
1

Generic Functional Parallel Algorithms: Scan and FFT

CONAL ELLIOTT, Target, USA

Parallel programming, whether imperative or functional, has long focused on arrays as the central data
type. Meanwhile, typed functional programming has explored a variety of data types, including lists and
various forms of trees. Generic functional programming decomposes these data types into a small set of
fundamental building blocks: sum, product, composition, and their associated identities. Definitions over
these few fundamental type constructions then automatically assemble into algorithms for an infinite variety
of data types—some familiar and some new. This paper presents generic functional formulations for two
important and well-known classes of parallel algorithms: parallel scan (generalized prefix sum) and fast Fourier
transform (FFT). Notably, arrays play no role in these formulations. Consequent benefits include a simpler and
more compositional style, much use of common algebraic patterns and freedom from possibility of run-time
indexing errors. The functional generic style also clearly reveals deep commonality among what otherwise
appear to be quite different algorithms. Instantiating the generic formulations, two well-known algorithms for
each of parallel scan and FFT naturally emerge, as well as two possibly new algorithms.

CCS Concepts: • Theory of computation→ Parallel algorithms;

Additional Key Words and Phrases: generic programming, parallel prefix computation, fast Fourier transform

ACM Reference Format:
Conal Elliott. 2017. Generic Functional Parallel Algorithms: Scan and FFT. Proc. ACM Program. Lang. 1, ICFP,
Article 1 (September 2017), 25 pages.
https://doi.org/10.1145/3110251

1 INTRODUCTION
There is a long, rich history of datatype-generic programming in functional languages [Backhouse
et al. 2007; Magalhães and Löh 2012]. The basic idea of most such designs is to relate a broad range
of types to a small set of basic ones via isomorphism (or more accurately, embedding-projection
pairs), particularly binary sums and products and their corresponding identities (“void” and “unit”).
These type primitives serve to connect algorithms with data types in the following sense:
• Each data type of interest is encoded into and decoded from these type primitives.
• Each (generic) algorithm is defined over these same primitives.

In this way, algorithms and data types are defined independently and automatically work together.
One version of this general scheme is found in theHaskell libraryGHC.Generics, in which the type

primitives are functor-level building blocks [Magalhães et al. 2011]. For this paper, we’ll use six: sum,
product, composition, and their three corresponding identities, as in Figure 1. There are additional
definitions that capture recursion and meta-data such as field names and operator fixity, but the
collection in Figure 1 suffices for this paper. To make the encoding of data types easy, GHC.Generics
comeswith a generic derivingmechanism (enabled by theDeriveGeneric language extension), so that
for regular (not generalized) algebraic data types, one can simply write “data ... deriving Generic”

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2017 Copyright held by the owner/author(s).
2475-1421/2017/9-ART1
https://doi.org/10.1145/3110251

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.

https://doi.org/10.1145/3110251
https://doi.org/10.1145/3110251


1:2 Conal Elliott

data (f + g) a = L1 (f a) | R1 (g a) -- sum
data (f × g) a = f a × g a -- product
newtype (g ◦ f ) a = Comp1 (g (f a)) -- composition
data V1 a -- void
newtype U1 a = U1 -- unit
newtype Par1 a = Par1 a -- singleton

Fig. 1. Functor building blocks

-- Representable types of kind ∗ → ∗.
class Generic1 f where
type Rep1 f :: ∗ → ∗
from1 :: f a→ Rep1 f a
to1 :: Rep1 f a→ f a

Fig. 2. Functor encoding and decoding

for types of kind ∗ [Magalhães et al. 2010]. For type constructors of kind ∗ → ∗, as in this paper, one
derives Generic1 instead (defined in Figure 2). Instances for non-regular algebraic data types can be
defined explicitly, which amounts to giving a representation functor Rep1 f along with encoding
and decoding operations to1 and from1. To define a generic algorithm, one provides class instances
for these primitives and writes a default definition for each method in terms of from1 and to1.
The effectiveness of generic programming relies on having at our disposal a variety of data

types, each corresponding to a unique composition of the generic type building blocks. In contrast,
parallel algorithms are usually designed and implemented in terms of the single data type of
arrays (or lists in functional formulations; see Section 5). The various array algorithms involve
idiosyncratic patterns of traversal and construction of this single data type. For instance, a parallel
array reduction with an associative operator involves recursive or iterative generation of numeric
indices for extracting elements, taking care that each element is visited exactly once and combined
left-to-right. Frequently, an array is split, each half processed recursively and independently, and
results combined later. Alternatively, adjacent element pairs are combined, resulting in an array of
half size for further processing. (Often, such operations are performed in place, littering the original
array with partial reduction results.) The essential idea of these two patterns is the natural fold for
perfect, binary leaf trees of two different varieties, but this essence is obscured by implicit encodings
of trees as arrays. The correctness of the algorithm depends on careful translation of the natural
tree algorithm. Mistakes typically hide in the tedious details of index arithmetic, which must be
perfectly consistent with the particular encoding chosen. Those mistakes will not be caught by
a type-checker (unless programmed with dependent types and full correctness proofs), instead
manifesting at run-time in the form of incorrect results and/or index out-of-bound errors. Note
also that this array reduction algorithm only works for arrays whose size is a power of two. This
restriction is a dynamic condition rather than part of the type signature. If we use the essential
data type (a perfect, binary leaf tree) directly rather than via an encoding, it is easy to capture this
restriction in the type system and check it statically. The Haskell-based formulations below use
GADTs (generalized algebraic data types) and type families.

When we use natural, recursively defined data types explicitly, we can use standard programming
patterns such as folds and traversals directly. In a language like Haskell, those patterns follow
known laws and are well supported by the programming ecosystem. Array encodings make those
patterns implicit, as a sort of informal guide only, distancing programs from the elegant and well-
understood laws and abstractions that motivate those programs, justify their correctness, and point
to algorithmic variations that solve related problems or make different implementation trade-offs.

Even the determinacy of an imperative, array-based parallel algorithm can be difficult to ensure
or verify. When the result is an array, as in scans and FFTs, values are written to indexed locations.
In the presence of parallelism, determinacy depends on those write indices being distinct, which
again is a subtle, encoding-specific property, unlikely to be verified automatically.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:3

Given these severe drawbacks, why are arrays so widely used in designing, implementing,
and explaining parallel algorithms? One benefit is a relatively straightforward mapping from
algorithm to efficient implementation primitives. As we will see below, however, we can instead
write algorithms in an elegant, modular style using a variety of data types and the standard algebraic
abstractions on those data types—such as Functor , Applicative, Foldable, and Traversable [McBride
and Paterson 2008]—and generate very efficient implementations. Better yet, we can define such
algorithms generically.

Concretely, this paper makes the following contributions:

• Simple specification of an infinite family of parallel algorithms for each of scan and FFT,
indexed by data type and composed out of six generic functor combinators. Two familiar
algorithms emerge as the instances of scan and FFT for the common, “top-down” form of
perfect binary leaf trees, and likewise two other familiar algorithms for the less common,
“bottom-up” form, which is dual to top-down. In addition, two compelling and apparently
new algorithms arise from a related third form of perfect “bushes”.
• Demonstration of functor composition as the heart of both scan and FFT. Functor composition
provides a statically typed alternative to run-time factoring of array sizes often used in FFT
algorithms.
• A simple duality between the well-known scan algorithms of Sklansky [1960] and of Ladner
and Fischer [1980], revealed by the generic decomposition. This duality is much more difficult
to spot in conventional presentations. Exactly the same duality exists between the two known
FFT algorithms and is shown clearly and simply in the generic formulation.
• Compositional complexity analysis (work and depth), also based on functor combinators.

The figures in this paper are generated automatically (including optimizations) from the given
Haskell code, using a compiler plugin that which also generates synthesizable descriptions in
Verilog for massively parallel, hardware-based evaluation [Elliott 2017].

2 SOME USEFUL DATA TYPES
2.1 Right-Lists and Left-Lists
Let’s start with a very familiar data type of lists:

data List a = Nil | Cons a (List a)

This data type is sometimes more specifically called “cons lists”. One might also call them “right
lists”, since they grow rightward:

data RList a = RNil | a ◁ RList a

Alternatively, there are “snoc lists” or “left lists”, which grow leftward:

data LList a = LNil | LList a ▷ a

These two types are isomorphic to types assembled from the functor building blocks of Figure 1:

type RList ≃ U1 + Par1 × RList
type LList ≃ U1 + RList × Par1

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:4 Conal Elliott

Spelling out the isomorphisms explicitly,
instance Generic1 RList where

type Rep1 RList = U1 + Par1 × RList
from RNil = L1 U1
from (a ◁ as) = R1 (Par1 a × as)
to (L1 U1) = RNil
to (R1 (Par1 a × as)) = a ◁ as

instance Generic1 LList where
type Rep1 LList = U1 + LList × Par1
from LNil = L1 U1
from (a ◁ as) = R1 (as × Par1 a)
to (L1 U1) = LNil
to (R1 (as × Par1 a)) = as ▷ a

RList and LList are isomorphic not only to their underlying representation functors, but also to
each other. Why would we want to distinguish between them? One reason is that they may capture
different intentions. For instance, a zipper for right lists comprises a left-list for the (reversed)
elements leading up to a position and a right-list for the not-yet-visited elements [Huet 1997;
McBride 2001]. Another reason for distinguishing left- from right-lists is that they have usefully
different instances for standard type classes, leading—as we will see—to different operational
characteristics, especially with regard to parallelism.

