
A Semi-Functional Implementationof a Higher-Order Logic Programming LanguageConal Elliott Frank PfenningDraft of February 19901 IntroductionIn this chapter we develop an interpreter of a higher-order constraint logicprogramming language in Standard ML (SML). The logic programming lan-guage is closely related to �Prolog [25], though the type system supportedby our implementation is more general, for example by allowing explicit ab-straction over types. The implementation is closely modeled after eLP, animplementation of �Prolog in the Ergo Support System [8, 20] and may beconsidered as a rational reconstruction and explanation of the eLP imple-mentation.This is not a tutorial on �Prolog (we present no �Prolog programs atall), but for someone familiar with ML this should serve as a high-level op-erational semantics of a variant of the �Prolog language. Prior knowledgeof ML is assumed, but not at a very deep or sophisticated level (see [15] foran SML tutorial). We try to emphasize programming techniques as well asthe gradual development of the interpreter in its full generality from a verysimple starting point. For someone considering experimentation with varia-tions on logic programming languages, this chapter should provide enoughdetail and techniques for the rapid implementation of a modi�ed interpreterof related languages. Our approach is to write a true interpreter, and notto embed Prolog in ML the way Prolog is embedded in Scheme in [9] and[17]. The primary di�erence is that we separate carefully the name spaceof predicates of the logic programming language from the name space offunctions in ML.We do not address the use of the SML module system, nor do we discussa number of features of �Prolog such as its module system, input/output,1

and other built-in special predicates. Also omitted are the front end ofthe interpreter (parsing, unparsing, type inference) and, due to space con-straints, we limit ourselves to a sketch of higher-order uni�cation. We hopeto write a companion paper which concentrates primarily on a developmentof higher-order uni�cation and type reconstruction within the frameworklaid out in this chapter.One might also miss a discussion of compilation, which is not very wellunderstood in this context and is the subject of current research [24].We begin with an interpreter for propositional Horn logic, which intro-duces the central technique of the success continuation, due to Carlsson [2].We then move on to �rst-order Horn logic, which is very much in the tra-dition of Prolog. In Section 4 we generalize this to include embedded im-plication and universal quanti�cation (see [1, 11, 21] for the motivation forthese constructs) which complicates primarily uni�cation. In Section 5 weintroduce side-e�ects and assignment in a controlled way to increase the ef-�ciency of uni�cation. This is re�ned in the next section where we addressnon-logical control constructs such as if-then-else and cut and introduce thetrail. Section 7 sketches a more eÆcient clausal representation of programswhich hitherto were simply formulas and hints at indexing. In Section 8 wegeneralize the underlying language of terms from �rst-order terms to typed�-terms, at which point uni�cation no longer generates most general uni-�ers and constraints enter the interpreter. Finally we discuss how to makethe transition from terms to goals to allow true higher-order logic program-ming. Throughout this chapter we remark on the di�erences between theinterpreter developed here and our Common Lisp implementation.2 Propositional Horn LogicWe begin the development with a very simple propositional logic amenableto an interpretation as a programming language: propositional Horn logic.Our presentation is non-standard in that we do not require the formulas tobe in clausal form: throughout our development we view this as a normalform, which must be justi�ed by an appropriate metatheorem. A moreeÆcient clausal representation for formulas will be introduced in Section 7.
2

2.1 The Language of Goals and ProgramsThe de�nition of propositional Horn logic is by induction in the form ofa BNF grammar. G denotes the legal goal formulas (which are also thelegal queries) and D the legal program formulas.1 We sometimes refer tothese classes as D-formulas and G-formulas, respectively, and collectively asformulas. G ::= A j > j G1 ^G2 j G1 _G2D ::= A j > j D1 ^D2 j G! DThe letter A generally stands for atomic formulas; here this means propo-sitional constants, > stands for truth, ^ stands for conjunction, _ for dis-junction, and ! for implication. In logic programming it is often moreconspicuous to use , where D G can be read as \D if G" and is apurely notational variant of G! D.The following �gure shows how this would be translated into a datatypede�nition in SML (comments are enclosed in (* *)).datatype gform = (* Goal formula *)Gtrue (* Truth *)| Gand of gform * gform (* Conjunction *)| Gor of gform * gform (* Disjunction *)| Gatom of string (* Atomic G formula *)and dform = (* Program formula *)Dtrue (* Truth *)| Dand of dform * dform (* Conjunction *)| Dimplies of gform * dform (* Implication *)| Datom of string (* Atomic D formula *)This de�nes constructors such as Dand, which, when applied to two D-formulas, yields a D-formula. For example, the program p ^ (p! q) wouldbe represented asDand(Datom("p"),Dimplies(Gatom("p"),Datom("q")))A query, such as whether q is true, would be represented asGatom("q")1D is derived from de�nite as in de�nite clauses, though our de�nition is broader.3

2.2 A First InterpreterThe next step is to give goals and programs an operational interpretation.For this simple logic, this is straightforward, though the precise de�nitionof \upon backtracking" is deferred to the actual interpreter in ML. Firstcomes the reduction of a goal to its subgoals, then the analysis of whetheran atomic goal follows from the program.1. Given goal >, succeed.2. Given goal G1 ^G2, attempt to solve G1 and, if it succeeds, attemptto solve G2.3. Given goal G1 _G2, attempt to solve G1. If this succeeds, succeed. Ifthis fails, attempt to solve G2.4. Given an atomic goal A, look through the program for ways to establishA following the control structure below.If we assumed the program to be in clausal form, we would enumerate theclauses of the form A G and attempt to solve G for each such clause. It iseasy to see that the following program analysis will behave this way on thespecial case of clausal form programs. We assume we are given a programD, and atomic goal A. We also have an \accumulated subgoal" which isinitialized to >.1. D = D1 ^D2. Attempt to infer A from D1. If this fails, attempt toinfer A from D2.2. D = G ! D1. Attempt to infer A from D1, but conjoin G to thesubgoal that remains to be solved.3. D = A. Attempt to solve the accumulated subgoal.4. D = B for atomic B distinct from A. In this case D is not helpful inthe attempt to derive A and we backtrack.Thus our program consists of two mutually recursive functions. solveanalyzes a composite goal, and match_atom analyzes the program with re-spect to an atomic goal. The fundamental idea of the formulation as afunctional program is that of a success continuation due to Carlsson [2].The obvious arguments to solve are the current goal and program. The4

non-obvious argument is the success-continuation sc. sc is a function (ofno arguments) that is to be called when the current goal succeeds. Back-tracking is achieved simply by returning from the current function with anuninteresting value (we have chosen () : unit). The function match_atomcalls a local recursive function rec_match, which accumulates subgoals asoutlined above.fun solve (Gtrue) prog sc = sc ()| solve (Gand(g1,g2)) prog sc =solve g1 prog (fn () => solve g2 prog sc)| solve (Gor(g1,g2)) prog sc =(solve g1 prog sc ; solve g2 prog sc)| solve (Gatom(goal_const)) prog sc =match_atom goal_const prog scand match_atom goal_const prog sc =let fun rec_match (Dtrue) subgoal = ()| rec_match (Dand(d1,d2)) subgoal =(rec_match d1 subgoal ; rec_match d2 subgoal)| rec_match (Dimplies(g,d)) subgoal =rec_match d (Gand(subgoal,g))| rec_match (Datom(prog_const)) subgoal =if prog_const = goal_constthen solve subgoal prog scelse ()in rec_match prog (Gtrue) endLet us inspect this compact program line-by-line.1. If the current goal is >, we succeed by invoking the success continua-tion.2. If the current goal is G1^G2, we attempt to solve G1, but also build asuccess continuation that will eventually solve G2, which is necessaryin order for the conjunction to succeed. (fn () => ...) is the SMLway of constructing a function of no arguments.3. If the current goal is G1 _G2, we attempt to solve G1 with the samesuccess continuation. If this should fail and thus return, we attemptto solve G2. Semicolon is the SML sequencing operator. Note that5

in a purely functional setting without any side-e�ects, it would makeno sense to try the left and right subgoals in succession: if solvingthe left subgoal succeeds, it must produce some record of this. Inthe framework of success continuations, this is achieved through theinitial success continuation, which could be a function such as (fn ()=> print "Goal succeeded!") (see Section 2.3).4. If the current goal is atomic we look through the program to �ndD-formulas that might help us prove the goal.Next we consider the program analysis. We call rec_match with a cur-rent subgoal Gtrue, which will always succeed and the whole program progas the current D-formula. Here are the cases for rec_match.1. If the program is >, any atomic goal (which excludes >) will fail. Wereturn to indicate failure.2. If the program is a conjunction we attempt to use the left conjunctand then the right conjunct to derive the atomic goal. This is dual tothe case of a disjunctive goal.3. If the program is an implication G ! D, we conjoin G onto the sub-goal that would have to be solved if D matched the atomic goal, andcontinue by attempting to use D to derive the atomic goal.4. If the program is atomic and equal to the atomic goal, we attempt tosolve the accumulated subgoal, otherwise we backtrack by returning.There are some obvious ineÆciencies in this control structure. Some ofthese will be addressed in later sections.2.3 The Initial Success ContinuationFrom the exposition above we can see thatval solve : gform -> dform -> (unit -> unit) -> unit}and solve goal prog sc may be read as \solve goal in program prog andcall sc if successful, otherwise return." This is not quite accurate, since if screturns, it will be called again for every way of proving goal the interpretercan �nd. 6

