
Genuinely Functional User Interfaces

Antony Courtney 1,2

Dept. of Computer Science
Yale University

New Haven, CT 06520

Conal Elliott 3

Microsoft Research
One Microsoft Way

Redmond, WA 98052

Abstract

Fruit is a new graphical user interface library for Haskell based on a formal model
of user interfaces. The model identifies signals (continuous time-varying values) and
signal transformers (pure functions mapping signals to signals) as core abstractions,
and defines GUIs compositionally as signal transformers. In this paper, we describe
why we think a formal denotational model of user interfaces is useful, present our
model and prototype library implementation, and show some example programs
that demonstrate novel features of our library.

1 Introduction

Over the years, there have been numerous Graphical User Interface (GUI)
libraries for Haskell, presenting a broad range of different programming in-
terfaces. Some libraries, such as TkGofer [26], provide direct access to GUI
facilities through the IO monad, and therefore have a rather imperative feel.
Others, such as Fudgets [4] and FranTk [23], present qualitatively more high-
level programming interfaces, so have a more declarative, functional feel.

1 This material is based upon work supported in part by a National Science Foundation
Graduate Research Fellowship. Any opinions, findings, conclusions or recommendations
expressed in this publication are those of the author and do not necessarily reflect the views
of the National Science Foundation.
2 Email: antony@apocalypse.org
3 Email: conal@microsoft.com

1

Courtney and Elliott

But what does it mean for one library to be more “high level” or “low
level” or “functional” than another? On what basis should we make such
comparisons? A pithy answer is given by Perlis [18]:

A programming language is low level when its programs require attention
to the irrelevant.
–Alan Perlis

But how should we decide what is relevant?

Within the functional programming community, there is a strong historical
connection between functional programming and formal modeling [1,24,25,12].
Many authors have expressed the view that functional programming languages
are “high level” because they allow programs to be written in terms of an
abstract conceptual model of the problem domain, without undue concern for
implementation details.

Of course, although functional languages can be used in this “high level”
way, this is neither a requirement nor a guarantee. It is very easy to write
programs and libraries in pure Haskell that are littered with implementation
details and bear little or no resemblance to any abstract conceptual model of
the problem they were written to solve.

So if we wish to design a high-level interface for implementing GUIs in
Haskell, it seems clear that we must first ask:

What is an abstract conceptual model of a graphical user interface?

and then embed this model in Haskell, so that there is a direct mapping from
the types and functions in our library to their counterparts in the conceptual
model. As far as we are aware, all previous GUI libraries for Haskell define the
conceptual model of a GUI only informally, or defer to some external system
(such as X Windows, Tk, Gtk, etc.) for many of the details.

In this paper, we present Fruit, a Functional Reactive User Interface Toolkit,
based on a formal model of graphical user interfaces. The Fruit model is is
based on AFRP, an adaptation of ideas from Functional Reactive Animation
(Fran) [9,7] and Functional Reactive Programming (FRP) [14,27] to the ar-
rows framework recently proposed by Hughes [15]. AFRP is based on two
ideas: signals, which are functions from real-valued time to values, and sig-
nal transformers, which are functions from signals to signals. Using only the
AFRP model and simple mouse, keyboard and picture types, we define GUIs
compositionally as signal transformers.

We believe that developing a simple, precise denotational model of graph-
ical user interfaces is valuable for a number of reasons:

• It provides a starting point for proving properties of programs with graphical
interfaces, and for developing related notions of program equivalence.

• We can reformulate the question of whether one library is more “high level”
than another in precise, objective terms, by comparing the semantic models
of the libraries, and asking whether one semantic model is more abstract

2

Courtney and Elliott

than another [22].

• By clarifying our understanding of the abstract conceptual model of graph-
ical interfaces, we may gain fresh insight into how to extend the model to
new interaction paradigms or see systematic solutions to problems that were
previously solved in an ad hoc manner.

We present examples of this final point later in the paper, when we show how
continuous spatial scaling (zooming) and multiple views can be accomodated
within the Fruit model.