2.2 Top-down Trees
After lists, trees are perhaps the most commonly used data structure in functional programming.
Moreover, in contrast with lists, the symmetry possible with trees naturally leads to parallel-friendly
algorithms. Also unlike lists, there are quite a few varieties of trees.

Let’s start with a simple binary leaf tree, i.e., one in which data occurs only in leaves:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

One variation is ternary rather than binary leaf trees:

data Tree a = Leaf a | Branch (Tree a) (Tree a) (Tree a)

Already, this style of definition is starting to show some strain. The repetition present in the
data type definition will be mirrored in instance definitions. For instance, for ternary leaf trees,

instance Functor Tree where
fmap h (Leaf a) = Leaf (h a)
fmap h (Branch t1 t2 t3) = Branch (fmap h t1) (fmap h t2) (fmap h t3)

instance Foldable Tree where
foldMap h (Leaf a) = h a
foldMap h (Branch t1 t2 t3) = foldMap h t1 ⊕ foldMap h t2 ⊕ foldMap h t3

instance Traversable Tree where
traverse h (Leaf a) = fmap Leaf (h a)
traverse h (Branch t1 t2 t3) = liftA3 Branch (traverse h t1) (traverse h t2) (traverse h t3)

Not only do we have repetition within each instance definition (the three occurrences each of
fmap h, foldMap h, and traverse h above), we also have repetition among instances for n-ary trees
for different n. Fortunately, we can simplify and unify with a shift in formulation. Think of a branch
node not as having n subtrees, but rather a single uniform n-tuple of subtrees. Assume for now
that we have a functor of finite lists statically indexed by length as well as element type:

type Vec :: Nat → ∗ → ∗ -- abstract for now
instance Functor (Vec n) where ...

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:5

instance Foldable (Vec n) where ...
instance Traversable (Vec n) where ...

Define a single type of n-ary leaf trees, polymorphic over n:

data Tree n a = Leaf a | Branch (Vec n (Tree a))

The more general vector-based instance definitions are simpler than even for the binary-only
version Tree type given above:

instance Functor (Tree n) where
fmap h (Leaf a) = Leaf (h a)
fmap h (Branch ts) = Branch ((fmap ◦ fmap) h ts)

instance Foldable (Tree n) where
foldMap h (Leaf a) = h a
foldMap h (Branch ts) = (foldMap ◦ foldMap) h ts

instance Traversable (Tree n) where
traverse h (Leaf a) = fmap Leaf (h a)
traverse h (Branch ts) = fmap Branch ((traverse ◦ traverse) h ts)

Notice that these instance definitions rely on very little about the Vec n functor. Specifically, for
each of Functor , Foldable, and Traversable, the instance for Tree n needs only the corresponding
instance for Vec n. For this reason, we can easily generalize from Vec n as follows:

data Tree f a = Leaf a | Branch (f (Tree a))

The instance definitions for “f -ary” trees (also known as the “free monad” for the functor f ) are
exactly as with n-ary, except for making the requirements on f explicit:

instance Functor f ⇒ Functor (Tree f ) where ...
instance Foldable f ⇒ Foldable (Tree f ) where ...
instance Traversable f ⇒ Traversable (Tree f ) where ...

This generalization covers “list-ary” (rose) trees and even “tree-ary” trees. With this functor-
parametrized tree type, we can reconstruct n-ary trees as Tree (Vec n).
Just as there are both left- and right-growing lists, f -ary trees come in two flavors as well. The

forms above are all “top-down”, in the sense that successive unwrappings of branch nodes reveal
subtrees moving from the top downward. (No unwrapping for the top level, one unwrapping for
the collection of next-to-top subtrees, another for the collection of next level down, etc.) There are
also “bottom-up” trees, in which successive branch node unwrappings reveal the information in
subtrees from the bottom moving upward. In short:
• A top-down leaf tree is either a leaf or an f -structure of trees.
• A bottom-up leaf tree is either a leaf or a tree of f -structures.

In Haskell,

data TTree f a = TLeaf a | TBranch (f (TTree a))

data BTree f a = BLeaf a | BBranch (BTree (f a))

Bottom-up trees (BTree) are a canonical example of “nested” or “non-regular” data types, requiring
polymorphic recursion [Bird and Meertens 1998]. As we’ll see below, they give rise to important
versions of parallel scan and FFT.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:6 Conal Elliott

2.3 Statically Shaped Variations
Some algorithms work only on collections of restricted size. For instance, the most common parallel
scan and FFT algorithms are limited to arrays of size 2n , while the more general (not just binary)
Cooley-Tukey FFT algorithms require composite size, i.e.,m ·n for integersm,n ≥ 2. In array-based
algorithms, these restrictions can be realized in one of two ways:

• check array sizes dynamically, incurring a performance penalty; or
• document the restriction, assume the best, and blame the library user for errors.

A third option—much less commonly used—is to statically verify the size restriction at the call site,
perhaps by using a dependently typed language and providing proofs as part of the call.
A lightweight compromise is to simulate some of the power of dependent types via type-level

encodings of sizes, as with our use of Nat for indexing the Vec type above. There are many possible
definitions for Nat. For this paper, assume that Nat is a kind-promoted version of the following
data type of Peano numbers (constructed via zero and successor):

data Nat = Z | S Nat

Thanks to promotion (via the DataKinds language extension), Nat is not only a new data type with
value-level constructors Z and S, but also a new kind with type-level constructors Z and S [Yorgey
et al. 2012].

2.3.1 GADT Formulation. Now we can define the length-indexed Vec type mentioned above. As
with lists, there are right- and left-growing versions:
data RVec :: Nat → ∗ → ∗ where
RNil :: RVec Z a
(◁) :: a→ RVec n a→ RVec (S n) a

data LVec :: Nat → ∗ → ∗ where
LNil :: LVec Z a
(▷) :: LVec n a→ a→ LVec (S n) a

Recall that the generic representations of RList and LList were built out of sum, unit, identity, and
product. With static shaping, the sum disappears from the representation, moving from dynamic to
static choice, and each Generic1 instance split into two:
instance Generic1 (RVec Z ) where
type Rep1 (RVec Z ) = U1
from RNil = U1
to U1 = RNil

instance Generic1 (LVec Z ) where
type Rep1 (LVec Z ) = U1
from RNil = U1
to U1 = RNil

instance Generic1 (RVec n) ⇒
Generic1 (RVec (S n)) where

type Rep1 (RVec (S n)) = Par1 × RVec n
from (a ◁ as) = Par1 a × as
to (Par1 a × as) = a ◁ as

instance Generic1 (LVec n) ⇒
Generic1 (LVec (S n)) where

type Rep1 (LVec (S n)) = LVec n × Par1
from (a ◁ as) = Par1 a × as
to (Par1 a × as) = a ◁ as

For leaf trees, we have a choice between imperfect and perfect trees. A “perfect” leaf tree is one
in which all leaves are at the same depth. Both imperfect and perfect can be “statically shaped”,
but we’ll use just perfect trees in this paper, for which we need only a single type-level number
signifying the depth of all leaves. For succinctness, rename Leaf and Branch to “L” and “B”. For
reasons soon to be explained, let’s also rename the types TTree and BTree to “RPow” and “LPow”:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:7

data RPow :: (∗ → ∗) → Nat → ∗ → ∗ where
L :: a→ RPow f Z a
B :: f (RPow f n a) → RPow f (S n) a

data LPow :: (∗ → ∗) → Nat → ∗ → ∗ where
L :: a→ LPow f Z a
B :: LPow f n (f a) → LPow f (S n) a

As with vectors, statically shaped f -ary trees are generically represented like their dynamically
shaped counterparts but with dynamic choice (sum) replaced by static choice:

instance Generic1 (RPow f Z ) where
type Rep1 (RPow f Z ) = Par1
from1 (L a) = Par1 a
to1 (Par1 a) = L a

instance Generic1 (LPow f Z ) where
type Rep1 (LPow f Z ) = Par1
from1 (L a) = Par1 a
to1 (Par1 a) = L a

instance Generic1 (RPow f n) ⇒
Generic1 (RPow f (S n)) where

type Rep1 (RPow f (S n)) = f ◦ RPow f n
from1 (B ts) = Comp1 ts
to1 (Comp1 ts) = B ts

instance Generic1 (LPow f n) ⇒
Generic1 (LPow f (S n)) where

type Rep1 (LPow f (S n)) = LPow f n ◦ f
from1 (B ts) = Comp1 ts
to1 (Comp1 ts) = B ts

We can then give these statically shaped data types Functor , Foldable, and Traversable instances
matching the dynamically shaped versions given above. In addition, they have Applicative and
Monad instances. Since all of these types are memo tries [Hinze 2000], their class instances instance
follow homomorphically from the corresponding instances for functions [Elliott 2009].