For example, let val psc = (fn () => print "Success! "). Thensolve p (p ^ p) psc will print Success! twice. On the other hand, dueto the incompleteness of depth-�rst search, solve p ((p! p)^ p) psc willget into an in�nite loop, while solve p (p ^ (p ! p)) psc will print anin�nite stream of Success!'s.At �rst this might seem like a serious limitation of this implementationtechnique. However, using exceptions we can prevent the initial successcontinuation from returning. For example, the following top-level interfacewould stop after the �rst solution is found.fun one_solve goal prog =let exception Successin (solve goal prog (fn () => raise Success) ;print "no ")handle Success => print "yes "endIt is also easy to add a query of the user that checks if more solutionsare desired or not. The eLP implementation [8] plays even more tricks withthe initial success continuation: it presents the �rst solution, but then worksahead without waiting for instructions as to whether additional solutions arerequired. If an externally visible side-e�ect is just about to be executed, itsuspends. This has the advantage that we can often return to the top-levelwithout user input if the query has only one solution.3 First-Order Horn LogicThe interpreter from the previous section can be generalized and improvedin several di�erent directions. Before we introduce some improvements, wecontinue with a few generalizations. The most important and obvious stepis that from a propositional to a �rst-order logic. This requires the intro-duction of uni�cation and substitution. Interestingly, the basic structure ofthe interpreter stays intact: success continuations can be generalized to dealwith uni�cation and substitutions. This �rst version of an interpreter for�rst-order Horn logic requires no side-e�ects except for the presentation ofsolutions.The de�nition of �rst-order Horn logic is again somewhat non-standardin that we do not require a clausal form.7

G ::= A j > j G1 ^G2 j G1 _G2 j 9x GD ::= A j > j D1 ^D2 j G! D j 8x DWe add two new cases for the quanti�ers to the datatypes gform anddform, but we also have to change the de�nition of atomic formulas, sincethey now may consist of a predicate constant applied to a number of termsbuilt from constants, function constants, and variables. Partly for reasons ofsimplicity and partly in preparation for a higher-order language, we do notdistinguish between constants, function constants, and predicate constants.Thus atomic formulas are considered to be terms, which also means that notevery gform or dform represents a well-formed formula of �rst-order Hornlogic. However, this property can be checked statically and we thus considerit a problem for an appropriate front-end for our interpreter that is beyondthe scope of this chapter. Before we go into detail in the representation ofterms, here is the changed de�nition of formulas.datatype gform = (* Goal formula *)Gtrue (* Truth *)| Gand of gform * gform (* Conjunction *)| Gor of gform * gform (* Disjunction *)| Gatom of term (* Atomic G formula *)| Gexists of varbind * gform (* Existential *)and dform = (* Program formula *)Dtrue (* Truth *)| Dand of dform * dform (* Conjunction *)| Dimplies of gform * dform (* Implication *)| Datom of term (* Atomic D formula *)| Dall of varbind * dform (* Universal *)3.1 Terms and SubstitutionOur inductive de�nition of terms has three base cases: Bvar for bound vari-ables, Evar for logic variables,2 and Const for constants, including predicateand function constants. These variables and constants can be combined via2The name is derived from existential variables, since logic variables may be viewed asvariables that are existentially quanti�ed in the meta-theory.8

application using the Appl constructor, giving the representation the avorof a curried form, which will aid us in the transition to the higher-orderlanguage later on, but also leads to more compact code here.datatype term =Bvar of string (* Bound Variables *)| Evar of string * int (* Logic Variables , Stamped *)| Const of string (* Constants *)| Appl of term * term (* Applications *)and varbind = Varbind of string (* Variable binders *)Varbind's are used to bind variables at quanti�ers, but seem to belong tothe term language rather than the formula language are thus implementedas a separate type rather than merely by strings. Later, in Section 8 aVarbind will also contain the bound variable's type.Under this representation the Prolog clause append (nil ;K;K) has anexplicit quanti�er on K and is represented as3Dall(Varbind("K"),Datom(Appl(Appl(Appl(Const("append"),Const("nil")),Bvar("K")),Bvar("K"))))Logic variables must be generated many times in such a way as not toconict with previous logic variables of the same name. For example, everytime a clause in Prolog is used, its free variables must be instantiated withfresh logic variables. In our setting, the quanti�cation on the variables isexplicit, since this approach lends itself more easily to later generalizations.Nonetheless, we must be able to generate new unique logic variables wheninstantiating universally quanti�ed D-formulas (programs). We do this byattaching to each logic variable an integer stamp which makes it unique. Weuse the function new_evar to generate new logic variables from given variablenames. In order to properly explain substitution and later uni�cation, wewill need to introduce some terminology. We say an occurrence of a Bvaris loose in a term or formula if it is not in the scope of a binding operatorbinding the same name. We say a term or formula is tight if it contains noloose Bvar's, and it is closed if it is tight and also contains no Evar's. Hereare the types of some of the lower-level functions implemented below.3Note that we use the conventional Prolog uncurried notation in the concrete syntaxof examples for this �rst-order term language.9

val new_evar : varbind -> termval shadow : varbind -> varbind -> boolval subst : term -> varbind -> term -> termshadow determines if one variable binding shadows another and is usedto correctly substitute in formulas such as 8x (P (x) ^ 8x Q(x)). subst sx t substitutes the tight term s for all loose occurrences of x in t. Theimplementations are straightforward as renaming can be avoided, since t isrequired to contain no loose Bvar's.(* Externally invisible counter to create unique variables *)local val varcount = ref 0in fun new_evar (Varbind(vname)) =(varcount := !varcount + 1;Evar(vname,!varcount))end (* local val varcount *)fun shadow (Varbind(vname1)) (Varbind(vname2)) = (vname1 = vname2)fun subst s (Varbind(vname)) t =let fun sb (t as Bvar(bvname)) = if vname = bvname then s else t| sb (Appl(t1,t2)) = Appl(sb t1,sb t2)| sb t = t (* Evar , Const *)in sb t endThere are also functions that substitute in G-formulas and D-formulas.These are mutually recursive,4 but each function changes only a subset ofthe arguments in the recursion. The following illustrates a general imple-mentation technique for such a recursion structure.local fun formsubst t x =let fun gsb (Gtrue) = Gtrue| gsb (Gand(g1,g2)) = Gand(gsb g1, gsb g2)| gsb (Gor(g1,g2)) = Gor(gsb g1, gsb g2)| gsb (Gexists(y,g)) =Gexists(y, if shadow x y then g else gsb g)| gsb (Gatom(s)) = Gatom(subst t vbd s)4Actually, in this version D-formulas may not occur in G-formulas, but this will changelater on. 10

and dsb (Dtrue) = Dtrue| dsb (Dand(d1,d2)) = Dand(dsb d1, dsb d2)| dsb (Dimplies(g,d)) = Dimplies(gsb g, dsb d)| dsb (Datom(s)) = Datom(subst t vbd s)| dsb (Dall(y,d)) =Dall(y, if shadow x y then d else dsb d)in (gsb , dsb) endinfun gsubst t x g =let val (gsb , _) = formsubst t x in gsb g endand dsubst t x d =let val (_ , dsb) = formsubst t x in dsb d endend3.2 Uni�cationThe basic new data structure we need is that of a substitution, which mapslogic variables to terms. First, a section of the signature.type substitution = (term * term) listval unify : term -> term -> (substitution -> unit) -> substitution -> unitThe structure of unify is again based on the idea of a success contin-uation, except that we now need to communicate some information to thesuccess continuation, namely the substitution that arises from unifying twoterms. Thus unify s t sc subst uni�es s and t under the substitution substand applies sc to the resulting new substitution. This means that substi-tutions arising from uni�cation are never explicitly applied, but when anEvar is encountered we need to see if it has been instantiated to a termby previous uni�cations. If uni�cation fails, unify simply returns. unifyrequires the auxiliary function lookup, which returns the substitution termfor a logical variable in a substitution, or the token NONE, if no such termexists.5First, we show a version that implements unsound uni�cation as used inProlog. Omitting the occurs-check as done here may be justi�ed by eÆciencyarguments, but has the undesirable side-e�ect that X and f(X) are uni�able(where X is the variable).5The frequently used type 'a option is not part of the de�nition of SML but de�nedas datatype 'a option = NONE | SOME of 'a.11