The remainder of this paper is organized as follows. In section 2 we for-
mally define the AFRP programming model, show how the model is embedded
in Haskell, and give simple but precise definitions for some useful combina-
tors and primitives. In section 3 we define GUIs within the AFRP model.
In section 4, we develop a basic application in Fruit, and show two examples
(adding continuous spatial scaling and multiple views) that demonstrate the
benefits of our approach. Section 5 discusses related work. Sections 6 and 7
summarize the status of the implementation and present our conclusions.

2 AFRP Programming Model

Like Fran and FRP, the AFRP programming model is implemented as a
domain-specific language embedded in Haskell [13]. In order to focus on our
new language constructs, we simply assume the existence of a denotational
semantics for Haskell in which Haskell functions denote (partial) functions.
We define our language extensions by giving denotational definitions for our
language constructs that extend this (hypothetical) Haskell semantics.

2.1 Concepts

The Fruit programming model is built around two central concepts: signals
and signal transformers.

Signals

A signal is a function from time to a value:

Signal α = Time → α

We represent Time as a non-negative real number. An example of a signal
is the mouse’s current (x, y) position. If Point is the type of two-dimensional
points, we can model the time-varying mouse position as a Signal Point.

Signal Transformers

A signal transformer is a function from Signal to Signal:

ST α β = Signal α → Signal β

3

Courtney and Elliott

Informally, we can think of a signal transformer as a box with an “input port”
and an “output port”. If we connect the box’s input port to a Signal α value,
we can observe a Signal β value on the output port.

A simple example of a signal transformer is the identity signal transformer.
At every point in time, the identity signal transformer’s output signal has
the same value as its input signal. Slightly more interesting examples of
signal transformers are lifted functions (the output signal is the point-wise
application of f to the input signal), and integral (the output signal is
the integration of the input signal over time). Note that the identity signal
transformer can be defined as a lifted function, where f is the function id.

2.2 Abstract Types

Conceptually, signals are functions of continuous time, and signal transformers
are functions from signals to signals. As has been argued elsewhere [9,7], a
continuous model can be simpler and more natural than a discrete one when
modeling animation or user interaction. However, in order to guarantee an
efficient implementation on a discrete computer, signal transformers are not
written directly as Haskell functions. Instead, we introduce an abstract type
constructor, ST. A value of type ST a b denotes a signal transformer:

newtype ST a b = ...

The implementation provides a number of primitive signal transformers, and
a set of combinators (the arrow combinators) for assembling new signal trans-
formers from existing ones. Internally, the implementation uses discrete sam-
pling and synchronous streams to approximate the continuous time model. It
has been shown that, as the time between samples approaches zero, the dis-
crete implementation converges to the continuous semantics in the limit [27].

Since ST is a Haskell type constructor, signal transformers are first-class
values: we can pass them as arguments, return them as results, store them in
data structures or variables, etc. In contrast, signals are not first-class values.
This marks a significant departure from Fran’s programming model. Fran’s
Behavior type denotes a signal in the Fruit model, and Fran uses Haskell
functions to obtain the equivalent of our signal transformers.

We outlaw signals as first-class values for two reasons. First, signals alone
are inherently non-modular: while we can apply point-wise transformations
to the observable output of a signal, first-class signal values do not have an
input signal. In contrast, signal transformers have both an input signal and
an output signal, thus enabling us to transform both aspects of an ST value.
In other words, only providing ST as first-class values guarantees that every
signal in the program is always relative to some input signal.

Second, experience implementing Fran [6] and FRP [14] taught us that
allowing signals as first class values inevitably leads to “space-time leaks” [6]
in the implementation. A “space-time leak” occurs when the implementation
needs the complete time-history of a signal to compute one sample value.

4

Courtney and Elliott

Defining ST as a newtype and only providing a fixed set of primitives and
combinators allows us to prove that the implementation is free of space-time
leaks by simple structural induction on the ST type.