2.3.2 Type Family Formulation. Note that RVec n and LVec n are essentially n-ary functor
products of Par1. Similarly, RPow f n and LPow f n are n-ary functor compositions of f . Functor
product and functor composition are both associative only up to isomorphism. While RVec and
RPow are right associations, LVec and LPow are left associations. As we will see below, different
associations, though isomorphic, lead to different algorithms.
Instead of the GADT-based definitions given above for RVec, LVec, RPow, and LPow, we can

make the repeated product and repeated composition more apparent by using closed type families
[Eisenberg et al. 2014], with instances defined inductively over type-level natural numbers:
type family RVec n where

RVec Z = U1
RVec (S n) = Par1 × RVec n

type family LVec n where
LVec Z = U1
LVec (S n) = LVec n × Par1

type family RPow h n where
RPow h Z = Par1
RPow h (S n) = h ◦ RPow h n

type family LPow h n where
LPow h Z = Par1
LPow h (S n) = LPow h n ◦ h

Note the similarity between the RVec and RPow type family instances and the following definitions
of multiplication and exponentiation on Peano numbers (with RHS parentheses for emphasis):
0 ∗ a = 0
(1 + n) ∗ a = a + (n ∗ a)

0 ∗ a = 0
(n + 1) ∗ a = (n ∗ a) + a

h ↑ 0 = 1
h ↑ (1 + n) = h ∗ (h ↑ n)

h ↑ 0 = 1
h ↑ (n + 1) = (h ↑ n) ∗ h

Because the type-family-based definitions are expressed in terms of existing generic building
blocks, we inherit many existing class instances rather than having to define them. For the same

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:8 Conal Elliott

reason, we cannot provide them (since instances already exist), which will pose a challenge (though
easily surmounted) with FFT on vectors, as well as custom Show instances for displaying structures.
Although RPow and LPow work with any functor argument, we will use uniform pairs in the

examples below. The uniform Pair functor can be defined in a variety of ways, including Par1×Par1,
RVec 2, LVec 2, or its own algebraic data type:

data Pair a = a :# a deriving (Functor, Foldable, Traversable)

For convenience, define top-down and bottom-up binary trees:

type RBin = RPow Pair
type LBin = LPow Pair

2.4 Bushes
In contrast to vectors, the tree types above are perfectly balanced, as is helpful in obtaining naturally
parallel algorithms. From another perspective, however, they are quite unbalanced. The functor
composition operator is used fully left-associated for LPow and fully right-associated for RPow
(hence the names). It’s easy to define a composition-balanced type as well:

type family Bush n where
Bush Z = Pair
Bush (S n) = Bush n ◦ Bush n

While each RBin n and LBin n holds 2n elements, each statically shaped Bush n holds 22n elements.
Moreover, there’s nothing special about Pair or binary composition here. Either could be replaced
or generalized.
Our “bush” type is inspired by an example of nested data types that has a less regular shape

[Bird and Meertens 1998]:

data Bush a = NilB | ConsB a (Bush (Bush a))

Bushes are to trees as trees are to vectors, in the following sense. Functor product is associative
up to isomorphism. Where RVec and LVec choose fully right- or left-associated products, RBin
and LBin form perfectly and recursively balanced products (being repeated compositions of Pair).
Likewise, functor composition is associative up to isomorphism. Where RBin and LBin are fully
right- and left-associated compositions, Bush n forms balanced compositions. Many other variations
are possible, but the Bush definition above will suffice for this paper.

3 PARALLEL SCAN
Given a sequence a0, . . . ,an−1, the “prefix sum” is a sequence b0, . . . ,bn such that bk =

∑
0≤i<k ai .

More generally, for any associative operation ⊕, the “prefix scan” is defined by bk =
⊕

0≤i<k ai ,
with b0 being the identity for ⊕. (One can define a similar operation if we assume semigroup—
lacking identity element—rather than monoid, but the development is more straightforward with
identity.)

Scan has broad applications, including the following, taken from a longer list [Blelloch 1990]:
• Adding multi-precision numbers
• Polynomial evaluation
• Solving recurrences
• Sorting
• Solving tridiagonal linear systems
• Lexical analysis

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:9

• Regular expression search
• Labeling components in two dimensional images

An efficient, parallel scan algorithm thus enables each of these applications to be performed in
parallel. Scans may be “prefix” (from the left, as above) or or “suffix” (from the right). We will just
develop prefix scan, but generic suffix scan works out in the same way.

Note that ak does not influencebk . Often scans are classified as “exclusive”, as above, or “inclusive”,
where ak does contribute to bk . Note also that there is one more output element than input, which
is atypical in the literature on parallel prefix algorithms, perhaps because scans are often performed
in place. As we will see below, the additional output makes for an elegant generic decomposition.
The standard list prefix scans in Haskell, scanl and scanr , also yield one more output element

than input, which is possible for lists. For other data types, such as trees and especially perfect
ones, there may not be a natural place to store the extra value. For a generic scan applying to many
different data types, we can simply form a product, so that scanning maps f a to f a × a. The extra
summary value is the fold over the whole input structure. We thus have the following class for
left-scannable functors:
class Functor f ⇒ LScan f where lscan ::Monoid a⇒ f a→ f a × a

The Functor superclass is just for convenience and can be dropped in favor of more verbose
signatures elsewhere.
When f is in Traversable, there is a simple and general specification using operations from the

standard Haskell libraries:
lscan ≡ swap ◦mapAccumL (λacc a→ (acc ⊕ a, acc)) ∅

where (⊕) and ∅ are the combining operation and its identity from Monoid, and
mapAccumL :: Traversable t ⇒ (b → a→ b × c) → b → t a→ b × t c

Although all of the example types in this paper are indeed in Traversable, using this lscan speci-
fication as an implementation would result in an entirely sequential implementation, since data
dependencies are linearly threaded through the whole computation.

Rather than defining LScan instances for all of our data types, the idea of generic programming is
to define instances only for the small set of fundamental functor combinators and then automatically
compose instances for other types via the generic encodings (derived automatically when possible).
To do so, we can simply provide a default signature and definition for functors with such encodings:
class Functor f ⇒ LScan f where

lscan ::Monoid a⇒ f a→ f a × a
default lscan :: (Generic1 f , LScan (Rep1 f ),Monoid a) ⇒ f a→ f a × a
lscan = first to1 ◦ lscan ◦ from1

Once we define LScan instances for our six fundamental combinators, one can simply write
“instance LScan F” for any functor F having a Generic1 instance (derived automatically or defined
manually). For our statically shaped vector, tree, and bush functors, we have a choice: use the
GADT definitions with their manually defined Generic1 instances (exploiting the lscan default), or
use the type family versions without the need for the encoding (from1) and decoding (to1) steps.

3.1 Easy Instances
Four of the six needed generic LScan instances are easily handled:
instance LScan V1 where lscan = λ case

instance LScan U1 where lscan U1 = (U1, ∅)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:10 Conal Elliott

 
 

+  

 
 

+  

 
 
 
 
 
 

Out

 
 

+  

 
 

+  

0  

In

 
 
 
 
 

 
 

+  

 
 

+  

 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. lscan @(RVec 5) and lscan @(RVec 11)

 
 

+  
 
 

+  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. lscan @(RVec 5 × RVec 11) [W=26, D=11]

instance LScan Par1 where lscan (Par1 a) = (Par1 ∅, a)

instance (LScan f , LScan g) ⇒ LScan (f + g) where
lscan (L1 fa ) = first L1 (lscan fa )
lscan (R1 ga) = first R1 (lscan ga)

Comments:

• Since there are no values of type V1 a, a complete case expression needs no clauses. (The
definition relies on the LambdaCase and EmptyCase language extensions.)
• An empty structure can only generate another empty structure with a summary value of ∅.
• For a singleton value Par1 a, the combination of values before the first and only one is ∅, and
the summary is the value a.
• For a sum, scan and re-tag. (The higher-order function first applies a function to the first
element of a pair, carrying the second element along unchanged [Hughes 1998].)

Just as the six functor combinators guide the composition of parallel algorithms, they also
determine the performance characteristics of those parallel algorithms in a compositional manner.
Following Blelloch [1996], consider two aspects of performance:

• work, the total number of primitive operations performed, and
• depth, the longest dependency chain, and hence a measure of ideal parallel computation time.