(* val lookup : term -> substitution -> term option *)fun lookup (Evar(_,stamp)) subst =let fun lk nil = NONE| lk ((Evar(_,tstamp),t)::tail) =if stamp = tstamp then SOME(t) else lk tailin lk subst endfun unify (s as Evar _) t sc subst = unify_evar s t sc subst| unify s (t as Evar _) sc subst = unify_evar t s sc subst| unify (Const(cname1)) (Const(cname2)) sc subst =if cname1 = cname2 then (sc subst) else ()| unify (Appl(s1,s2)) (Appl(t1,t2)) sc subst =unify s1 t1 (fn newsubst => unify s2 t2 sc newsubst) subst| unify _ _ sc subst = ()and unify_evar e t sc subst =case (lookup e subst)of NONE => sc ((e,t)::subst) (* Instantiate e to t, succeed *)| SOME(s0) => unify s0 t sc subst (* e is instantiated to s0 *)Adding the occurs-check requires a few auxiliary functions and a modi-�cation of the de�nition of unify_evar. The de�nitions of occurs_in andsame_evar are straightforward and omitted here. The occurs-check is onlycalled once we know that we are not trying to unify a variable with it-self. The de�nition of unify remains unchanged and the new de�nition ofunify_evar isunify_evar e t sc subst =case (lookup e subst)of NONE => if same_evar e t substthen sc subst (* e = e *)else if occurs_in e t substthen () (* Occurs check fails *)else sc ((e,t)::subst) (* Bind e to t *)| SOME(s0) => unify s0 t sc substThe obvious ineÆciency in the structure of this function is that substi-tutions must be built up, and that it may be very costly to continue tolook up possible substitutions terms for Evar's. This can be corrected usingdestructive substitutions (see Section 5).12

3.3 The InterpreterThe generalized version of the function solve now takes one additionalargument (the current substitution for Evar's), and the success continuationalso expects to be passed a substitution.fun solve (Gtrue) prog sc subst = sc subst| solve (Gand(g1,g2)) prog sc subst =solve g1 prog (fn newsubst => solve g2 prog sc newsubst) subst| solve (Gor(g1,g2)) prog sc subst =(solve g1 prog sc subst ; solve g2 prog sc subst)| solve (Gatom(t)) prog sc subst =match_atom t prog sc subst| solve (Gexists(x,g)) prog sc subst =solve (gsubst (new_evar x) x g) prog sc substand match_atom t prog sc subst =let fun rec_match (Dtrue) subgoal = ()| rec_match (Dand(d1,d2)) subgoal =(rec_match d1 subgoal ; rec_match d2 subgoal)| rec_match (Dimplies(g,d)) subgoal =rec_match d (Gand(subgoal,g))| rec_match (Datom(s)) subgoal =unify s t (fn newsubst => solve subgoal prog sc newsubst) subst| rec_match (Dall(x,d)) subgoal =rec_match (dsubst (new_evar x) d) subgoalin rec_match prog (Gtrue) endAgain, the question arises how we call this interpreter at the top-level.The initial success continuation will have to be slightly more complicatedthan before since we would like to present a substitution for the logic vari-ables in the query. To this end we have functionsval project_substitution : term list -> substitution -> substitutionval print_substitution : substitution -> unitproject_substitution evars subst takes a list of Evar's and determinestheir substitution terms in subst . This includes looking up of all the logicvariables in the substitution terms that were instantiated during the uni�ca-tion. print_substitution subst just presents the substitution in a human13

readable format. For the sake of brevity we will not show the implemen-tation of these straightforward functions. It will also be the responsibilityof the front end to ensure that all free uppercase identi�ers in the originalquery are converted into new logic variables, and that the �nal substitutionis projected onto these variables and then printed.4 Hereditary Harrop LogicWe now further generalize from the �rst-order Horn logic to allow hereditaryHarrop formulas as goals. This means that a goal can be an implication(called embedded implication) or a universally quanti�ed formula (embeddeduniversal quanti�cation). For some general motivation for these constructsrefer to [1, 12, 11, 21, 25]. The mutually recursive de�nitions of the classesof goals and programs now becomeG ::= A j > j G1 ^G2 j G1 _G2 j 9x G j D ! G j 8x GD ::= A j > j D1 ^D2 j G! D j 8x DThe de�nition of gform is changed by adding two new cases.| Gimplies of dform * gform (* Embedded Implication *)| Gall of varbind * gform (* Embedded Universal *)The operational interpretation of these new constructs follows the intu-itionistic reading of implication and universal quanti�cation.� Given goal D ! G, assume D into the program and then attempt tosolve G. The additional assumption is in e�ect only while solving G.D is added \to the beginning" of the program, which means that themost recently assumed formula is considered �rst when we are tryingto solve an atomic goal.� Given goal 8x G, create a new parameter a and attempt to solve[a=x]G. \New" means that a is not allowed to occur in the currentprogram or G.As examples, consider the goals p ! p (which clearly succeeds) and9x (P (x) ! (P (1) ^ P (2))), which fails (due to the intuitionistic readingof 9) where the classically equivalent (8x P (x)) ! (P (1) ^ P (2)) succeeds.Quanti�er dependence now also becomes an issue, as one can see from thegoals 9x 8y (P (x) ! P (y)) (which fails) and 8y 9x (P (x) ! P (y)) (whichsucceeds). 14

4.1 Embedded ImplicationEmbedded implication can be added trivially to the interpreter as we havedeveloped it so far, since the program is an explicit parameter to the solvefunction. We just add a new case to the de�nition of solve:| solve (Gimplies(d,g)) prog sc subst =solve g (Dand(d,prog)) sc subst4.2 Embedded Universal Quanti�cationEmbedded universal quanti�ers require much more pervasive changes, sincethe dependence of existential and universal quanti�ers on each other nowmust be taken into account. In theorem provers this is typically addressed bya one-time Skolemization pass during the preprocessing stage. Here this doesnot seem possible (since the logic is essentially intuitionistic). Moreover, wecan take advantage of special properties of hereditary Harrop formulas toobtain a more eÆcient implementation.First of all, we need to update the de�nition of the datatype of term toinclude the case that the term is a parameter. In our implementation wecall these parameters Uvar's, thinking of them as universally quanti�ed atthe meta-level. Note that in uni�cation they act essentially like constants,except for certain quanti�er dependence considerations. The way we imple-ment quanti�er dependence is for every Evar to explicitly contain a list ofparameters on which it may depend.datatype term =Bvar of string (* Bound Variables *)| Evar of string * int * term list(* Logic Variables , Stamped , Depends on *)| Uvar of string * int (* Parameters , Stamped *)| Const of string (* Constants *)| Appl of term * term (* Applications *)and varbind = Varbind of string (* Variable binders *)Consider, for example, the goal 8x 9y G. First we introduce a newparameter a for x and solve 9y [a=x]G. Then we introduce a new logicvariable Y and solve G00 = [Y=y][a=x]G. We are free to instantiate Y withterms which contain a, that is, Y may depend on a. If, on the other hand,15

our goal is 9y 8x G, we �rst introduce a logic variable Y for y and then aparameter a for x. Note that here Y may not contain occurrences of a!In the interpreter this is implemented by adding a new argument tosolve, namely the list of parameters (Uvar's) which have been introducedso far and thus may occur in the substitution term for any logic variable(Evar) which is introduced subsequently. There are some additional minorinterface changes. For example, the function new_evar must now be passedthe list of Uvar's on which the new Evar is allowed to depend on. Since thenew parameter is passed along unchanged in all cases except the embeddeduniversal quanti�er, we only show this case in solve.| solve (Gall(x,g)) prog uvars sc subst =let val a = new_uvar xin solve (gsubst a x g) prog (a::uvars) sc subst endThere are some further bookkeeping changes (for example, in substitu-tion), but the crucial change now is in the uni�er. More speci�cally, we haveto extend the occurs-check to account for dependency. When the prospec-tive substitution term t contains a Uvar on which the Evar s is not allowedto depend, we have to fail. However, this is not quite suÆcient. Considerthe problem of unifying X with f(Y), where X and Y are logic variables,and X is allowed to depend only on parameter a, but Y is allowed to de-pend on parameters a and b. If we merely bind X to f(Y), Y might later beinstantiated to a term containing b, thus unwittingly violating the conditionthat the substitution term for X not depend on b. Thus we also need torestrict further instantiations of Y not to depend on b.In general, all Evar's Y embedded in a substitution term for an Evar Xcan depend only on the intersection of the parameters legal for X and Y .This is implemented by instantiating Y with a new Evar Y 0 whose Uvar listis thus restricted. We don't need to implement this in full generality dueto a metatheorem: when we have to consider the lists of Uvar's from twoEvar's during the execution of a logic program one of the lists will be aninitial segment of the other.6Rather than using two passes, we combine the occurs-check with therestriction of Evar's. Since restriction of Evar's is an instantiation process,the extended occurs-check may need to change the substitution and thus isprogrammed using success continuations, just as unify itself.6This also gives rise to the even more eÆcient implementation used in eLP, where wholelists of parameters are represented by their upper bound (a single integer).16