2.3 Arrows

Recently, Hughes proposed arrows as a basis for building combinator libraries [15].
Concretely, Arrow is a Haskell type class that denotes a computation from
some input type to some result type. In his introduction to arrows [15], Hughes
presents a number of examples of arrow instances, including Haskell’s built-in
function type constructor (->) and stream processors, and gives many exam-
ples that demonstrate the utility of arrows for organizing combinator libraries.

The Arrow type class is defined as:

class Arrow a where

arr :: (b -> c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b,d) (c,d)

In the remainder of this section, we give both informal and formal defini-
tions of each of the arrow operators for the ST type constructor in terms of
our model.

Lifting

One of the most common and useful kinds of signal transformers is a lifted
function, produced by the arr operator. The arr operator for signal trans-
formers has type:

arr :: (b -> c) -> ST b c

Given any Haskell function f of type (b -> c) (i.e. a function mapping b
values to c values), arr f denotes a signal transformer that maps a Signal b
to a Signal c by applying f point-wise to the input signal.

For example, given the function

sin :: Floating a => a -> a

from the standard Prelude, arr sin is a signal transformer whose output
signal at time t is sin applied to the signal transformer’s input signal at time
t.

Formally, we define arr f for signal transformers as follows:

[[arr f]] = λs : Signal α . λt : Time . [[f]](s(t))

Serial Composition

The arrow infix operator (>>>) composes two arrows. For signal trans-
formers, if we have:

fa :: ST b c

5

Courtney and Elliott

ga :: ST c d

then fa >>> ga has type ST b d and denotes the signal transformer that feeds
its input signal to fa, uses fa’s output signal as ga’s input signal, and uses
ga’s output signal as the resulting output signal.

Formally, we define serial composition for signal transformers as reverse
function composition:

[[fa >>> ga]] = ([[ga]] ◦ [[fa]])

Widening

Given an arrow from b to c, the first operator widens it to be an arrow
from (b,d) to (c,d), for all types d. For signal transformers, the first

operator has type:

first :: ST b c -> ST (b,d) (c,d)

Informally, (first fa) denotes a signal transformer that feeds the first half
of its input signal (a signal of b values) to fa to produce a signal of c values,
and pairs this with the second half of the original input signal (a signal of d
values) to produce the output signal.

Formally, we can define first as:

[[first fa]] =

λs : Signal(β × γ) . pairZ ([[fa]] (fstZ s)) (sndZ s)

where fstZ, sndZ and pairZ are the obvious projection and pairing func-
tions for signals of pairs.

ArrowLoop

The names “signal” and “signal transformer” in our model suggest analo-
gies to analog and digital signal processing and computer hardware. In those
domains, feedback cycles are used in conjunction with the inherent propaga-
tion delay of wires to implement many interesting circuits such as flip-flops or
latches. In a feedback cycle, some portion of the output signal is fed back as
an input signal. Feedback cycles are also useful in Fruit, and are defined using
the loop combinator [16]. The loop combinator is defined in the ArrowLoop

type class:

class Arrow a => ArrowLoop a where

loop :: a (b,d) (c,d) -> a b c

For signal transformers, if fa has type ST (b,d) (c,d), then loop fa

denotes a signal transformer that instantiates fa, and pairs the second half of
fa’s output signal with an external input signal to form fa’s input signal.

Formally, we define loop for signal transformers as:

[[loop fa]] =

λs : Signal β. fstZ(Y(λr.[[fa]](pairZ s (sndZ r))))

6

Courtney and Elliott

where Y is the standard least fixed point operator.

Discrete Events

In modeling reactive systems in general (and user interfaces in particu-
lar), we often need to model event sources that produce event occurrences at
discrete points in time. For example, the left mouse button being pressed is
naturally modeled as an event that occurs at some point in time. For now, we
define event sources in our conceptual model as signals of Maybe values: 4

EventSource α = Signal (Maybe α)

= Time → (Maybe α)

If the value of an event source at time t is Nothing, then we say that
the event source does not occur at time t. Conversely, if the value of an event
source at time t is Just v, then we say that the event source has an occurrence
at time t that carries value v.