For parallel scan, work and depth of U1, V1, and Par1 are all zero. For sums,

W (f + g) = W f ‘max‘W g
D (f + g) = D f ‘max‘ D g

3.2 Product
Suppose we have linear scans, as in Figure 3. We will see later how these individual scans arise from
particular functors f and g (of sizes five and eleven), but for now take them as given. To understand
lscan on functor products, consider how to combine the scans of f and g into scan for f × g.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:11

 
 
 
 
 
 
 
 
 

Out

 
 

+  
 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  0  

 
 

+  

 
 

+  

 
 

+   
 

+   
 

+  

 
 

+  

 
 

+  

0  

 
 

+  

 
 

+  

 
 

+  

 
 

+   
 

+  

 
 

+  

0  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

 
 

+  

 
 

+  

 
 

+  

0  

 
 

+  

 
 

+  

0  

 
 

+  

0  

0  

In

 
 
 
 
 
 
 
 

Fig. 5. lscan @(RVec 8), unoptimized [W=36, D=8]

 
 

+  

 
 
 
 
 
 
 
 
 

Out
 
 

+  

 
 

+  
 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 

Fig. 6. lscan @(RVec 8), optimized [W=28, D=7]

Because we are left-scanning, every prefix of f is also a prefix of f × g, so the lscan results for f
are also correct results for f × g. The prefixes of g are not prefixes of f × g, however, since each
g-prefix misses all of f . The prefix sums, therefore, are lacking the summary (fold) of all of f , which
corresponds to the last output of the lscan result for f . All we need to do, therefore, is adjust each g
result by the final f result, as shown in Figure 4. The general product instance:

instance (LScan f , LScan g) ⇒ LScan (f × g) where
lscan (fa × ga) = (fa′ × fmap (fx ⊕) ga′, fx ⊕ gx)
where

(fa′ , fx) = lscan fa
(ga′, gx) = lscan ga

The work for f × g is the combined work for each, plus the cost of adjusting the result for g. The
depth is the maximum depth for f and g, plus one more step to adjust the final g result.

W (f × g) = W f +W g + |g | + 1
D (f × g) = (D f ‘max‘ D g) + 1

We now have enough functionality for scanning vectors using the GADT or type family defini-
tions from Section 2.3. Figure 5 shows lscan for RVec 8 (right vector of length 8). The zero-additions
are easily optimized away, resulting in Figure 6. In this picture (and many more like it below), the
data types are shown in flattened form in the input and output (labeled In and Out), and work and
depth are shown in the caption (as W and D). As promised, there is always one more output than
input, and the last output is the fold that summarizes the entire structure being scanned.

The combination of left scan and right vector is particularly unfortunate, as it involves quadratic
work and linear depth. The source of quadratic work is the product instance’s right adjustment
combined with the right-associated shape of RVec. Each single element is used to adjust the entire
suffix, requiring linear work at each step, summing to quadratic. We can verify the complexity by
using the definition of RVec and the complexities for the generic building blocks involved.

W (RVec 0) = W U1 = 0
W (RVec (S n)) = W (Par1 × RVec n) = W Par1 +W (RVec n) + |RVec n| + 1

= W (RVec n) +O (n)

D (RVec 0) = D U1 = 0
D (RVec (S n)) = D (Par1 × RVec n) = (D Par1 ‘max‘ D (RVec n)) + 1 = D (RVec n) +O (1)

Thus, W (RVec n) = O (n2), and D (RVec n) = O (n).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:12 Conal Elliott

 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  
 
 

+  

 
 

+  
 
 

+  

 
 

+   
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  
 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

0  

0  

0  

0  

0  

0  

0  

0  

In

 
 
 
 
 
 
 
 

Fig. 7. lscan @(LVec 8), unoptimized [W=16, D=8]

 
 

+  

 
 

+  

 
 
 
 
 
 
 
 
 

Out 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 

Fig. 8. lscan @(LVec 8), optimized [W=7, D=7]

 
 

+  
 
 

+  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  
 
 

+  

 
 

+  
 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. lscan@(LVec 8 × LVec 8) [W=22, D=8]

 
 

+  
 
 

+   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. lscan@((LVec 5 × LVec 5) × LVec 6) [W=24, D=6]

In contrast, with left-associated vectors, each prefix summary (left) is used to update a single
element (right), leading to linear work, as shown in Figure 7 and (optimized) Figure 8.

W (LVec 0) = W U1 = 0
W (LVec (S n)) = W (LVec n × Par1) = W (LVec n) +W Par1 + |Par1 | + 1 = W (LVec n) + 2
D (RVec 0) = D U1 = 0
D (RVec (S n)) = D (Par1 × RVec n) = (D Par1 ‘max‘ D (RVec n)) + 1 = D (RVec n) +O (1)

Thus, W (RVec n) = O (n), and D (RVec n) = O (n).
Although work is greatly reduced (from quadratic to linear), depth remains at linear, because

unbalanced data types lead to unbalanced parallelism. Both RVec and LVec are “parallel” in a sense,
but we only get to perform small computations in parallel with large one (especially apparent in
the unoptimized Figures 5 and 7), so that the result is essentially sequential.
To get more parallelism, we could replace a type like LVec 16 with a isomorphic product such

as LVec 5 × LVec 11, resulting in Figure 4, reducing depth from 15 to 11. More generally, scan on
LVec m × LVec n has depth ((m − 1) ‘max‘ (n − 1)) + 1 = m ‘max‘ n. For an ideal partition adding
up to p, we’ll want m = n = p / 2. For instance, replace LVec 16 with the isomorphic product
LVec 8× LVec 8, resulting in Figure 9 with depth eight. Can we decrease the depth any further? Not
as a single product, but we can as more than one product, as shown in Figure 10 with depth six.

3.3 Composition
We now come to the last of our six functor combinators, namely composition, i.e., structures
of structures. Suppose we have a triple of quadruples: LVec 3 ◦ LVec 4. We know how to scan
each quadruple, as in Figure 11. How can we combine the results of each scan into a scan for
LVec 3 ◦ LVec 4? We already know the answer, since this composite type is essentially (LVec 4 ×

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:13

 
 

+  

 
 

+  

 
 
 
 
 

Out

 
 

+  

0  

In

 
 
 
 

 
 

+  

 
 

+  

 
 
 
 
 

Out

 
 

+  

0  

In

 
 
 
 

 
 

+  

 
 

+  

 
 
 
 
 

Out

 
 

+  

0  

In

 
 
 
 

Fig. 11. triple lscan @(LVec 4)

 
 

+  
 
 

+  

 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  
 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. lscan @(LVec 3 ◦ LVec 4) [W=18, D=5]

LVec 4) × LVec 4, the scan for which is fully determined by the Par1 and product instances and is
shown in Figure 12.
Let’s reflect on this example as we did with binary products above. Since the prefixes of the

first quadruple are all prefixes of the composite structure, their prefix sums are prefix sums of
the composite and so are used as they are. For every following quadruple, the prefix sums are
lacking the sum of all elements from the earlier quadruples and so must be adjusted accordingly, as
emphasized in Figure 12.

Now we get to the surprising heart of generic parallel scan. Observe that the sums of elements from
all earlier quadruples are computed entirely from the final summary results from each quadruple.
We end up needing the sum of every prefix of the triple of summaries, and so we are computing
not just three prefix scans over LVec 4 but also one additional scan over LVec 3 (highlighted in
Figure 12). Moreover, the apparent inconsistency of adjusting all quadruples except for the first
one is an illusion brought on by premature optimization. We can instead adjust every quadruple
by the corresponding result of this final scan of summaries, the first summary being zero. These
zero-additions can be optimized away later.

The general case is captured in an LScan instance for functor composition:

instance (LScan g, LScan f ,Zip g) ⇒ LScan (g ◦ f ) where
lscan (Comp1 gfa) = (Comp1 (zipWith adjustl tots′ gfa′), tot)
where

(gfa′, tots) = unzip (fmap lscan gfa)
(tots′, tot) = lscan tots
adjustl t = fmap (t ⊕)

The work for scanning g ◦ f includes work for each f , work for the g of summaries, and updates to
all results (before optimizing away the zero adjust, which doesn’t change order). The depth is the
depth of f (since each f is handled in parallel with the others), followed by the depth of a single g
scan.1

W (g ◦ f ) = |g | ·W f +W g + |g | · |f |
D (g ◦ f ) = D f + D g

1This simple depth analysis is pessimistic in that it does not account for the fact that some g work can begin before all f
work is complete.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:14 Conal Elliott

 
 

+  

 
 

+  

 
 

+   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  
 
 

+  

 
 

+  
 
 

+  

 
 

+  
 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. lscan @(LVec 8 ◦ Pair ) [W=22, D=8]

 
 

+  
 
 

+   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  
 
 

+  

 
 

+  

 
 

+  
 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. lscan @(LVec 4 ◦ LVec 4) [W=24, D=6]

 
 

+  

 
 

+  

 
 

+  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  
 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. lscan @(RBin 4) [W=32, D=4]

 
 

+  

 
 

+  

 
 

+  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

0  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. lscan @(LBin 4) [W=26, D=6]

3.4 Other Data Types
We now know how to scan the full vocabulary of generic functor combinators, and we’ve seen the
consequences for several data types. Let’s now examine how well generic scan works for some
other example structures. We have already seen Pair ◦ LVec 8 as LVec 8 × LVec 8 in Figure 9. The
reverse composition leads to quite a different computation shape, as Figure 13 shows. Yet another
factoring appears in Figure 14.
Next let’s try functor exponentiation in its left- and right-associated forms. We just saw the

equivalent of RPow (LVec 4) 2 (and LPow (LVec 4) 2) as Figure 14. Figures 15 and 16 show RBin 4
and LBin 4 (top-down and bottom-up perfect binary leaf trees of depth four). Complexities for
RPow h:

W (RPow h 0) = W Par1 = 0
W (RPow h (S n)) = W (h ◦ RPow h n) = |h| ·W (RPow h n) +W h + |h|S n

D (RPow h 0) = D Par1 = 0
D (RPow h (S n)) = D (h ◦ RPow h n) = D h + D (RPow h n)

For any fixed h, W h + |h|S n = O (n), so the Master Theorem [Cormen et al. 2009, Chapter 4] gives
a solution for W . Since D h = O (1) (again, for fixed h), D has a simple solution.