fun init_seg uvars1 uvars2 = length uvars1 <= length uvars2fun extended_occurs_check (Evar(_,stamp1,uvars1)) t sc subst =let fun eoc (e as Evar(x,stamp2,uvars2)) sc subst =(case (lookup e subst)of NONE => if (stamp1 = stamp2)then () (* fail *)else if init_seg uvars2 uvars1then sc substelse sc ((e,new_evar (Varbind(x)) uvars1)::subst)| SOME t0 => eoc t0 sc subst)| eoc (Appl(t1,t2)) sc subst =eoc t1 (fn newsubst => eoc t2 sc newsubst) subst| eoc (Uvar(_,stamp2)) sc subst =if exists (fn (Uvar(_,stamp1)) => stamp1 = stamp2| s => raise subtype("eoc",s,"is not a Uvar"))uvars1then sc substelse ()| eoc _ sc subst = sc substin eoc t sc subst end| extended_occurs_check s _ _ _ =raise subtype("extended_occurs_check",s,"is not an Evar")One more detail here is the use of a function subtype which generatesan exception from a function name, term, and error message. The intent isthat these exceptions signal an internal error, called subtype, because beinga term, but not an Evar or Uvar constitutes a form of subtype violation(though subtypes are not supported in SML).The extended occurs-check is called from unify_evar. The only subtletyhere is perhaps that we have to postpone the substitution until the extendedoccurs-check has succeeded. Note also that we have to previously checkif we are unifying an Evar with itself and succeed without changing thesubstitution|otherwise the occurs-check would fail for this case.and unify_evar e t sc subst =case (lookup e subst)of NONE => if same_evar e t subst17

then sc substelse extended_occurs_check e t(fn newsubst => sc ((e,t)::newsubst))subst| SOME s0 => unify s0 t sc subst5 Destructive SubstitutionOf the code presented so far, the two most important optimizations willbe (a) introduction of destructive substitution in order to avoid repeatedlookup of the substitution terms for logic variables, and (b) the conversionof the program into clausal form in order to have ready access to the partof the program relevant to a particular predicate symbol. In this section wewill deal with the �rst issue.Up to now we were using almost exclusively purely functional code. De-structive substitutions will violate this principle, but in a relatively disci-plined way. This means that whenever the uni�cation algorithm instantiatesa logic variable to a term it has to make provisions to undo this instantia-tion upon backtracking. Since backtracking is indicated simply by returningrather than calling the success continuation, this is easy to implement.7Before plunging into the code, a brief word about assignment in SML.Traditionally in imperative languages we assign to variables. In SML, weassign to references. References are distinguished by their type (which willbe 'a ref for some type 'a) and are created by applications of the func-tion ref to a value. ref is also a constructor so that we can access thevalue stored in a location using match expressions as for usual function def-initions. Thus the dereferencing operation ! can be de�ned explicitly asfun ! (ref v) = v.In order to implement the idea of destructive substitutions, we giveEvar's an additional slot that could either hold the term to which the Evarwas instantiated, or a token indicating that the Evar is not instantiated.We must be able to assign to this slot, and it will thus be a reference to anoptional term. Here is the updated de�nition of the datatype of terms.datatype term =7In Section 6 we will be forced to abandon this assumption, and will thus require amore sophisticated implementation of instantiation and uninstantiation of variables.18

Bvar of string (* Bound Variables *)| Evar of string * int * term list * (term option) ref(* Logic Variables , Stamped , Depends on , Inst'd to *)| Uvar of string * int (* Parameters , Stamped *)| Const of string (* Constants *)| Appl of term * term (* Applications *)When a new Evar is created, it is uninstantiated and thus contains areference to NONE. Now most operations will have to dereference Evar's ifthey are instantiated to a term. This is illustrated, for example, in thesecond clause in the de�nition of unify_evar below.8The most profound changes in unify are that (a) it no longer requiresa substitution as an argument since it instantiates variables destructively,and (b) it needs to take action to uninstantiate variables upon failure ofthe success continuation. Instantiation is accomplished by an assignmentto the reference in the value slot of an Evar, uninstantiation assigns NONE.The instantiation is performed when the extended occurs-check succeeds andthus is passed in the success continuation to extended_occurs_check. Thefunction for the extended occurs-check must also be changed in an analogousfashion.fun unify (s as Evar _) t sc = unify_evar s t sc| unify s (t as Evar _) sc = unify_evar t s sc| unify (Const(cname1)) (Const(cname2)) sc =if cname1 = cname2 then sc () else ()| unify (Uvar(_,stamp1)) (Uvar(_,stamp2)) sc subst =if stamp1 = stamp2 then (sc subst) else ()| unify (Appl(s1,s2)) (Appl(t1,t2)) sc =unify s1 t1 (fn () => unify s2 t2 sc)| unify _ _ sc = ()and unify_evar (e as Evar(_,_,_,(vslot as (ref NONE)))) t sc =if same_evar e tthen sc ()else extended_occurs_check e t(fn () => (vslot := SOME t ; sc () ; vslot := NONE ; ()))8An important optimization arises from the invariant that an Evar is never instantiatedto a term with a loose Bvar: In the operation of substituting for a Bvar in a term, if theterm is an instantiated Evar, we can simply return it without dereferencing and furthertraversal. 19

| unify_evar (Evar(_,_,_,ref (SOME s0))) t sc = unify s0 t sc| unify_evar s _ _ = raise subtype("unify_evar",s,"is not an Evar")The de�nition of G-formulas and D-formulas and the functions for sub-stituting into formulas does not change from the previous section. Theinterpreter undergoes only a very minor change: since explicit substitutionsare no longer required, solve and the success continuation both require oneargument less than before.6 Control Primitives and TrailingSo far, the only mechanism available for search control in our logic program-ming language has been clause ordering. There are many programs wherethis is insuÆcient and there are a number of ways one can address this de-�ciency. The most common construct is cut (!, in concrete Prolog syntax),though we will discuss this only briey in Section 6.2. Our focus will be onwhat is commonly called if-then-else and written as G1 -> G2 | G3 . Inour abstract syntax we have a corresponding guard constructor. guard isgeneral enough to allow a direct de�nition of the constructs once and notin a higher-order language (see Section 9), and most programs using cut caneasily be transformed into programs using guard. We show that the guardcontrol primitive can be implemented using SML exceptions without dis-turbing the general structure and organization of the interpreter. However,the use of exceptions relies on a non-local exit from a success continuation,which requires a di�erent implementation of the uninstantiation of variableson backtracking. This alternative implementation technique for backtrack-ing is referred to as trailing.6.1 The guard Control ConstructThe operational reading of G1 ! G2 j G3 (not to be confused with implica-tion) is� Solve the guard G1. If this succeeds, solve G2 (with the new substi-tution). On backtracking, do not reconsider the choices made whilesolving G1, but simply fail the overall goal G1 ! G2 j G3.� If solving G1 fails, solve G3 and fail the overall goal G1 ! G2 j G3 onbacktracking. 20

In the interpreter, we �rst augment the de�nition of the gform datatype and modify the substitution function to include the obvious additionalcase. A �rst, as it turns out, incorrect attempt at the additional case forthe interpreter (from Section 5) would be| solve (Guard(g1,g2,g3)) prog sc =let exception Guard_success in(solve g1 prog (fn () => raise Guard_success) ;solve g3 prog sc)handle Guard_success => solve g2 prog scendIf we succeed in solving the guard g1, raising the exception Guard_successwill transfer control back to the handler for the exception, bypassing all thechoice points, and then solve g2. Choice points are established, for example,when solving a disjunction, or when descending through a conjunction whenanalyzing the program in match_atom. One can now see what is wrongwith this attempt: the code in the uni�er which uninstantiates variables onbacktracking (the assignment of NONE below)extended_occurs_check e t(fn () => (vslot := SOME t ; sc () ; vslot := NONE ; ()))will not be executed when solving g2 eventually backtracks, because the callsc () exited with an exception, bypassing the second assignment.The solution to this problem is move the responsibility for uninstanti-ating variables from the uni�er to the choice points. Thus, in the case of agoal G1 _G2, for example, we have to keep track of all the variables whichmay have been instantiated during an attempt to solve G1 and uninstantiatethem before attempting to solve G2. Keeping track of these variables is thepurpose of the trail.A SML variable global_trail contains a reference to a trail. When avariable is instantiated, it is added to the trail (which is accessed as a stack).At a choice point, when the �rst alternative backtracks, we uninstantiate allvariables which have been pushed onto the trail and simultaneously unwindthe trail (that is, pop the stack). This is bundled up into a few functions andthe datatype trail. The function trail is used by the interpreter at choicepoints: it remembers the global stack, evaluates its argument (by applying itto the unit element) and then uninstantiates all the \new" variables it �nds21

on the stack. The function instantiate_evar is used by the uni�er in orderto instantiate logic variables and simultaneously push them onto the trail.The variable global_trail is local to a context with these functions, whichguarantees that no other functions can obtain access to it and change thevalue of the location it refers to. In order to be able to properly unwind thetrail, we must have a reference (= pointer) to a trail which we can comparewith the result of unwinding it. Since the only way to compare for pointerequality is by comparing references, the tail of a trail must be implementedas a reference to a trail even though is never modi�ed.datatype trail =consTrail of term * (trail ref)| nilTraillocal val global_trail = ref (ref nilTrail)infun unwind_trail shorter_trail longer_trail =if longer_trail = shorter_trailthen (global_trail := shorter_trail; ())else (case !longer_trail of(consTrail (Evar(_,_,_,vslot),rest_trail)) =>(vslot := NONE; unwind_trail shorter_trail rest_trail)| _ => raise Subtype("unwind_trail: Ill-formed trail."))fun trail func =let val old_trail = !global_trail in(func () ; unwind_trail old_trail (!global_trail) ; ())endfun instantiate_evar (s as Evar(_,_,_,vslot)) t =(vslot := SOME t;global_trail := ref (consTrail(s,!global_trail)))| instantiate_evar s _ = raise subtype("instantiate_evar",s,"is not an Evar")end (* local val global_trail *)The main function of the uni�er does not change, but unify_evar changes,since it no longer has the responsibility of uninstantiating variables uponbacktracking. Thus the call to the extended occurs-check now looks like22