As with Signal, EventSource lives in the conceptual model, and does not
appear directly in our API. However, Maybe types appear as arguments to the
ST type constructor when event sources are needed. We will see an example
of this shortly.

2.4 Primitive Signal Transformers

Fruit defines a number of primitive signal transformers. Each such primitive
has a denotational definition in terms of our formal model. The denotational
definitions of these primitives are derived directly from their counterparts in
Fran and FRP. We define a couple of these primitives here to give a taste of
the semantics. The interested reader is referred to the denotational definitions
of Fran and FRP semantics for a more complete account [9,7,27].

Piecewise Constant Signals

Given an event source, it is often useful to derive a continuous signal whose
value is constant between event occurrences. This is sometimes called a “sam-
ple and hold” or “zero-order hold” circuit in the signal processing literature.
The primitive stepper is provided for this purpose:

stepper :: a -> ST (Maybe a) a

Informally, stepper x0 denotes a signal transformer that transforms an
EventSource α to a Signal α. Initially, the output signal of stepper x0

has value x0. When an event carrying value x1 occurs on its input signal,

4 This representation of events as continuous signals of Maybe values raises some thorny
theoretical issues because it allows for dense event sources (ones that have infinitely many
occurrences in a finite interval of time). We have explored some possible solutions to this
problem [27], but a detailed exploration of this issue is outside the scope of this paper.

7

Courtney and Elliott

the value of the stepper’s output signal becomes x1. The value of the output
signal remains x1 until the next event occurrence (carrying, say, x2), at which
point the value of the output signal becomes x2, and so on.

Formally, we define stepper as follows:

[[stepper x]] =

λs.λt.

a ∃a.∃ta ∈ (0, t).((s ta) = Just a))

∧ 6 ∃tb ∈ (ta, t).((s tb) = Just b)

x otherwise

Integration

The primitive signal transformer integral has type:

integral :: Floating a => ST a a

The output signal of integral is the integration of its input signal over time.
Formally:

[[integral]] = λs.λt.

t∫
0

s(t)dt

3 Fruit: A Compositional User Interface Library

We define an interactive graphical user interface (GUI) as:

type GUI a b = ST (GUIInput, a) (Picture, b)

A GUI a b is a signal transformer that takes a graphical input signal (GUIInput)
paired with an auxiliary semantic input signal (a) and produces a graphical
output signal (Picture) paired with an auxiliary semantic output signal (b).

In the Fruit model, every interactive component is a value of type GUI a b

(for some types a and b). This differs from conventional toolkits in which there
are distinct types for “applications”, “containers” and “components”. We
consider this flat type structure a feature, as it leads to a compositional model
of user interfaces. Any two GUI values can be composed using our layout
combinators to form a composite GUI in which the two child GUIs appear
adjacent to one another. The result returned from the layout combinator is
itself a GUI, and so can also be used in a layout combinator, displayed in a
top-level window, etc.

The GUIInput and Picture signals allow the application to feed time-
varying keyboard and mouse information into the GUI, and get back time-
varying visual information (pictures to display). The auxiliary input and out-

8

Courtney and Elliott

put signals allow a GUI to observe and emit extra (time-varying) information
for use in the rest of the program. For example, a GUI representing a button
component might provide an event source output signal that has occurrences
when the button is pressed.

The Picture type is an abstract type that denotes a static picture that can
be rendered on screen. Our prototype implementation uses a scalable vector
graphics library based loosely on the graphics library defined in “The Haskell
School of Expression” (SOE) [14], but any picture type that supports basic
geometric primitives, bounds calculations and affine transforms would work.

