-pressed with second-order patterns. Acta Informatica, 11:31{55, 1978.[38] D. C. Jensen and T. Pietrzykowski. Mechanizing !-order type theory through uni�ca-tion. Theoretical Computer Science, 3:123{171, 1976.[39] Kevin Knight. Uni�cation: a multi-disciplinary survey. ACM Computing Surveys,2(1):93{124, March 1989.[40] C. L. Lucchesi. The Undecidability of the Uni�cation Problem for Third Order Lan-guages. Report CSRR 2059, University of Waterloo, Waterloo, Canada, 1972.[41] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algorithm. ACM Trans-actions on Programming Lanugaes and Systems, 4(2):258{282, April 1982.[42] Per Martin-L�of. Constructive mathematics and computer programming. In Logic,Methodology and Philosophy of Science VI, pages 153{175, North-Holland, 1980.[43] Per Martin-L�of. On the Meanings of the Logical Constants and the Justi�cations ofthe Logical Laws. Technical Report 2, Scuola di Specializzazione in Logica Matematica,Dipartimento di Matematica, Universit�a di Siena, 1985.[44] Ian A. Mason. Hoare's Logic in the LF. Technical Report ECS-LFCS-87-32, Laboratoryfor Foundations of Computer Science, University of Edinburgh, Edinburgh, Scotland,June 1987.[45] Nancy McCracken. The typechecking of programs with implicit type structure. In G.Kahn, D.B. MacQueen, and G. Plotkin, editors, Semantics of Data Types, pages 301{315, Springer-Verlag LNCS 173, 1984.[46] Dale Miller and Gopalan Nadathur. Some uses of higher-order logic in computationallinguistics. In Proceedings of the 24th Anual Meeting of the Associtation for Computa-tional Linguistics, pages 247{255, 1986.[47] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofsas a foundation for logic programming. Journal of Pure and Applied Logic, 1988. Toappear. Available as Ergo Report 88{055, School of Computer Science, Carnegie MellonUniversity, Pittsburgh.[48] Dale A. Miller. Uni�cation under mixed pre�xes. 1987. Unpublished manuscript.[49] Dale A. Miller and Gopalan Nadathur. Higher-order logic programming. In Proceedingsof the Third International Conference on Logic Programming, Springer Verlag, July1986.



Bibliography 127[50] Dale A. Miller and Gopalan Nadathur. A logic programming approach to manipulatingformulas and programs. In Symposium on Logic Programming, San Francisco, IEEE,September 1987.[51] Robin Milner. A theory of type polymorphism in programming. Journal of Computerand System Sciences, 17:348{375, August 1978.[52] B. M�oller. A survey of the project CIP: Computer-aided, intuition-guided programming.Technical Report TUM{18406, Institut f�ur Informatik der TU M�unchen, Munich, WestGermany, 1984.[53] Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic Programming. PhDthesis, University of Pennsylvania, 1987.[54] Gopalan Nadathur and Dale Miller. An overview of �Prolog. In Robert A. Kowalskiand Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth Interna-tional Conference and Symposium, Volume 1, pages 810{827, MIT Press, Cambridge,Massachusetts, August 1988.[55] Lawrence Paulson. A higher-order implementation of rewriting. Science of ComputerPrograming, 3:119{149, 1983.[56] Lawrence Paulson. Natural deduction as higher-order resolution. Journal of LogicProgramming, 3:237{258, 1986.[57] Lawrence C. Paulson. The Representation of Logics in Higher-Order Logic. TechnicalReport 113, University of Cambridge, Cambridge, England, August 1987.[58] Frank Pfenning. Elf: a language for logic de�nition and veri�ed meta-programming. InFourth Annual Symposium on Logic in Computer Science, pages 313{322, IEEE, June1989. Also available as Ergo Report 89{067, School of Computer Science, CarnegieMellon University, Pittsburgh.[59] Frank Pfenning. Partial polymorphic type inference and higher-order uni�cation. InProceedings of the 1988 ACM Conference on Lisp and Functional Programming, Snow-bird, Utah, pages 153{163, ACMPress, July 1988. Also available as Ergo Report 88{048,School of Computer Science, Carnegie Mellon University, Pittsburgh.[60] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of theSIGPLAN '88 Symposium on Language Design and Implementation, Atlanta, Georgia,pages 199{208, ACM Press, June 1988. Available as Ergo Report 88{036, School ofComputer Science, Carnegie Mellon University, Pittsburgh.[61] Randy Pollack. The theory of LEGO. October 1988. Unpublished manuscript anddocumentation.