extended_occurs_check e t (fn () => (instantiate_evar e t ; sc ()))The interpreter makes use of the functional trail where it establisheschoice points. This happens in exactly three cases: Gor, Guard, Dand. Theargument to trail is protected by a vacuous abstraction in order to prohibitpremature evaluation|just as success continuations.fun solve (Gtrue) prog uvars sc = sc ()| solve (Gand(g1,g2)) prog uvars sc =solve g1 prog uvars (fn () => solve g2 prog uvars sc)| solve (Gor(g1,g2)) prog uvars sc =(trail (fn () => solve g1 prog uvars sc) ;solve g2 prog uvars sc)| solve (Gatom(t)) prog uvars sc =match_atom t prog uvars sc| solve (Gexists(x,g)) prog uvars sc =solve (gsubst (new_evar x uvars) x g) prog uvars sc| solve (Gimplies(d,g)) prog uvars sc =solve g (Dand(d,prog)) uvars sc| solve (Gall(x,g)) prog uvars sc =let val a = new_uvar xin solve (gsubst a x g) prog (a::uvars) sc end| solve (Guard(g1,g2,g3)) prog uvars sc =let exception Guard_successin (trail (fn () => solve g1 prog uvars (fn () => raise Guard_success)) ;solve g3 prog uvars sc)handle Guard_success => solve g2 prog uvars scendand match_atom t prog uvars sc =let fun rec_match (Dtrue) subgoal = ()| rec_match (Dand(d1,d2)) subgoal =(trail (fn () => rec_match d1 subgoal) ;rec_match d2 subgoal)| rec_match (Dimplies(g,d)) subgoal =rec_match d (Gand(subgoal,g))| rec_match (Datom(s)) subgoal =unify s t (fn () => solve subgoal prog uvars sc)| rec_match (Dall(x,d)) subgoal =rec_match (dsubst (new_evar x uvars) x d) subgoal23

in rec_match prog (Gtrue) end6.2 CutInstead of the guard construct, we can use cut (written as !) as a non-logicalcontrol primitive. The operational reading of cut is� When encountering cut as a goal, succeed. When the interpreter back-tracks to this point, do not simply backtrack further, but jump past allthe choice points which have been created since the immediate atomicsupergoal of the cut.The reference to the \immediate atomic supergoal" requires the addition ofanother argument to solve and match_atom. This additional argument isan exception which, when raised, will transfer control back to the immediateatomic supergoal. This additional argument ctag is merely passed along inmost cases in the interpreter, so we show only the critical changes to theprevious incarnation of solve.fun solve (Gatom(t)) prog uvars ctag sc =let exception new_ctagin (match_atom t prog uvars new_ctag sc)handle new_ctag => ()end| solve (Gcut) prog uvars ctag sc =(sc () ; raise ctag)...and match_atom t prog uvars ctag sc =let fun rec_match (Datom(s)) subgoal =unify s t (fn () => solve subgoal prog uvars ctag sc)...in rec_match prog (Gtrue) endIn addition to the initial success continuation (see Section 2.3) we nowalso need to create an initial exception to pass to solve. This is easilyaccomplished byfun top_solve goal free_vars prog =24

let exception top_ctagin (trail (fn () => solve goal prog nil top_ctag(fn () => print_substitution free_vars)))handle top_ctag => ()endwhere free_vars is the list of variables (Evar's) free in goal. Trailing isnecessary so that top_solve does not have a side-e�ect on the variablesamong free_vars which are instantiated during the call to solve. Nowwe can also see how a Prolog-like top-level can be implemented: the initialsuccess continuation could present the substitution and then require userinput. If the user types a semi-colon \;" it returns, and otherwise is raisesthe exception top_ctag.7 Clausal FormOne of the problems with the interpreter so far is the ineÆciency of theprogram analysis. We would like to restrict the search for potentially appli-cable assumptions as much as possible. Here, the clausal form theorem forHorn logic (and hereditary Harrop logic) is helpful: any legal D-formula isequivalent to one in clausal form. The clausal form is de�ned byD ::= > j C j C ^DC ::= G! A j 8x Cwhere C is a clause, A (referred to as the clause head) stands for an atomicformula, and G (referred to as the clause body) stands for a G-formula asbefore. Atomic formulas have the form P (t1; : : : ; tn) for a predicate symbolP and terms t1; : : : ; tn. We call P the head of A and, more generally, f thehead of a term of the form f(t1; : : : ; tn), including the cases where n = 0. Werefer to the head of the clause head of a clause C as the head predicate of C.Given an atomic goal A with head P , the interpreter, that is, match_atom,can only succeed in applying a clause if its head predicate is also P .Thus we can represent an arbitrary program as a list of clauses, and storewith each clause its head predicate, for direct comparison with the head ofan atomic goal. In a �rst step, the program is searched clause by clause forone with a matching head predicate. A straightforward optimization thatwe do not discuss here further, stores a list of clauses relevant to each headpredicate in a hash table indexed by the head predicate. This can be carried25

even further by \indexing" on the head function symbol of one or more ofthe predicate arguments.Recall that in our implementation atomic formulas are represented byterms, since this simpli�es the code. We now add the de�nition of thedatatype of clause:datatype clause = Clause of head * varbind list * term * gformhead is a new type exported in the implementation of terms: it is the typeof legal heads. Up to and including this section, a head can be only aconstant and can be implemented simply as its name. The varbind listis the list of the universally quanti�ed variables in the clause, term is theclause head, and gform is the clause body. Together with this we have afunction that converts an arbitrary formula into clausal form. clausifycarries three accumulator arguments: the body, the universally quanti�edvariables, and a list of clauses. Thus clausify D (Gtrue) nil nil willconvert a D-formula D into clausal form.fun gand_opt (Gtrue,g) = g| gand_opt (g,Gtrue) = g| gand_opt (g1,g2) = Gand (g1,g2)fun clausify Dtrue _ _ rest = rest| clausify (Dand(d1,d2)) body vars rest =clausify d1 body vars (clausify d2 body vars rest)| clausify (Dall(x,d)) body vars rest =if exists (fn y => shadow x y) varsthen let val (new_x,sb) = rename_sb xin clausify (dapply_sb sb d) body (new_x::vars) rest endelse clausify d body (x::vars) rest| clausify (Dimplies(g,d)) body vars rest =clausify d (gand_opt (body,g)) vars rest| clausify (Datom(t)) body vars rest =Clause(head t,vars,t,body) :: restThe function gand_opt eliminates some Gtrue subgoals. Bound variablesmay have to be renamed during the conversion to clausal form (consider, forexample, the clausal form of 8x (P x ! 8x (Qx ! Rx))). rename_sb re-turns the new variable name and also a renaming substitution. This notion26

of substitution is di�erent from the one discussed in Section 3: here we sub-stitute for Bvar's rather than for Evar's. The new version of match_atombelow takes a list of clauses, instead of a D-formula. It uses a functionnew_evar_sb, which takes a list of bound variables and returns a substi-tution that, when applied, substitutes new Evar's for all the Bvar's. Notethat the body of a clause is not copied (that is, substituted into) until theuni�cation of the atomic goal with the clause head has succeeded.match_atom t clauses uvars sc =let val t_head = head tfun rec_match nil = ()| rec_match ((clause as Clause(s_head,vars,s,gbody))::rest) =if head_equal s_head t_headthen let val nesb = new_evar_sb vars uvars in(trail (fn () =>unify (apply_sb nesb s) t (fn () =>solve (gapply_sb nesb gbody) clauses uvars sc)) ;rec_match rest)endelse rec_match restin rec_match clauses endWe could store the head of atoms in the atomic formula, to avoid the callto head. Along similar lines, we could statically convert D-formulas whichappear on the left-hand sides of embedded implications into clauses ratherthan convert them at assumption time. This is an important optimization,but it requires substitution functions into the clausal representation whichwe would like to avoid in the presentation. Thus the case for embeddedimplication in solve looks as follows:| solve (Gimplies(d,g)) prog uvars sc =solve g (clausify d (Gtrue) nil prog) uvars scBefore, functions such as gsubst substituted for a single (bound) variablein order to achieve clause copying. Calls to this are now replaced with callsto gapply_sb, which achieves the more eÆcient simultaneous substitution.Checking of variable name conicts is still avoided, except in a rare caseduring conversion of programs to clausal form. Changes to the correspond-ing substitution functions on formulas are straightforward, though with an27