3.1 The GUIInput Type

The GUIInput type represents the part of the input to a GUI specifically
related to its visual interactive characteristics. GUIInput is essentially just a
pair of records:

data Mouse = {mpos :: Point,

lbDown :: Bool,

rbDown :: Bool }

data Kbd = { keyDown :: [Char] }

type GUIInput = (Maybe Kbd, Maybe Mouse)

The Kbd and Mouse types are wrapped in Maybe types to account for the
focus model. In modern window systems, there is always a foreground appli-
cation that receives the keyboard and mouse input from the window system
to the exclusion of all other applications running in the background. The
window system typically provides a lightweight gesture (such as mouse-over
or click-to-type) that allows the user to shift the focus to another application.
This concept of focus model is equally applicable within a window, as we can
view moving the mouse between two different visible components of a window
as shifting the mouse focus from one component to the other. Keyboard focus
traversal within a window (using the TAB key, for example) can be modeled
analogously.

Each of the Maybe values in the GUIInput signal to a GUI are Nothing

when the GUI does not have focus, and Just x (for some x) when the compo-
nent has the focus. Note that, although the types of these signals are the same
as a discrete event source, they are, conceptually, not discrete event sources.
As it turns out, however, many of the event source combinators also have
useful interpretations for such continuous Maybe signals. We will see several
examples of this.

3.2 Composing GUIs

These definitions, combined with the arrow combinators and primitive be-
haviors from the previous section, form the basis of our GUI library. Even

9

Courtney and Elliott

without any additional definitions, we can define many useful and interesting
richly interactive user interfaces.

For example, we can define mouseST as a signal transformer that takes a
GUIInput input signal and produces a Point output signal that is the mouse’s
current position if the GUI has the focus, or “remembers” the last position
that had focus otherwise:

mouseST :: ST GUIInput G.Point

mouseST = arr snd >>> arr (fmap mpos)

>>> stepper G.origin2

The G refers to the qualified import of the graphics library; G.origin2

is the Cartesian origin. Note that we are feeding the Maybe Mouse signal to
the stepper event source combinator. The result is a continuous signal that
maintains the last position of the mouse when the GUI loses mouse focus.

Using this definition, here is a definition for a GUI that draws a red ball
that follows the mouse:

-- from the graphics library:

move :: Picture -> Point -> Picture

ballPic :: Picture

ballPic = (circle ‘withColor‘ red)

ballGUI :: GUI () ()

ballGUI = first (mouseST >>> arr (move ballPic))

In the above definition, ballGUI is given type GUI () () because it neither
observes nor produces any semantic signals other than its GUIInput input
signal and its Picture output signal. The subexpression (mouseST >>> arr

(move ballPic)) has type ST GUIInput Picture. By using the first op-
erator, we widen this ST value to one of type ST (GUIInput,a) (Picture,a)

for all types a, and this generalized type is of course equivalent to GUI a a.

3.3 Running a GUI

A GUI is brought to life with the runGUI action, which runs a GUI in a
top-level window: 5

runGUI :: Unit a => GUI a b -> IO ()

The implementation of runGUI handles all low-level (imperative) communi-
cation with the graphics library to read primitive window events and draw
pictures on the screen. The window displayed by the action runGUI ballGUI

5 For convenience, we define a type class Unit with an instance for () and all products
of Unit, such as (), ((),()), etc. This will be convenient for simple GUIs composed with
layout combinators, as we shall see later.

10

Courtney and Elliott

Fig. 1. Running ballGUI

is shown in figure 1.

3.4 Brief Aside: Arrows Syntactic Sugar

When defining signal transformers using the arrow combinators, we must write
definitions in a point-free style. In the context of Fruit, this means that the
names in our program refer to signal transformers, but we cannot name signals
explicitly.

The arrows syntactic sugar is a proposal by Ross Paterson [16] with an
existing implementation as a preprocessor. The arrows syntactic sugar allows
arrows to be defined using a new syntactic form, introduced by the keyword
proc. The proc form acts as a kind of abstraction for arrows, analogous to
Haskell’s built-in lambda abstraction. Within the body of a proc, the arrows
syntactic sugar allows us to explicitly name the signals, and specify how the
signals are connected within a signal transformer.