128 Bibliography[62] Garrel Pottinger. The Church-Rosser theorem for the typed �-calculus with surjectivepairing. Notre Dame Journal of Formal Logic, 22(3):264{268, July 1981.[63] Garrel Pottinger. Proof of the normalization and Church-Rosser theorems for the typed�-calculus. Notre Dame Journal of Formal Logic, 19(3):445{451, July 1978.[64] D. J. Pym. Proof, Search and Computation in General Logic. PhD thesis, Universityof Edinburgh, 1990. forthcoming.[65] John Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Program-mation, pages 408{425, Springer-Verlag LNCS 19, New York, 1974.[66] J. A. Robinson. Computational logic: the uni�cation computation. Machine Intelli-gence, 6:63{72, 1971.[67] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal ofthe ACM, 12(1):23{41, January 1965.[68] Anne Salvesen. The Church-Rosser Theorem for LF with �� Reduction. TechnicalReport forthcoming, Laboratory for Foundations of Computer Science, University ofEdinburgh, Edinburgh, Scotland, 1990.[69] Wayne Snyder. Complete Sets of Transformations for General Uni�cation. PhD thesis,University of Pennsylvania, 1988.[70] Wayne Snyder and Jean H. Gallier. Higher-order uni�cation revisited: complete setsof transformations. Journal of Symbolic Computation, 1988. To appear in the specialissue on uni�cation.[71] Guy L. Steele. Common Lisp: The Language. Digital Press, 1984.[72] Guy Lewis Steele and Gerald Jay Sussman. The Revised Report on SCHEME|A Di-alect of LISP. AI Memo 452, MIT, Cambridge, January 1978.[73] Anne S. Troelstra. Strong normalization for typed terms with surjective pairing. NotreDame Journal of Formal Logic, 27(4):547{550, October 1986.[74] David A. Turner. Miranda: a non-strict functional lanugage with polymorphic types.In Functional Programming Languages and Computer Architecture, Springer-Verlag,Berlin, September 1985.[75] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a program-ming language. Journal of the Association for Computing Machinery, 23(4):733{743,October 1976.



Glossary�� Dependent calculus without products or polymorphism, 9M;N Meta-variables ranging over terms, 9A;B Meta-variables ranging over types, 9K Meta-variable ranging over kinds, 10U Meta-variable for terms and types, and occasionally kinds, 10F(U) Set of free variables in U , 10�V� Terms, types, and kinds with free variables in V , 11V Set of variables, 11�V 0V Substitutions from V to V 0, 11� Meta-variable ranging over substitutions, 11�V The set of substitutions over variable set V , 11�idV Identity substitution over V , 11�+u Extension of � to map u to u, 12� Extension of � to terms, types, and kinds, 12�0 � � Composition of substitutions, 12[M1=x1; : : : ;Mm=xm ]V 0V Substitution speci�ed by images of a subset of its domain, 15�; � Conversion rules for ��, 17!� The one step subterm rewriting extension of �, 17!�� Transitive closure of !�, 18129



130 Glossary$�� Equivalence closure of !�, 18=� Convertibility, 18h c1:U1; : : : ; cn:Un i Signature, 20dom(�) Domain of a signature, 20� � v:A Signature extension, 20[ v1:A1; : : : ; vn:An ] Context, 21dom(�) Domain of a context, 21ran(�) Range of a context, 21� � v:A Context extension, 21` � sig � is a valid signature, 21`� � context � is a valid context given �, 21� `� K kind K is a valid kind given � and �, 21� `� A 2 K A has kind K given � and �, 21� `� M 2 A M has type A given � and �, 21��0� The set of well-typed substitutions from � to �0, 28�� The set of well-typed substitutions over �, 28P Disagreement pair, 29	 Universal context, 29h	 ; U; U 0i Disagreement pair, 29D Disagreement set, 30Q Uni�cation problem, 30h�; �0;Di Uni�cation problem, 30A(Q) Q is acceptable, 31U(Q) Set of solutions of Q, 31�̂ Potential solution of a uni�cation problem, 31�CSP Minimal complete set of pre-uni�ers, 32



Glossary 131��� Transformation relation closure, 34wh� � weak head reduction, 37WHNF Weak head normal form, 38�	; �� Substitution applied to context, 39F(P ) Free variables of a disagreement pair, 39F(D) Free variables of a disagreement set, 39�P; �D Substitution applied to disagreement pair or disagreement set, 39eq�(P ) P relates convertible terms or types, 39size(: : :) Size of a term, type, etc., 40dn(: : :) Measure of distance to weak head normalization, 40P < D̂ P is decomposable to D̂, 41P ;wh D̂ Decomposition via weak head reduction, 42P ;� D̂ Decomposition based on an abstraction., 42P ;rr D̂ P rigidly decomposes to D̂, 47D̂ � P Appending to a disagreement sequence, 47topeq(P ) P relates terms or types with the same top level structure, 47U � U 0 U and U 0 have the same top level structure, 47D<P Members of D that \account for" P , 51< Strict partial order forming an accounting, 51head(U) The head of the term or type body U ., 54height�(M) The height of a term., 64�� �0 Substitution height comparison, 65��� �� enriched with � types, 79�1; �2; � Additional conversion rules for ���, 81P ;�� D̂ Decomposition based on an abstraction or pair, 86



132 Glossary



Indexacceptable, 52transformation, 33transition, 33uni�cation problem, 31accounting, 51atom, 38atomic type, 38body, 38Church-Rosser, 25complete, 34transformation relation, 34composition of substitutions, 12context, 21correct, 33transformation, 33transition, 33CR, 25de Bruijn's representation, 10decomposable to, 41decreasing, 35disagreement pair, 29disagreement set, 30exible, 54free variables, 10of a disagreement pair, 39of a disagreement set, 39head, 54height of a term, 64identity substitution, 11minimal complete set of pre-uni�ers, 32

transformation, 33transition, 33permanent substitution, 53preserve typing, 25rigid, 54signature, 20size, 85Size of a term, 40type, 0, 0, 40SN, 25solutions of a uni�cation problem, 31solved form, 32, 54strengthening, 23strong normalization, 25substitution, 11well-typed, 28substitutive, 18top level structure, 47transformation, 33uni�cation problem, 30unify, 31a disagreement pair, 31a disagreement set, 31universal context, 29valid, 33transformation, 33transition, 33weak head normal form, 38weak head reduction, 37weakening, 23133



134 Indexwell-typed, 39disagreement pair, 39disagreement set, 39WHNF, 38