W (RPow h n) = O ( |RPow h n| · log |RPow h n|)
D (RPow h n) = O (n) = O (log |RPow h n|)

Complexity for LPow h works out somewhat differently:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:15

 
 

+  

 
 
 

Out

0  

In
 
 

Fig. 17. lscan @(Bush 0) [W=1, D=1]

 
 

+  
 
 

+  

 
 

+  

 
 
 
 
 

Out

 
 

+  

0  

In

 
 
 
 

Fig. 18. lscan @(Bush 1) [W=4, D=2]

W (LPow h 0) = W Par1 = 0
W (LPow h (S n)) = W (LPow h n ◦ h) = |LPow h n| ·W h +W (LPow h n) + |h|S n

D (LPow h 0) = D Par1 = 0
D (LPow h (S n)) = D (LPow h n ◦ h) = D (LPow h n) + D h

With a fixed h, |LPow h n| ·W h + |h|S n = O ( |LPow h n|), so the Master Theorem gives a solution
linear in |LPow h n|, while the depth is again logarithmic:

W (LPow h n) = O ( |LPow h n|)
D (LPow h n) = O (n) = O (log |LPow h n|)

For this reason, parallel scan on bottom-up trees can do much less work than on top-down trees.
They also have fan-out bounded by |h|, as contrasted with the linear fan-out for top-down trees—an
important consideration for hardware implementations. On the other hand, the depth for bottom-up
trees is about twice the depth for top-down trees.
Specializing these RPow h and LPow h scan algorithms to h = Pair and then optimizing away

zero-additions (as in Figures 15 and 16) yields two well-known algorithms: lscan on RBin n is from
[Sklansky 1960], while lscan on LBin n is from [Ladner and Fischer 1980].

Finally, consider the Bush type from Section 2.4. Figures 17 through 19 show lscan for bushes of
depth zero through two. Depth complexity:

D (Bush 0) = D Pair = 1
D (Bush (S n)) = D (Bush n ◦ Bush n) = D (Bush n) + D (Bush n) = 2 · D (Bush n)

Hence

D (Bush n) = 2n = 2log2 (log2 |Bush n |) = log2 |Bush n|

Work complexity is trickier:

W (Bush 0) = W Pair = 1
W (Bush (S n)) = W (Bush n ◦ Bush n) = |Bush n| ·W (Bush n) +W (Bush n) + |Bush (S n) |

= 22n ·W (Bush n) +W (Bush n) + 22n+1

= (22n + 1) ·W (Bush n) + 22n+1

A closed form solution is left for later work. Figures 20 and 21 offer an empirical comparison,
including some optimizations not taken into account in the complexity analyses above. Note that
top-down trees have the least depth, bottom-up trees have the least work, and bushes provide a
compromise, with less work than top-down trees and less depth than bottom-up trees.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:16 Conal Elliott

 
 

+  

 
 

+  

 
 

+  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  
 
 

+  

 
 

+  

 
 

+  

 
 

+  
 
 

+  

0  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. lscan @(Bush 2) [W=29, D=5]

operations depth
RBin 4 32 4
LBin 4 26 6
Bush 2 29 5
Fig. 20. lscan for 16 values

operations depth
RBin 8 1024 8
LBin 8 502 14
Bush 3 718 10
Fig. 21. lscan for 256 values

3.5 Some Convenient Packaging
For generality, lscan works on arbitrary monoids. For convenience, let’s define some specializations.
One way to do so is to provide functions that map between non-monoids and monoids. Start with
a class similar to Generic for providing alternative representations:

class Newtype n where
type O n :: ∗
pack :: O n→ n
unpack :: n→ O n

This class also defines many instances for commonly used types [Jahandarie et al. 2014]. Given this
vocabulary, we can scan structures over a non-monoid by packing values into a chosen monoid,
scanning, and then unpacking:2

lscanNew :: ∀n o f .(Newtype n, o∼O n, LScan f ,Monoid n) ⇒ f o → f o × o
lscanNew = (fmap unpack ∗∗∗ unpack) ◦ lscan ◦ fmap (pack @n)

lsums, lproducts :: (LScan f ,Num a) ⇒ f a→ f a × a
lalls, lanys :: LScan f ⇒ f Bool → f Bool × Bool
lsums = lscanNew @(Sum a)
lproducts = lscanNew @(Product a)
lalls = lscanNew @All
lanys = lscanNew @Any
...

3.6 Applications
As a first simple example application of parallel scan, let’s construct powers of a given number x to
fill a structure f , so that successive elements are x0,x1,x2 etc. A simple implementation builds a
structure with identical values using pure (from Applicative) and then calculates all prefix products:

powers :: (LScan f ,Applicative f ,Num a) ⇒ a→ f a × a
powers = lproducts ◦ pure

2The (∗∗∗) operation applies two given functions to the respective components of a pair, and the “@” notation is visible type
application [Eisenberg et al. 2016].

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:17

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

1  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×   

 
×  

 
 
×  

 
 
×  

 
 
×   

 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×   

 
×  

 
 
×  

 
 
×  

 
 
×   

 
×  

 
 
×  

In  

Fig. 22. powers @(RBin 4), no CSE [W=32, D=4]

1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

In  
 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

Fig. 23. powers @(RBin 4), CSE [W=15, D=4]

 
 

+   
 

+   
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+   
 

+  

 
 

+  

 
 

+  

 
 

+   Out

 
 

+  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
×  

 
 
×   

 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

Fig. 24. evalPoly @(RBin 4) [W=29+15, D=9]

 
 

+  

 
 

+   
 

+  

 
 

+  
 
 

+  
 
 

+  

 
 

+  

 
 

+  
 
 

+  

 
 

+   
 

+  

 
 

+  

 
 

+  

 
 

+   Out

 
 

+  In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
×  

 
 
×   

 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

Fig. 25. evalPoly @(LBin 4) [W=29+15, D=11]

Figure 22 shows one instance of powers. A quick examination shows that there is a lot of redundant
computation due to the special context of scanning over identical values. For instance, for an input
x , we compute x2 eight times and x4 four times. Fortunately, automatic common subexpression
elimination (CSE) can remove such redundancies easily, resulting in Figure 23.

Building on this example, let’s define polynomial evaluation, mapping a structure of coefficients
a0, . . . ,an−1 and a parameter x to

∑
0≤i<n aix

i . A very simple formulation is to construct all of the
powers of x and then form a dot product with the coefficients:

evalPoly :: (LScan f , Foldable f ,Applicative f ,Num a) ⇒ f a→ a→ a
evalPoly coeffs x = coeffs · fst (powers x)

(·) :: (Foldable f ,Applicative f ,Num a) ⇒ f a→ f a→ a
u · v = sum (liftA2 (∗) u v)

Figures 24 and 25 show the results for top-down and bottom-up trees.

4 FFT
4.1 Background
The fast Fourier transform (FFT) algorithm computes the Discrete Fourier Transform (DFT), reducing
work fromO (n2) toO (n logn). First discovered by Gauss [Heideman et al. 1984], the algorithm was
rediscovered by Danielson and Lanczos [1942], and later by Cooley and Tukey [1965], whose work
popularized the algorithm.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:18 Conal Elliott

Fig. 26. Factored DFT [Johnson 2010]

Given a sequence of complex numbers, x0, . . . ,xN−1, the DFT is defined as

Xk =

N−1∑
n=0

xne
−i2πkn

N , for 0 ≤ k < N

Naively implemented, this DFT definition leads to quadratic work. The main trick to FFT is to factor
N and then optimize the DFT definition, removing some exponentials that turn out to be equal to
one. For N = N1N2,

Xk =

N1−1∑
n1=0

[
e−

2π i
N n1k2

] *.
,

N2−1∑
n2=0

xN1n2+n1e
− 2π i

N2
n2k2+/

-
e
− 2π i

N1
n1k1

In this form, we can see two smaller sets of DFTs: N1 of size N2 each, and N2 of size N1 each. If we
use the same method for solving these N1 + N2 smaller DFTs, we get a recursive FFT algorithm,
visually outlined in Figure 26.

Rather than implementing FFT via sequences or arrays as usual, let’s take a step back and consider
a more structured approach.

4.2 Factor Types, not Numbers!
The summation formula above exhibits a trait typical of array-based algorithms, namely index
arithmetic, which is tedious to write and to read. This arithmetic has a purpose, however, which is
to interpret an array as an array of arrays. In a higher-level formulation, we might replace arrays
and index arithmetic by an explicit nesting of structures. We have already seen the fundamental
building block of structure nesting, namely functor composition. Instead of factoring numbers that
represent type sizes, factor the types themselves.