As with lambda abstraction, proc takes a pattern that will be matched
point-wise over the points of the arrow. The identifiers used in the pattern
may then be used within the body of the arrow. For example, we could have
defined mouseST using the arrows syntactic sugar as:

mouseST :: ST GUIInput G.Point

mouseST = proc (_, mbm) -> do

... -- not shown (yet)

In this definition, the pattern (,mbm) is matched against the input type (
GUIInput here).

Informally, the body of an arrow definition consists of a sequence of arrow
applications of the form:

11

Courtney and Elliott

pat1
st1←−−−−≺ exp1

pat2
st2←−−−−≺ exp2

...

patn−1

stn−1←−−−−≺ expn−1

stn−−−−−−≺ expn

Each such arrow application feeds the signal described by expi to the signal
transformer sti. Each pati is matched against the output type of sti, and
introduces new arrow-bound variables for use in the arrow applications that
follow. The final such application (which does not include a pattern) defines
the output signal of the entire proc. Note that, in the conversion to the ASCII

character set,
st←−−−−≺ is written as <- st -<. Our complete definitions for

mouseST and ballGUI using the arrows syntactic sugar are thus:

mouseST = proc (_, mbm) -> do

stepper G.origin2 -< fmap mpos mbm

ballGUI :: GUI () ()

ballGUI = proc (gin,_) -> do

mouse <- mouseST -< gin

returnA -< (move ballPic mouse,())

where returnA is defined as arr id in the arrows library.

The subset of the arrows syntactic sugar used in this paper is defined
formally by the following translation:

proc p -> do { e1 -< e2 } =

arr (\p -> e2) >>> e1

proc p -> do { p’ <- e1 -< e2; A } =

returnA &&& arr (\p -> e2) >>> second e1 >>>

proc (p,p’) -> do {A}

proc p -> do { let p’ = e; A } =

returnA &&& arr (\p -> e) >>> proc (p,p’) -> do {A}

proc p -> do { rec {A}; B } =

returnA &&& loop proc (p,pA) -> do

{ A; returnA -< (pB,pA)} >>> proc (p,pB) -> do { B }

12

Courtney and Elliott

3.5 Simple Components

A GUI’s auxiliary semantic input and output signals convey semantic signals
to and from the GUI not directly related to the GUI’s visual behavior, and
enable the GUI to be connected to the rest of the program. The Fruit library
defines a number of GUI components that use these auxiliary signals.

Labels

The simplest components are labels, defined as:

flabel :: GUI LabelConf ()

ltext :: String -> LabelConf

A label is a GUI whose picture displays a text string from its auxiliary input
signal, and produces no semantic output signal.

We use a trick from Fudgets [4] to specify configuration options. LabelConf,
ButtonConf, etc. are simple State → State functions. These functions are
very similar to the update functions generated by using Haskell’s labeled field
syntax, in that they will update one component of the state, but leave all
others unchanged. This gives us a simple mechanism for composing property
definitions (using the function composition operator ’.’) and for assigning de-
fault values for component properties. We will see an example of this shortly.

Buttons

A Fruit button (fbutton) is a GUI that implements a standard button
control. The declaration of fbutton is:

fbutton :: GUI ButtonConf (Maybe ())

btext :: String -> ButtonConf

enabled :: Bool -> ButtonConf

This declares fbutton as a GUI that, in addition to its visual input and output
signals, takes an input signal of configuration options specifying properties of
the button such as the label to display in the button, whether the button
is enabled, etc. The button produces an output event source that has an
occurence when the button is pressed by the user. Each event occurence on
the output signal carries no information other than the fact of its occurence,
hence the type Maybe (). Here is an example of a GUI that uses an fbutton:

butTest :: GUI () (Maybe ())

butTest = proc (inpS,_) -> do

fbutton -< (inpS,btext "press me!")

The display produced by runGUI butTest is shown in figure 2. Note that the
above example did not need to explicitly specify the button’s enabled property
(which is True by default).