interesting twist. When descending through a quanti�ed formula, we aug-ment the substitution by adding a pair substituting the bound variable foritself. Noting that this still cannot introduce \capturing," we rewrite thesubstitution as follows.type sb = (varbind * term) listexception Loose_Bvar of term(* val lookup_vbind : string -> sb -> term *)fun lookup_vbind vname sb =let fun lk ((Varbind(xname),t)::rest) =if vname = xname then t else lk rest| lk nil = raise Loose_Bvar(Bvar(vname))in lk sb end(* val apply_sb : sb -> term -> term *)fun apply_sb sb s =let fun asb (Bvar(vname)) = lookup_vbind vname sb| asb (Appl(s1,s2)) = Appl((asb s1),(asb s2))| asb t = t (* Evar , Uvar , Const *)in asb s endRemember that substitution due to uni�cation is done destructively andnot by the function above.8 Higher-order TermsSo far we have been working with a �rst-order, untyped term language.We will now make the transition to a higher-order, typed term language.This necessitates handling constraints in the interpreter (a simple change)and a major change in uni�cation, which may now branch and is no longerguaranteed to terminate.8.1 The InterpreterThe modules de�ning propositions and the interpreter need to change verylittle. The primary change is that we have to introduce constraints, since28

the higher-order uni�cation algorithm generates constraints, that is, setsof equations which are known to be satis�able. Though somewhat moregeneral through our use of types, implication, and explicit quanti�cation, ourlanguage now becomes a constraint logic programming language in the senseof Ja�ar and Lassez [19]. The way constraints are handled in the interpreteris reminiscent of the way we handled substitutions in Section 3.3 beforethe introduction of destructive instantiation of variables: where the successcontinuation previously expected a substitution subst, it now expects aconstraint con as an argument.fun solve (Gtrue) clauses uvars con sc = sc con| solve (Gand(g1,g2)) clauses uvars con sc =solve g1 clauses uvars con (fn newcon => solve g2 clauses uvars newcon sc)| solve (Gor(g1,g2)) clauses uvars con sc =(trail (fn () => solve g1 clauses uvars con sc) ;solve g2 clauses uvars con sc)| solve (Gatom(M)) clauses uvars con sc =match_atom M clauses uvars con sc| solve (Gexists(x,g)) clauses uvars con sc =solve (gapply_sb (term_sb x (new_evar x uvars)) g) clauses uvars con sc| solve (Gimplies(d,g)) prog uvars con sc =solve g (clausify d (Gtrue) nil prog) uvars con sc| solve (Gall(x,g)) prog uvars con sc =let val a = new_uvar xin solve (gapply_sb (term_sb x a) g) prog (a::uvars) con sc end| solve (Guard(g1,g2,g3)) clauses uvars con sc =let exception Guard_success of constraintin (trail (fn () =>solve g1 clauses uvars con (fn newcon =>raise Guard_success(newcon))) ;solve g3 clauses uvars con sc)handle Guard_success(newcon) => solve g2 clauses uvars newcon scendand match_atom M clauses uvars con sc =let val M_head = head Mfun rec_match nil = ()| rec_match ((clause as Clause(N_head,vars,N,gbody))::rest) =if head_equal N_head M_headthen let val nesb = new_evar_sb vars uvars29

in (trail (fn () =>unify (apply_sb nesb N) M con (fn newcon =>solve (gapply_sb nesb gbody) clausesuvars newcon sc)) ;rec_match rest)endelse rec_match restin rec_match clauses end8.2 Representing Higher-Order TermsFor convenience, we use a single representation type term for both terms andtypes in our calculus. If we were only interested in implementing a logic pro-gramming language over the simply typed �-calculus without polymorphismthis would be unnecessarily complicated, but we are interested in includingdependent types (in the form of LF [14]) and polymorphism, at which pointit is convenient to have to write only one function each for substitution anduni�cation, rather than two (one for unifying terms and one for unifyingtypes, for example). The algorithm we outline below will be complete onlyfor certain fragments of the full calculus, but we can now implement varioussubcalculi merely by changing the type checking phase and the set of pre-declared constants in the front end. This basic approach, though di�erentin various details, is taken in the Calculus of Constructions [4]. The repre-sentation of terms is perhaps more direct, but less eÆcient than deBruijnindices [5] which are used in eLP and almost all other modern implementa-tions of �-calculi which require access to the internal structure of �-terms.Nonetheless, we were quite surprised how little of the code depends on thechoice of the representation of bound variables.datatype term =Bvar of string (* Bound Variables *)| Evar of varbind * int * term list * (term option) ref(* Logic Variables , Stamped , Depends on , Inst'd to *)| Uvar of varbind * int (* Parameters , Stamped *)| Const of string (* Constants *)| Appl of term * term (* Applications *)| Abst of varbind * term (* Abstractions *)and varbind = Varbind of string * term (* Variable binders , Type *)30

In the implementation of the term language and the type checker, wehave two constants type and pi. And, yes, type is a type, though thiscould be avoided by introducing universes (see [16]) without any changes tothe code of the uni�er. As is customary, we use A! B as an abbreviationfor �x :A:B if x does not occur free in B. Also, however, �x :A:B is anabbreviation for the application piA (�x :A:B). In our formulation, then,the constant pi has type �A :type: ((A! type)! type).As an example consider a predicate constant eq of type �A :type: A!A ! o (where o is the type of formulas as indicated in Section 9). Thesingle clause eqAM M: correctly models equality, that is, a goal of the formeqAM N will succeed if M and N are uni�able. The fact that uni�cationnow has to branch can be seen by considering the goal eqint (F 1 1) 1 whichhas three solutions for the functional logic variable F , namely �x :int: �y :int: x, �x :int: �y :int: y, and �x :int: �y :int: 1.The functions supporting substitution are extended in the obvious way.In particular, we now have to substitute inside Varbind's, since they containterms which may contain free variables. The type of a constant is accessiblein a signature which maps names of constants to their types, implemented,for example, as a list of pairs of strings and types.The uni�cation procedure we use is based on the one in [6, 7] for higher-order uni�cation with dependent types, which itself is an extension of Huet'sprocedure for (higher-order) uni�cation in the simply typed �-calculus [18].This procedure is most easily understood in terms of a collection of \trans-formations," some on terms, some on pairs of terms being uni�ed, and someon sets of such pairs.With the right control structure (such as iterative deepening) the uni�erwould be complete for the LF fragment of our calculus, but logic variablesranging over types destroy this completeness. The uni�er detects if thereis a possibility for incompleteness on a particular execution and can give awarning in such a case, if desired.8.3 RewritingBecause we are using transformations as a fundamental structuring devicein the implementation of uni�cation, we adopted a very elegant techniquefrom Paulson's higher-order implementation of rewriting [27], which itselfwas patterned after the tactics and tacticals in LCF [13]. Because we are not31

worried about having our implementation prove the correctness of applica-tions of its transformations, we can use a somewhat simpler implementationthan in [27]. The basic kind of object we deal with we call a rewriter, whichis simply a partial function from some type to itself|\partial" because itmay fail to apply (which is communicated by a raised exception) as well asfail to terminate. Thus we have simplytype 'a rewriter = 'a -> 'aThe exception Fail may be raised in case a rewriter fails to apply andtakes string as an argument which is intended but not required to give someindication of reason for the failure of the rewriter to apply. Here are thegeneral rewriting primitives we found useful.exception Fail of stringfun rew_and rew1 rew2 = rew2 o rew1fun rew_or rew1 rew2 x = (rew1 x) handle Fail _ => (rew2 x)fun rew_id x = xfun rew_try rew = rew_or rew rew_idfun rew_repeat rew x = rew_try (rew_and rew (rew_repeat rew)) x(* rew_first: 'a rewriter -> 'a list rewriter *)fun rew_first rew nil = raise Fail("rew_first")| rew_first rew (x :: l) = (rew x) :: l(* rew_rest: 'a list rewriter -> 'a list rewriter *)fun rew_rest list_rew nil = nil| rew_rest list_rew (x :: l) = x :: (list_rew l)8.4 Uni�cationThe basic structure of the uni�er involves maintaining a collection of pairsof terms to be uni�ed simultaneously. Traditionally such pairs are calleddisagreement pairs and such a collection is called a disagreement set (thoughrepresented and used as a list). 32

datatype dpair = Dpair of term * termtype dset = dpair listDuring uni�cation, we transform terms, disagreement pairs, and dis-agreement sets, as described below. However, because some uni�cationproblems have more than just a single most general uni�er, we will alsohave one branching step. This will be implemented using success continua-tions, thus meshing nicely with the interpreter.98.4.1 NormalizationOne kind of rewriting we will need to do during uni�cation is \weak headnormalization" of terms. This just means normalizing enough to deter-mine the top-level structure of the �-normal form of the term.10 In math-ematical notation, a weak head reduction step reduces a term of the form(�x :A:M)N1 : : : Nn to the term ([N1=x]M)N2 : : : Nn.11 Thus the rewriterbelow fails, if the given term does not have the form of the left-hand side ofthis rewriting rule (modulo dereferencing of instantiated Evar's).fun head_reduce_term (Appl(M,N)) =(let fun hrt (Abst(xofA,M0)) = apply_sb (term_sb xofA N) M0| hrt (Evar(_,_,_,ref(SOME M0))) = hrt M0| hrt _ = Appl(head_reduce_term M,N)in hrt M end)| head_reduce_term (Evar(_,_,_,ref(SOME M0))) = head_reduce_term M0| head_reduce_term _ = raise Fail("head_reduce_term")The conventions for naming ML variables in the code for the uni�er areas follows: we use M and N for terms and A, B, and C for types.12 Furthermore,we use xofA and yofB for Varbind's (a pair consisting of a variable nameand its type) and Gamma for contexts (lists of Varbind's).Next, we raise this from a term rewriter to a disagreement pair rewriterthat tries to head reduce the left member of the pair and, if this fails, tries9Success continuations can be used for rewriting as well, but they do not seem asappropriate in this context with only a very simple form of nondeterminism (succeed withthe rewritten term or fail).10More speci�cally, \weak" here refers to not doing any normalization inside of abstrac-tions.11Application associates to the left, so with parentheses the redex would be (: : : ((�x :A:M)N1) : : : Nn).12\Types" are simply terms used in the capacity of types.33