As with scan, we can define a class of FFT-able structures and a generic default. One new wrinkle
is that the result shape differs from the original shape, so we’ll use an associated functor “FFO”:

class FFT f where
type FFO f :: ∗ → ∗
fft :: f C→ FFO f C
default fft :: (Generic1 f ,Generic1 (FFO f ), FFT (Rep1 f ), FFO (Rep1 f )∼Rep1 (FFO f ))

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:19

⇒ f C→ FFO f C
fft xs = to1 ◦ fft xs ◦ from1

Again, instances for U1 and Par1 are easy to define (exercise). We will not be able to define an
instance for f × g. Instead, for small functors, such as short vectors, we can simply use the DFT
definition. The uniform pair case simplifies particularly nicely:

instance FFT Pair where
type FFO Pair = Pair
fft (a :# b) = (a + b) :# (a − b)

The final case is g ◦ f , which is the heart of FFT. Figure 26 tells us almost all we need to know,
leading to the following definition:

instance ... ⇒ FFT (g ◦ f ) where
type FFO (g ◦ f ) = FFO f ◦ FFO g
fft = Comp1 ◦ ffts

′ ◦ transpose ◦ twiddle ◦ ffts′ ◦ unComp1

where ffts′ performs several non-contiguous FFTs in parallel:

ffts′ :: ... ⇒ g (f C) → FFO g (f C)
ffts′ = transpose ◦ fmap fft ◦ transpose

Finally, the “twiddle factors” are all powers of a primitive N th root of unity:

twiddle :: ... ⇒ g (f C) → g (f C)
twiddle = (liftA2 ◦ liftA2) (∗) omegas

omegas :: ... ⇒ g (f (Complex a))
omegas = fmap powers (powers (exp (−i ∗ 2 ∗ π / fromIntegral (size @(g ◦ f )))))

The size method calculates the size of a structure. Unsurprisingly, the size of a composition is the
product of the sizes.

The complexity of fft depends on the complexities of twiddle and omegas. Since powers (defined
in Section 3.6) is a prefix scan, we can compute omegas efficiently in parallel, with one powers for g
and then one more for each element of the resulting g C, the latter collection being constructed
in parallel. Thanks to scanning on constant structures, powers requires only linear work even on
top-down trees (normally O (n logn)). Depth of powers is logarithmic.

Womegas (g (f C)) = O ( |g | + |g | · |f |) = O ( |g ◦ f |)
Domegas (g (f C)) = log2 |g | + log2 |f |

= log2 ( |g | · |f |)
= log2 |g ◦ f |

After constructing omegas, twiddle multiplies two g (f C) structures element-wise, with linear
work and constant depth.

Wtwiddle (g (f C)) = Womegas (g (f C)) +O ( |g ◦ f |)
= O ( |g ◦ f |) +O ( |g ◦ f |)
= O ( |g ◦ f |)

Dtwiddle (g (f C)) = Domegas (g (f C)) +O (1)
= log2 |g ◦ f | +O (1)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:20 Conal Elliott

Returning to fft @(g ◦ f ), the first ffts′ (on g ◦ f ) does |f | many fft on g (thanks to transpose), in
parallel (via fmap). The second ffts′ (on f ◦g) does |g | many fft on f , also in parallel. (Since transpose
is optimized away entirely, it is assigned no cost.) Altogether,
W (g ◦ f ) = |g | ·W f +Wtwiddle (g (f C)) + |f | ·W g

= |g | ·W f +O ( |g ◦ f |) + |f | ·W g

D (g ◦ f ) = Dffts′ (g (f C)) + Dtwiddle (g (f C)) + Dffts′ (f (g C))
= D g + log2 |g ◦ f | +O (1) + D f

Note the symmetry of these results, so thatW (g ◦ f ) = W (f ◦ g) and D (g ◦ f ) = D (f ◦ g). For
this reason, FFT on top-down and bottom-up trees will have the same work and depth complexities.

The definition of fft for g ◦ f can be simplified (without changing complexity):
Comp1 ◦ ffts

′ ◦ transpose ◦ twiddle ◦ ffts′ ◦ unComp1
≡ {- definition of ffts′ (and associativity of (◦)) -}
Comp1 ◦ transpose ◦ fmap fft ◦ transpose ◦ transpose ◦ twiddle ◦ transpose ◦ fmap fft

◦ transpose ◦ unComp1
≡ {- transpose ◦ transpose ≡ id -}
Comp1 ◦ transpose ◦ fmap fft ◦ twiddle ◦ transpose ◦ fmap fft ◦ transpose ◦ unComp1
≡ {- transpose ◦ fmap h ≡ traverse h -}
Comp1 ◦ traverse fft ◦ twiddle ◦ traverse fft ◦ transpose ◦ unComp1

4.3 Comparing Data Types
The top-down and bottom-up tree algorithms correspond to two popular binary FFT variations
known as “decimation in time” and “decimation in frequency” (“DIT” and “DIF”), respectively. In
the array formulation, these variations arise from choosing N1 small or N2 small, respectively (most
commonly 2 or 4). Consider top-down trees first, starting with work:
W (RPow h 0) = W Par1 = 0
W (RPow h (S n)) = W (h ◦ RPow h n)

= |h| ·W (RPow h n) +O ( |h ◦ RPow h n|) + |RPow h n| ·W h
= |h| ·W (RPow h n) +O ( |h|S n) + |RPow h n| ·W h
= |h| ·W (RPow h n) +O ( |RPow h n|)

By the Master Theorem,
W (RPow h n) = O ( |RPow h n| · log |RPow h n|)

Next, depth:
D (RPow h 0) = D Par1 = 0
D (RPow h (S n)) = D (h ◦ RPow h n)

= D h + D (RPow h n) + log2 |h ◦ RPow h n| +O (1)
= D h + D (RPow h n) + log2 ( |h|

S n) +O (1)
= D (RPow h n) +O (n)

Thus,
D (RPow h n) = O (n2) = O (log2 |RPow h n|)

As mentioned above,W (g ◦ f ) = W (f ◦ g) and D (g ◦ f ) = D (f ◦ g), so top-down and bottom-up
trees have the same work and depth complexities.

Next, consider bushes.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:21

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+   
 

+  

 
 
−  

 
 

+   
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  
 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out
 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

-0.38268343236508967  

 
 
×  

 
 
×  

-0.3826834323650898  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

-0.7071067811865475  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

-0.7071067811865476  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

-0.9238795325112867  
 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

0.38268343236508967  

 
 
×  

 
 
×  

0.7071067811865475  
 
 
×  

 
 
×  

0.7071067811865476  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

0.9238795325112867  

 
 
×  

 
 
×  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

Fig. 27. fft @(RBin 4) [W=197, D=8]

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  
 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  
 
 

+  

 
 
−  

 
 

+   
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 
×  

 
 
×  

 
 

+  

 
 
×  

 
 
×  

 
 

+  

 
 
−  

 
 

+  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
×  

 
 
×  

 
 

+  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 

+   
 
×  

 
 
×  

 
 

+  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 

+  

 
 
×  

 
 
×  

 
 

+  

 
 
×  

 
 
×  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  
 
 
−  

 
 

+  

 
 

+  
 
 
−  

-0.38268343236508967  
 
 
×  

 
 
×  

-0.3826834323650898  

 
 
×  

 
 
×  

-0.7071067811865475  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

-0.7071067811865476  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

-0.9238795325112867  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

0.38268343236508967  

0.7071067811865475  

 
 
×  

0.7071067811865476  

 
 
×  

 
 
×  

0.9238795325112867  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

Fig. 28. fft @(LBin 4) [W=197, D=8]

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+   
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+   
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 
×  

 
 
×  

 
 

+  

 
 
×  

 
 
×  

 
 

+  

 
 
×  

 
 
×  

 
 

+  
 
 
×  

 
 
×  

 
 

+  
 
 
×  

 
 
×  

 
 

+  
 
 
×  

 
 
×  

 
 

+  

 
 

+   
 

+  

 
 
−  

 
 

+  

 
 
−   

 
+  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 
−  

 
 

+  

 
 

+  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

 
 

+  

-0.3826834323650898  

 
 
×  

-0.7071067811865474  

 
 
×  

-0.7071067811865475  

 
 
×  

 
 
×  

-0.7071067811865476  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

-0.9238795325112865  

 
 
×  

-0.9238795325112867  

 
 
×  

 
 
×  

0.38268343236508967  

 
 
×  

 
 
×  

0.38268343236508995  
 
 
×  

0.7071067811865475  

 
 
×  

 
 
×  

 
 
×  

0.9238795325112867  

 
 
×  

In

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

 
 
−  

Fig. 29. fft @(Bush 2) [W=186, D=6]

+ − × total depth
RBin 4 74 74 40 197 8
LBin 4 74 74 40 197 8
Bush 2 72 72 32 186 6

Fig. 30. FFT for 16 complex values

+ − × total depth
RBin 8 2690 2690 2582 8241 20
LBin 8 2690 2690 2582 8241 20
Bush 3 2528 2528 1922 7310 14