13

Courtney and Elliott

Fig. 2. A simple button

Fig. 3. Using besideGUI

3.6 Basic Layout Combinators

To be able to build more interesting interfaces, we need a mechanism to com-
pose multiple GUIs into a larger GUI. We provide two basic layout combinators
for this purpose:

aboveGUI :: GUI b c -> GUI d e -> GUI (b,d) (c,e)

besideGUI :: GUI b c -> GUI d e -> GUI (b,d) (c,e)

The layout combinators produce a combined GUI that behaves as the two
child GUIs arranged adjacent to one another. Here is a small example that
illustrates the use of besideGUI:

hello :: GUI () (Maybe (),())

hello = proc (inpS,_) -> do

(fbutton ‘besideGUI‘ flabel) -<

(inpS, (btext "press me",

ltext " PLEASE! "))

The result of running this GUI in a top-level window with runGUI is shown
in figure 3. A translation transformation has been applied to the second
argument GUI to position it beside the first argument. The implementation
of spatial transformation for GUIs will be described in detail in section 4.4.1.

In addition to transforming the second argument, the layout combinators
must demultiplex the input signal into two disjoint signals to be passed to each
child. This is achieved by clipping the GUIInput signal based on the mouse
position: The GUI under the mouse receives the (appropriately transformed)
keyboard and mouse signals, while its sibling receives Nothing values for the
keyboard and mouse to indicate that it does not have focus. 6

As this example illustrates, the composed GUI has auxiliary semantic in-
put and output signals whose types are the product of the corresponding types

6 Our current implementation of focus is based solely on mouse position. This is slightly
simplistic, as modern user interface guidelines stipulate a keyboard focus cycle that is
independent of the mouse focus. Extending our implementation to support such a split
focus model is straightforward.

14

Courtney and Elliott

from the child GUIs. This has substantial syntactic consequenses. Programs
can become complicated rather quickly, because the types of the composed
GUI grow in proportion to the nesting depth of the layout. We have written
numerous small example programs using our layout combinators without the
arrows syntactic sugar, and have found the resulting programs to be a hope-
lessly unreadable mess of lifted tupling and untupling. We were exploring
possible GUI-specific syntactic extensions when we encountered the arrows
syntactic sugar proposal. We have been pleasantly surprised by just how well
the syntactic sugar works for a specific problem domain (GUIs) for which it
wasn’t specifically designed.

4 Composing Applications

In this section, we demonstrate Fruit by developing a basic application. The
application (a “Paddleball” game with a button for restarting the game) is
small enough to allow us to study it in detail, but substantial enough to
capture some of the essential issues that arise in building larger applications.

4.1 Paddleball as a GUI

Hudak [14] develops an implementation of a simple Fran-like reactive anima-
tion language, and implements “Paddleball in Twenty Lines” as a demon-
stration of the power and elegance of functional reactive programming. Since
the Fruit model subsumes the functional reactive model on which which it
is based, it was a simple matter to re-implement paddleball as a GUI. The
complete source code is shown in figure 4.

A couple of combinators used in pball that we have not yet explained are:

-- An accumulating stepper: On every event occurence,

-- function carried with the occurence is applied to

-- the state.

stepAccum :: a -> ST (Maybe (a -> a)) a

-- replaces the value in an event occurence with

-- a new value:

ebind :: a -> Maybe b -> Maybe a

ebind = fmap . const

Essentially, the code for pball does the following:

• Sets up the ball. The ball’s x and y position (xpos and ypos) are defined
as the integral of velocity (xvel and yvel, respectively). The velocities are
defined as piece-wise constant signals using stepAccum; both start at vel

(the game velocity given as an argument to pball), but flip sign (negate)
when a bounce event occurs. Note that these definitions are mutually re-
cursive: xpos is defined in terms of xvel, which is in turn defined in terms

15

Courtney and Elliott

paddle :: Double -> G.Rectangle2DDouble

paddle xpos = G.rectangle (xpos - 25) 200 50 10

-- The paddleball game, capable of playing one game

-- Output signal is an Event Source that occurs

-- when the game ends.