to reduce the right member. The functional rew_dpair does this kind ofraising:fun rew_dpair rew =rew_or (fn (Dpair(M,N)) => Dpair(rew M, N))(fn (Dpair(M,N)) => Dpair(M, rew N))val head_reduce_dpair = rew_dpair head_reduce_term8.4.2 ExtensionalityThe next transformation involves a disagreement pair made up of one or twoabstraction terms. This can be justi�ed by an extensionality principle or the�-rule. For example, consider unifying �x :A:M and �y :B:N . In this casewe introduce a new parameter a and reduce the problem to unifying [a=x]Mand [a=y]N . There are two similar cases in which only one of terms beinguni�ed is an abstraction where we simply form an application.fun abst_reduce_dpair (Dpair(Evar(_,_,_,ref(SOME M0)),N)) =abst_reduce_dpair (Dpair(M0,N))| abst_reduce_dpair (Dpair(M,Evar(_,_,_,ref(SOME N0)))) =abst_reduce_dpair (Dpair(M,N0))| abst_reduce_dpair (Dpair(Abst(xofA,M0), Abst(yofA,N0))) =let val a = new_uvar xofAin Dpair(apply_sb (term_sb xofA a) M0,apply_sb (term_sb yofA a) N0)end| abst_reduce_dpair (Dpair(Abst(xofA,M0), N)) =let val a = new_uvar xofAin Dpair(apply_sb (term_sb xofA a) M0, Appl(N,a))end| abst_reduce_dpair (Dpair(M,Abst(yofA,N0))) =let val a = new_uvar yofAin Dpair(Appl(M,a),apply_sb (term_sb yofA a) N0)end| abst_reduce_dpair _ = raise Fail("abst_reduce_dpair")
34

8.4.3 Rigid pairsWe now focus on the case of unifying two terms, neither of which is subjectto weak head reduction and neither of which is an abstraction. Of these,the simplest case is when each of the two terms is \rigid", i.e., its top-levelstructure does not change under substitution. This is the case when thehead of a term is either a constant or a Uvar. The treatment in this case isto compare heads. If they are the same, we replace the disagreement pairwith the corresponding pairs of arguments. Otherwise, we conclude thatthe two terms are non-uni�able, and hence the disagreement set containingthem is non-uni�able as well.To distinguish non-uni�ability from non-applicability of a rewriter, weintroduce a new exception with exception Nonunifiable. Rather thanextracting the heads and lists of arguments �rst, in the implementationbelow, we accumulate disagreement pairs matching up the correspondingarguments while descending to the heads. When we get to a head, we eithersucceed or fail.(* rigid_rigid : dpair -> dset -> dset,Adds result of rigid-rigid decomposition to the given dset.Fails if the dpair is not rigid-rigid.Can raise the exception Nonunifiable. *)fun rigid_rigid (Dpair(Evar(_,_,_,ref (SOME M0)), N)) dset =rigid_rigid (Dpair(M0,N)) dset| rigid_rigid (Dpair(M, Evar(_,_,_,ref (SOME N0)))) dset =rigid_rigid (Dpair(M,N0)) dset| rigid_rigid (Dpair(Appl(M1,N1),Appl(M2,N2))) dset =(* Note the "head-recursion" *)rigid_rigid (Dpair(M1,M2)) (Dpair(N1,N2)::dset)| rigid_rigid (Dpair(Const(name1),Const(name2))) dset =if name1 = name2 then dset else raise Nonunifiable| rigid_rigid (Dpair(Uvar(_,stamp1),Uvar(_,stamp2))) dset =if stamp1 = stamp2 then dset else raise Nonunifiable(* Otherwise, either not rigid-rigid or unification fails. *)| rigid_rigid (Dpair(M,N)) _ =if (is_rigid M) andalso (is_rigid N)then raise Nonunifiableelse raise Fail("rigid_rigid")35

It is a simple matter to make this function into a disagreement setrewriter that attempts to apply rigid_rigid to the �rst disagreement pairin a disagreement set:(* rigid_rigid_rew : dset rewriter *)fun rigid_rigid_rew nil = raise Fail("rigid_rigid_rew")| rigid_rigid_rew (dp :: rest) = rigid_rigid dp rest8.4.4 SIMPLWe can now assemble the previous rewriters into a main component of theuni�cation algorithm, corresponding to Huet's \SIMPL" phase. One step ofthe SIMPL phase is accomplished by the following disagreement set rewriter,which tries �rst head reduction, then (if that fails to apply) extensionality,and �nally rigid-rigid decomposition.val SIMPL_rew =rew_or (rew_or (rew_first head_reduce_dpair)(rew_first abst_reduce_dpair))rigid_rigid_rewThe complete SIMPL phase repeats SIMPL_rew as long as it applies,transforming the �rst disagreement pair, and then recursively works on theremaining disagreement pairs.fun SIMPL ds =rew_and (rew_repeat SIMPL_rew)(* if SIMPL_rew fails, (rew_repeat SIMPL_rew) succeeds andeither we have run out of disagreement pairs and are done,or the first is no longer rigid-rigid and we need to go on. *)(rew_rest SIMPL)ds8.4.5 MATCHThe SIMPL phase leads either to non-uni�ability or to a disagreement setmade up completely of disagreement pairs relating two exible (non-rigid)terms or one rigid and one exible term. As in Huet's algorithm, we defer36

treating exible-exible disagreement pairs, as their treatment leads to anintractable explosion of the search space, or, if a particular solution is chosen,to an overcommitment which must be avoided in this setting of constraintlogic programming. At least in the LF sub-calculus, these disagreement setsare always uni�able when they arise [6].The \MATCH" phase examines a exible-rigid disagreement pair, in-stantiates the logic variable at the head of the exible term, and calls thesuccess continuation on an augmented disagreement set. Upon backtrack-ing, further instantiations may be tried. Once all possibilities are exhaustedMATCH returns. The interested reader can consult [6] for an explanationand justi�cation of these instantiations, as well as completeness proofs. Ac-tually, completeness can in general only be guaranteed for a subcalculuswhere logic variables do not occur at the head of types. As logic vari-ables ranging over types are extremely useful in practice (they provide forpolymorphism), and the algorithm will often be complete even in this case,enforcing this restriction statically is counter-productive. Instead, we give arun-time warning if the uni�cation procedure might be incomplete.A full discussion of MATCH is beyond the scope of this chapter; wemerely show some fragments of the code illustrating its control structure.(* MATCH : dpair -> dset -> (dset -> unit) *)fun MATCH (Dpair(flex,rigid)) ds sc =let val F as Evar(Varbind(Fname,Ftype),_,ok_uvars,_) = flex_term_head flex...(* Try a substitution given a term and its type *)(* Given M and A such that |- M : Ainstantiate F to M and constrain Ftype == A(not necessary in the simply typed lambda-calculus) *)fun try_subst_term M A =(instantiate_evar F M ;sc (Dpair(Ftype, A) :: ds))...in (* project_from and imitate enumerate the possible substitution terms forF, calling try_subst_term on each; expecting it to return uponbacktracking. *) 37

(trail (fn () => imitate ()) ; project_from Gamma_w)endThere is no distinction in �Prolog or our hypothetical language betweenchoice points established during uni�cation and choice points establishedduring clause selection. Thus trailing must be done at choice points duringuni�cation, as in the interpreter.8.4.6 Putting it togetherNow we combine the various pieces into the function unify_dset. It expectsa disagreement set and a success continuation, which is to be called on apossibly remaining constraint, if the disagreement set is uni�able. If not, wesimply return to signify failure and initiate backtracking. Constraints arenothing but disagreement sets with only exible-exible pairs.type constraint = dset(* unify_dset : dset -> (constraint -> unit) -> unit *)fun unify_dset ds sc =(* First SIMPL. This may raise exception Nonunifiable handled below. *)let val ds' = SIMPL dsin (* ds' will have only flex-rigid, rigid-flex, or flex-flex pairs.Select a flex-rigid or rigid-flex and call MATCH.If there is none, we succeed with the remaining constraints.MATCH returns upon backtracking. *)case (find_flex_rigid ds')of SOME(dp) => MATCH dp ds' (fn match_ds => unify_dset match_ds sc)| NONE => sc ds' (* Success: only flex-flex left *)endhandle Nonunifiable => () (* Failure in SIMPL *)(* unify : term -> term -> constraint -> (constraint -> unit) -> unit *)fun unify M N dset sc = unify_dset (Dpair(M,N) :: dset) sc9 Higher-Order LogicThe language of higher-order terms introduced so far has not changed theunderlying logic of our logic programming language: it is still a �rst-order38