Fig. 31. FFT for 256 complex values

W (Bush 0) = W Pair = 2
W (Bush (S n)) = W (Bush n ◦ Bush n)

= |Bush n| ·W (Bush n) +O ( |Bush n ◦ Bush n|) + |Bush n| ·W (Bush n)
= 2 · |Bush n| ·W (Bush n) +O ( |Bush (S n) |)
= 2 · 22n ·W (Bush n) +O (22n+1 )

D (Bush 0) = D Pair = 1
D (Bush (S n)) = D (Bush n ◦ Bush n)

= D (Bush n) + log2 |Bush n ◦ Bush n| +O (1) + D (Bush n)
= 2 D (Bush n) + 2n+1 +O (1)

Closed form solutions are left for later work.
Figures 27 and 28 show fft for top-down and bottom-up binary trees of depth four, and Figure 29

for bushes of depth two and three, all three of which types contain 16 elements. Each complex
number appears as its real and imaginary components. Figures 30 and 31 give an empirical
comparison. The total counts include literals, many of which are non-zero only accidentally, due to
numerical inexactness. Pleasantly, the Bush instance of generic FFT appears to improve over the
classic DIT and DIF algorithms in both work and depth.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:22 Conal Elliott

5 RELATEDWORK
Much has been written about parallel scan from a functional perspective. Blelloch [1996, Figure 11]
gave a functional implementation of work-efficient of the algorithm of Ladner and Fischer [1980] in
the functional parallel language NESL. O’Donnell [1994] presented an implementation in Haskell
of what appears to the algorithm of Sklansky [1960], along with an equational correctness proof.
Sheeran [2007, 2011] reconstructed the algorithms of Sklansky [1960], Ladner and Fischer [1980],
and Brent and Kung [1982], generalized the latter two algorithms, and used dynamic programming
to search the space defined by the generalized Ladner-Fischer algorithm, leading to a marked
improvement in efficiency. (One can speculate on how to set up a search problem in the context of
the generic, type-directed scan formulation given in the present paper, perhaps searching among
functors isomorphic to arrays of statically known size.) Hinze [2004] developed an elegant algebra
of scans, noting that “using only two basic building blocks and four combinators all standard designs
can be described succinctly and rigorously.” Moreover, the algebra is shown to be amenable to
proving and deriving circuit designs. All of the work mentioned in this paragraph so far formulate
scan exclusively in terms of lists, unlike the generic approach explored in the present paper. In
contrast, Gibbons [1993, 2000] generalized to other data types, including trees, and reconstructed
scan as a combination of the two more general operations of upward and downward accumulations.
Keller and Chakravarty [1999] described a distributed scan algorithm similar to some of those
emerging from the generic algorithm of Section 3 above, pointing out the additional scan and
adjustment required to combine results of scanned segments.
FFT has also been studied through a functional lens, using lists or arrays. de Vries [1988]

developed an implementation of fast polynomial multiplication based on binary FFT. Hartel and
Vree [1992] assessed the convenience and efficiency of lazy functional array programming. Keller
et al. [2010] gave a binary FFT implementation in terms of shape-polymorphic, parallel arrays, using
index manipulations. Jones [1989, 1991] derived the Cooley/Tukey FFT algorithm from the DFT
(discrete Fourier transform) definition, using lists of lists, which were assumed rectangular. (Perhaps
such a derivation could be simplified by using type structure in place of lists and arithmetic.)
Jay [1993] explored a categorical basis for tracking the static sizes of lists (and hence list-of-
lists rectangularity) involved in computations like FFT. Berthold et al. [2009] investigated use of
skeletons for parallel, distributed memory implementation of list-based FFT, mainly binary versions,
though also mentioning other uniform and mixed radices. Various skeletons defined strategies for
distributing work. Gorlatch [1998] applied his notion of “distributable homomorphisms” specialized
to the FFT problem, reproducing common FFT algorithms. Sharp and Cripps [1993] transformed a
DFT implementation to efficient an FFT in the functional language Hope+. One transformation path
led to a general functional execution platform, while other paths partially evaluated with respect to
the problem size and generated feed-forward static process networks for execution on various static
architectures. Bjesse et al. [1998] formulated the decimation-in-time and decimation-in-frequency
FFT algorithms in the Haskell-embedded hardware description language Lava, producing circuits,
executions, and correctness proofs. Frigo [1999] developed a code generator in OCAML for highly
efficient FFT implementations for any size (not just powers of two or even composite). Similarly,
Kiselyov et al. [2004] developed an FFT algorithm in MetaOCAML for static input sizes, using
explicit staging and sharing.

6 REFLECTIONS
The techniques and examples in this paper illustrate programming parallel algorithms in terms of
six simple, fundamental functor building blocks (sum, product, composition, and the three corre-
sponding identities). This “generic” style has several advantages over the conventional practice of

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Generic Functional Parallel Algorithms: Scan and FFT 1:23

designing and implementing parallel algorithms in terms of arrays. Banishing arrays does away
with index calculations that obscure most presentations and open the door to run-time errors.
Those dynamic errors are instead prevented by static typing, and the consequent index-free formu-
lations more simply and directly capture the essential idea of the algorithm. The standard functor
building blocks also invite use of the functionality of standard type classes such as Functor , Foldable,
Traversable, and Applicative, along with the elegant and familiar programming and reasoning tools
available for those patterns of computation, again sweeping away details to reveal essence. In
contrast, array-based formulations involve indirect and error-prone emulations of operations on
implicit compositions of the simpler types hiding behind index calculations for reading and writing
array elements.

A strength of the generic approach to algorithms is that it is much easier to formulate data types
than correct algorithms. As long as a data type can be modeled in terms of generic components
having instances for the problem being solved, a correct, custom algorithm is assembled for that type
automatically. The result may or may not be very parallel, but it is easy to experiment. Moreover,
the same recipes that assemble data types and algorithms, also assemble analyses of work and
depth complexity in the form of recurrences to be solved.

Of the six generic building blocks, the star of the show in this paper is functor composition, where
the hearts of scan and FFT are both to be found. By using just compositions of uniform pairs, we
are led to rediscover two well-known, parallel-friendly algorithms for each of scan and FFT. While
functor composition is associative up to isomorphism, different associations give rise to different
performance properties. Consistent right association leads to the common “top-down” form of
perfect binary leaf trees, while consistent left association leads to a less common “bottom-up”
form. For generic scan, the purely right-associated compositions followed by simple automatic
optimizations become the well-known algorithm first discovered by Sklansky [1960], while the
purely left-associated compositions and automatic optimizations become the more work-efficient
algorithm of Ladner and Fischer [1980]. Conventional formulations of these algorithms center
on arrays and, in retrospect, contain optimizations that obscure their essential natures and the
simple, deep duality between them. Sklansky’s scan algorithm splits an array of size N into two,
performs two recursive scans, and adjusts the second resulting array. Ladner and Fischer’s scan
algorithm sums adjacent pairs, performs one recursive scan, and then interleaves the one resulting
array with a modified version of it. In both cases, the post-recursion adjustment step turns out to
be optimized versions of additional recursive scans, followed by the same kind of simple, uniform
adjustment. Making these extra, hidden scans explicit reveals the close relationship between these
two algorithms. The applied optimization is merely removal of zero additions (more generally
combinations with monoid identity) and is easily automated. The duality between Sklansky’s
parallel scan and Ladner and Fischer’s is exactly mirrored in the duality between two of the FFT
algorithms, commonly known as “decimation in time” (right-associated functor composition) and
“decimation in frequency” (left-associated functor composition).

Not only do we see the elegant essence and common connections between known algorithms—
satisfying enough in its own right—but this insight also points the way to many infinitely many
variations of these algorithms by varying the functors being composed beyond uniform pairs and
varying the pattern of composition beyond uniform right or left association. This paper merely
scratches the surface of the possible additional variations in the form of fully balanced compositions
of the pair functor, as a type of uniform “bushes”. Even this simple and perhaps obvious idea
appears to provide a useful alternative. For scan, bushes offer a different compromise between
top-down trees (best in work and worst in depth) vs bottom-up trees (best in depth and worst in
work), coming in second place for both work and depth. With FFT, the complexity story seems to
be uniformly positive, besting top-down and bottom-up in both work and depth, though at the cost

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:24 Conal Elliott

of less flexibility in data set size, since bushes of have sizes of the form 22n , compared with 2n for
binary trees.
There are many more interesting questions to explore. Which other known scan and FFT algo-

rithms emerge from the generic versions defined in this paper, specialized to other data types?
Are there different instances for the generic functor combinators that lead to different algorithms
for the data types used above? How does generic scan relate to the scan algebra of Hinze [2004],
which is another systematic way to generate scan algorithms? What other problems are amenable
to the sort of generic formulation in this paper? What other data types (functor assembly patterns)
explain known algorithms and point to new ones?