logic, though over a very rich domain. This is suÆcient for many applicationprograms (see, for example, [10]), but there are instances where it is very el-egant and natural to allow true higher-order programming. By higher-orderprogramming we mean the ability of programs to construct other programs(to be assumed) and other goals (to be invoked). In Prolog some semblanceof such a facility is provided through the call primitive. Here we have ahigher-order term language, and, following Church [3], we introduce a dis-tinguished type of propositions (o) and constants representing the logicalquanti�ers and connectives. For example, logical conjunction is representedby a constant and of type o ! o ! o, and the existential quanti�er isrepresented by a constant exists of type �A :type: ((A! o)! o).Two simple examples of higher-order programs in the sense given aboveare clauses de�ning once and not (negation-as-failure), given the more gen-eral guard construct we adopted in Section 6. ? is simply a goal whichalways fails.once(G) (G! > j ?):not(G) (G! ? j >):Here G is a variable of type o and once and not are constants of type o! o.Note that the argument G will be passed as a term, but has to be convertedto a goal before it can be invoked.If we implemented strictly higher-order hereditary Harrop formulas (see [22]),some of the work below would not be necessary, but in practice it is impor-tant not to restrict statically to D-formulas and G-formulas whose predicatesymbol is �xed and known at the time where terms are translated into propo-sitions. Instead we introduce a new case in the de�nitions of the datatypesgform and dform, namely Gflex of term and Dflex of term, respectively.They convey that we do not yet know whether this term will be atomic,a conjunction, etc., since it begins with a predicate variable which mightbe instantiated by uni�cation before the current G-formula or D-formula isneeded by the interpreter.The functions term_to_gform and term_to_dform (not shown here)translate a term to a formula. They proceed by converting the term tohead normal form and then deciding from the constant at the head of theterm if it is a conjunction, disjunction, etc. If it matches none of the logicalconstants, it is either atomic (if the head is rigid) or \ex" if the head isan Evar or a Bvar. The quanti�ers are represented as constants applied toabstractions.All that is required to complete the interpreter is to modify the clausi�-39

cation function to allow Dflex formulas and the interpreter to allow Gflexformulas. In either case, the argument is again converted to a proposition.If the formula remains exible, an error results. Recall that exible formu-las may become rigid through instantiation during uni�cation. Consider,for example, 9x(x = > ^ x). At translation time, x is exible, but by thetime the goal x is encountered, it has been instantiated to >, which shouldsimply succeed. We thus add the following case to solve:| solve (Gflex(M)) clauses uvars con sc =(case term_to_gform Mof Gflex(M') => raise error("solve: Goal " ^ term_makestring(M')^ " with variable head predicate.")| g => solve g clauses uvars con sc)and a corresponding case to clausify| clausify (Dflex(M)) body vars rest =(case term_to_dform Mof Dflex(M') => raise error("clausify: Program " ^ term_makestring(M')^ " with variable head predicate.")| d => clausify d body vars rest)10 ConclusionThe interpreter we have developed is relatively close to eLP, our CommonLisp implementation of �Prolog in the Ergo Support System [8, 20]. Mostof the di�erences have already been mentioned: clauses are indexed andstored in a global hashtable, bound variables are represented by deBruijnindices and parameters and logic variables are time-stamped for comparisonand uni�cation of terms that have not been Skolemized. There are also thefront-end, that is, parsing, unparsing, and type reconstruction, the imple-mentation of �Prolog's module system, and \special" (non-logical) predi-cates which we ignored in this presentation, some of which are by no meanstrivial. Uni�cation also di�ers: the one given here supports a much richer�-calculus, but does not implement a number of important optimizations(see [23]) used in eLP. Finally, there are a number of design mistakes whichare still part of the current eLP implementation which we chose not to ex-pose here. 40

We expect that the next set of signi�cant improvements in the imple-mentation techniques for �Prolog and related languages will come from amore economical representation of �-terms [26] and the development of com-pilation technology [24].We conclude with the remark that the complete Standard ML code forall versions of the interpreter discussed here including a modest front endare available via ftp over the Internet.13References[1] Anthony J. Bonner, L. Thorne McCarty, and Kumar Vadaparty. Ex-pressing database queries with intuitionistic logic. In Ewing Lusk andRoss Overbeek, editors, Proceedings of the North American Confer-ence on Logic Programming, pages 831{850, Cambridge, Massachusetts,1989. MIT Press.[2] Mats Carlsson. On implementing Prolog in functional programming.New Generation Computing, 2(4):347{359, 1984.[3] Alonzo Church. A formulation of the simple theory of types. Journalof Symbolic Logic, 5:56{68, 1940.[4] Thierry Coquand and G�erard Huet. The Calculus of Constructions.Information and Computation, 76(2/3):95{120, February/March 1988.[5] N. G. de Bruijn. Lambda-calculus notation with nameless dummies:a tool for automatic formula manipulation with application to theChurch-Rosser theorem. Indag. Math., 34(5):381{392, 1972.[6] Conal Elliott. Extensions and Applications of Higher-order Uni�cation.PhD thesis, Carnegie Mellon University, May 1990. Available as Techni-cal Report CMU{CS{90{134, Carnegie Mellon University, Pittsburgh.[7] Conal Elliott. Higher-order uni�cation with dependent types. InRewrit-ing Techniques and Applications, pages 121{136. Springer-Verlag LNCS355, April 1989.[8] Conal Elliott and Frank Pfenning. eLP: A Common Lisp implementa-tion of �Prolog in the Ergo Support System. Available via ftp over the13Please send mail to the second author at fp@cs.cmu.edu for more information.41

Internet, October 1989. Send mail to elp-request@cs.cmu.edu on theInternet for further information.[9] Matthias Felleisen. Transliterating Prolog into Scheme. Technical Re-port 182, Indiana University, Bloomington, Indiana, October 1985.[10] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic Programming Language. PhD thesis, Department of Com-puter and Information Science, University of Pennsylvania, July 1989.[11] D. M. Gabbay. N-prolog: an extension of Prolog with hypotheticalimplications II. Journal of Logic Programming, 2(4):251{283, 1985.[12] D. M. Gabbay and U. Reyle. N-prolog: an extension of Prolog withhypothetical implications I. Journal of Logic Programming, 1(4):319{355, 1985.[13] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Ed-inburgh LCF. Springer-Verlag LNCS 78, 1979.[14] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework forde�ning logics. Submitted. A preliminary version appeared in Sympo-sium on Logic in Computer Science, pages 194{204, June 1987, January1989.[15] Robert Harper, Robin Milner, Kevin Mitchell, Nick Rothwell, and DonSannella. Functional programming in Standard ML. Notes to a �veday course given at the University of Edinburgh, April 1988.[16] Robert Harper and Robert Pollack. Type checking, universe polymor-phism, and typical ambiguity in the Calculus of Constructions. InTAPSOFT '89, Proceedings of the International Joint Conference onTheory and Practice in Software Development, Barcelona, Spain, pages241{256. Springer-Verlag LNCS 352, March 1989.[17] Christopher T. Haynes. Logic continuations. Journal of Logic Program-ming, 4(2):157{176, June 1987.[18] G�erard Huet. A uni�cation algorithm for typed �-calculus. TheoreticalComputer Science, 1:27{57, 1975.[19] Joxan Ja�ar and Jean-Louis Lassez. Constraint logic programming. InProceedings of the Fourteenth Annual ACM Symposium on Principles ofProgramming Languages, Munich, pages 111{119. ACM, January 1987.42

[20] Peter Lee, Frank Pfenning, Gene Rollins, and William Scherlis. TheErgo Support System: An integrated set of tools for prototyping in-tegrated environments. In Peter Henderson, editor, Proceedings of theACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-tical Software Development Environments, pages 25{34. ACM Press,November 1988. Also available as Ergo Report 88{054, School of Com-puter Science, Carnegie Mellon University, Pittsburgh.[21] Dale Miller. A logical analysis of modules in logic programming. Journalof Logic Programming, 6(1-2):57{77, January 1989.[22] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.Uniform proofs as a foundation for logic programming. Journal of Pureand Applied Logic, 1988. To appear. Available as Ergo Report 88{055,School of Computer Science, Carnegie Mellon University, Pittsburgh.[23] Dale A. Miller. Uni�cation under mixed pre�xes. Unpublishedmanuscript, 1987.[24] Gopalan Nadathur and Bharat Jayaraman. Towards a WAM model forlambda Prolog. In Proceedings of the 1989 North American Conferenceon Logic Programming, pages 1180{1198. MIT Press, October 1989.[25] Gopalan Nadathur and Dale Miller. An overview of �Prolog. InRobert A. Kowalski and Kenneth A. Bowen, editors, Logic Program-ming: Proceedings of the Fifth International Conference and Sympo-sium, Volume 1, pages 810{827, Cambridge, Massachusetts, August1988. MIT Press.[26] Gopalan Nadathur and Debra Sue Wilson. A representation of lambdaterms suitable for operations on their intensions. In Proceedings of the1990 Conference on Lisp and Functional Programming. ACM Press,June 1990. To appear.[27] Lawrence Paulson. A higher-order implementation of rewriting. Scienceof Computer Programing, 3:119{149, 1983.
43