REFERENCES
Roland Backhouse, Jeremy Gibbons, Ralf Hinze, and Johan Jeuring. Datatype-Generic Programming: International Spring

School, Revised Lectures. Lecture Notes in Computer Science. Springer Berlin Heidelberg, April 2007.
Jost Berthold, Mischa Dieterle, Oleg Lobachev, and Rita Loogen. Parallel FFT with Eden skeletons. In International Conference

on Parallel Computing Technologies, PaCT ’09, pages 73–83, 2009.
Richard Bird and Lambert Meertens. Nested Datatypes. In Mathematics of Program Construction, pages 52–67, 1998.
Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design in Haskell. In International Conference

on Functional Programming, pages 174–184, 1998.
Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190, School of Computer Science, Carnegie

Mellon University, November 1990.
Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39:85–97, 1996.
R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE Transactions on Computers, 31(3), March 1982.
James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex Fourier series. Mathematics of

Computation, 19:297–301, 1965.
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press,

3rd edition, 2009.
G.C. Danielson and C. Lanczos. Some improvements in practical Fourier analysis and their application to X-ray scattering

from liquids. Journal of the Franklin Institute, 233(5):435–452, 1942.
Fer-Jan de Vries. A functional program for the Fast Fourier Transform. SIGPLAN Notices, pages 67–74, January 1988.
Richard A. Eisenberg, Dimitrios Vytiniotis, Simon L. Peyton Jones, and Stephanie Weirich. Closed type families with

overlapping equations. In Principles of Programming Languages, pages 671–684, 2014.
Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. Visible type application. In European Symposium on

Programming Languages and Systems, pages 229–254, 2016.
Conal Elliott. Denotational design with type class morphisms. Technical Report 2009-01, LambdaPix, March 2009.
Conal Elliott. Compiling to categories. Proc. ACM Program. Lang., 1(ICFP), September 2017.
Matteo Frigo. A fast Fourier transform compiler. In PLDI, volume 34, pages 169–180. ACM, May 1999.
Jeremy Gibbons. Upwards and downwards accumulations on trees. In Mathematics of Program Construction, 1993.
Jeremy Gibbons. Generic downwards accumulations. Science of Computer Programming, 37(1-3):37–65, May 2000.
Sergei Gorlatch. Programming with divide-and-conquer skeletons: A case study of FFT. The Journal of Supercomputing,

1998.
Pieter H. Hartel and Willem G. Vree. Arrays in a lazy functional language — a case study: The fast Fourier transform. In

2nd Arrays, functional languages, and parallel systems (ATABLE), 1992.
Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. Gauss and the history of the fast Fourier transform. IEEE

ASSP Magazine, 1(4):14–21, October 1984.
Ralf Hinze. Memo functions, polytypically! In 2nd Workshop on Generic Programming, pages 17–32, 2000.
Ralf Hinze. An algebra of scans. In International Conference on Mathematics of Program Construction, pages 186–210, 2004.
Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554, September 1997.
John Hughes. Generalising monads to arrows. Science of Computer Programming, 37:67–111, 1998.
Darius Jahandarie, Conor McBride, and João Cristóvão. newtype-generics, 2014. Haskell library.
C. Barry Jay. Matrices, monads and the fast Fourier transform. Technical Report UTSSOCS-93.13, University of Technology,

Sydney, 1993.
Steven G. Johnson. Diagram to illustrate the general Cooley-Tukey FFT algorithm, 2010. URL https://en.wikipedia.org/wiki/

Cooley%E2%80%93Tukey_FFT_algorithm#General_factorizations.
Geraint Jones. Deriving the fast Fourier algorithm by calculation. In Glasgow Workshop on Functional Programming, 1989.
Geraint Jones. A fast flutter by the Fourier transform. In IV Higher Order Workshop, Banff 1990, pages 77–84, 1991.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.2633
http://www.cs.ox.ac.uk/richard.bird/online/BirdMeertens98Nested.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.1626
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.6230
https://www.semanticscholar.org/paper/Programming-Parallel-Algorithms-Blelloch/2fee9034f208596eefe51cc66acb98a99f6500dd
https://www.semanticscholar.org/paper/A-Regular-Layout-for-Parallel-Adders-Brent-Kung/3adce81389b0ed650b04d8319324820bc1d70acc
https://dspace.library.uu.nl/handle/1874/26226
https://www.semanticscholar.org/paper/Closed-type-families-with-overlapping-equations-Eisenberg-Vytiniotis/04d3891d0028efd01ead6588763f937fb04ab2c8
https://www.semanticscholar.org/paper/Closed-type-families-with-overlapping-equations-Eisenberg-Vytiniotis/04d3891d0028efd01ead6588763f937fb04ab2c8
https://www.seas.upenn.edu/~sweirich/papers/type-app-extended.pdf
http://conal.net/papers/type-class-morphisms
http://conal.net/papers/compiling-to-categories
https://www.semanticscholar.org/paper/A-Fast-Fourier-Transform-Compiler-Frigo/1d67f1dec9a2a1645485ebd0cbe7bf1791bde017
https://www.researchgate.net/publication/221440204_Upwards_and_Downwards_Accumulations_on_Trees
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7383
http://doc.utwente.nl/55744/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.3272
http://www.cs.ox.ac.uk/ralf.hinze/publications/MPC04.pdf
http://gallium.inria.fr/~huet/PUBLIC/zip.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4575
https://hackage.haskell.org/package/newtype-generics
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.4548
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#General_factorizations
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm#General_factorizations
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.9999


Generic Functional Parallel Algorithms: Scan and FFT 1:25

Gabriele Keller and Manuel M. T. Chakravarty. On the distributed implementation of aggregate data structures by program
transformation. In Parallel and Distributed Processing, pages 108–122, 1999.

Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, and Simon Peyton. Regular, shape-polymorphic, parallel
arrays in Haskell. In International Conference on Functional Programming, 2010.

Oleg Kiselyov, Kedar N. Swadi, and Walid Taha. A methodology for generating verified combinatorial circuits. In EMSOFT,
2004.

Richard E Ladner and Michael J Fischer. Parallel prefix computation. Journal of the ACM, 27(4):831–838, 1980.
José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. A generic deriving mechanism for Haskell. In Haskell

Symposium, pages 37–48, 2010.
José Pedro Magalhães and Andres Löh. A formal comparison of approaches to datatype-generic programming. InWorkshop

on Mathematically Structured Functional Programming, pages 50–67, March 2012.
José Pedro Magalhães et al. GHC.Generics, 2011. URL https://wiki.haskell.org/GHC.Generics. Haskell wiki page.
Conor McBride. The derivative of a regular type is its type of one-hole contexts (extended abstract), 2001. Unpublished.
Conor McBride and Ross Paterson. Applicative programming with effects. Journal of Functional Programming, 18(1), 2008.
John T. O’Donnell. A correctness proof of parallel scan. Parallel Processing Letters, 04(03):329–338, 1994.
David Sharp and Martin Cripps. Synthesis of the fast Fourier transform algorithm by functional language program

transformation. In Euromicro Workshop on Parallel and Distributed Processing, pages 136–143, January 1993.
Mary Sheeran. Parallel prefix network generation: An application of functional programming. In Hardware Design and

Functional Languages, 2007.
Mary Sheeran. Functional and dynamic programming in the design of parallel prefix networks. Journal of Functional

Programming, 21(1):59–114, January 2011.
J. Sklansky. Conditional-sum addition logic. IRE Transactions on Electronic Computers, EC-9(2):226–231, June 1960.
Brent A Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães.

Giving Haskell a promotion. In Workshop on types in language design and implementation, 2012.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.

https://www.researchgate.net/publication/2323557_On_the_Distributed_Implementation_of_Aggregate_Data_Structures_by_Program_Transformation
https://www.researchgate.net/publication/2323557_On_the_Distributed_Implementation_of_Aggregate_Data_Structures_by_Program_Transformation
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.9426
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.9426
https://www.semanticscholar.org/paper/A-methodology-for-generating-verified-combinatoria-Kiselyov-Swadi/466de362cd0eae907c69dae44713bbc2c206cd95
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.366.2185
https://arxiv.org/abs/1202.2920
https://wiki.haskell.org/GHC.Generics
http://www.strictlypositive.org/diff.pdf
http://www.staff.city.ac.uk/~ross/papers/Applicative.html
http://www.worldscientific.com/doi/abs/10.1142/S0129626494000302
https://www.semanticscholar.org/paper/Parallel-Prefix-Network-Generation-an-Application-Sheeran/37ab6bd051af2787f86b0389f2512276c4513406
https://www.semanticscholar.org/paper/Functional-and-dynamic-programming-in-the-design-o-Sheeran/acdc48750b15f778559d10ccd343a226e9e6d1e7
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.224.5658

	Abstract
	1 Introduction
	2 Some Useful Data Types
	2.1 Right-Lists and Left-Lists
	2.2 Top-down Trees
	2.3 Statically Shaped Variations
	2.4 Bushes

	3 Parallel Scan
	3.1 Easy Instances
	3.2 Product
	3.3 Composition
	3.4 Other Data Types
	3.5 Some Convenient Packaging
	3.6 Applications

	4 FFT
	4.1 Background
	4.2 Factor Types, not Numbers!
	4.3 Comparing Data Types

	5 Related Work
	6 Reflections
	References