pball :: Double -> GUI () (Maybe ())

pball vel = proc (inpS,_) -> do

rec xi <- integral -< xvel

let xpos = 30 + xi

yi <- integral -< yvel

let ypos = 30 + yi

let ballS = ell (xpos-12.5) (ypos-12.5) 25 25

let ballPicS = G.shapePic ballS ‘G.withColor‘

G.yellow

xbounce <- when -< ((xpos > 175) || (xpos < 30))

ybounce <- when -< ((ypos < 30) || hitPaddle)

let hitPaddle = intersects ballS paddleS

xvel <- stepAccum vel -< ebind negate xbounce

yvel <- stepAccum vel -< ebind negate ybounce

mpos <- mouseST -< inpS

let paddleS = paddle (G.pointX mpos)

let paddlePicS = G.shapePic paddleS ‘G.withColor‘

G.green

gameOver <- when -< ypos > 200

let gamePic = G.box

(walls ‘G.over‘ paddlePicS ‘G.over‘

ballPicS) gameBox

returnA -< (gamePic,gameOver)

Fig. 4. Paddleball GUI source code

of xbounce, defined in terms of xpos. The do rec ... form of the arrows
syntactic sugar takes care of setting up the appropriate connections by using
the loop combinator (from ArrowLoop), and the fact that the integral of
a signal at time t depends on the values of the input signal up to (but not
including) time t ensures that the feedback cycle is well-defined.

• Sets up the Paddle: This is just a rectangle shape (paddle), whose x position
is determined by the mouse position.

• Performs Collision Detection: This is handled by the definitions of xbounce,
ybounce and hitPaddle. hitPaddle is defined by a call to the graphics
library to check for the intersection of the ball (ballS) with the paddle
(paddleS). xbounce and ybounce are defined using the when combinator:

when :: ST Bool (Maybe ())

16

Courtney and Elliott

Fig. 5. Paddleball with a Restart Button

The when combinator converts a continuous Boolean signal to an event
source. The output event occurs when a rising edge is observed on the
input signal.

By implementing the Paddleball game as a GUI we obtain spatial mod-
ularity (relative to Fran and FRP), and this, in turn, enables reuse: we can
use the layout combinators to compose pball with other GUIs to form more
interesting composite GUIs, and we can have as many Paddleball games active
in our GUI as we wish.

4.2 Adding a “Start Over” Button.

Paddleball is a fun game, but, as defined here, it only plays one game. Our
first refinement to the game is to add a restart button that allows us to play
again, as show in figure 5. We define rpball0 (“restartable” paddle ball) as
follows: 7

-- pbgame is a version of pball that

-- restarts the game when its input

7 We have omitted the code for pbgame here to save space. It is easily derived from pball
using the FRP switch combinator, which in AFRP has the signature:
switch :: ST b c -> ST (b,Maybe (ST b c)) c
See [27] for a detailed discussion of the semantics of switch.

17

Courtney and Elliott

-- event source has an occurrence:

pbgame :: Double -> GUI (Maybe ()) (Maybe ())

-- paddle ball with a reset button:

rpball0 :: Double -> GUI () ()

rpball0 vel = proc (inpS,_) -> do

rec (picS,(pressES,_)) <-

(fbutton ‘aboveGUI‘ (pbgame vel)) -<

(inpS,(btext "Play Again!", pressES))

returnA -< (picS,())

The definition of rpball0 uses the do rec... form of the arrows syntactic
sugar to feed the output event source from the reset button (pressES) back
as an input event source to pbgame.

4.3 Selectively Enabling the Reset Button

When implementing GUIs, we frequently need to dynamically disable certain
components of the user interface based on the program’s state. Components
that are disabled are typically rendered with a “grayed out” appearance to
give the user a visual cue that the corresponding action is invalid.

We demonstrate this kind of programming in Fruit by disabling the reset
button while a game is in progress:

-- like rpball0, but selectively disable

-- the restart button:

rpball1 :: Double -> GUI () ()

rpball1 vel = proc (inpS,_) -> do

rec (picS,(restart,gameEnds)) <-

(fbutton ‘aboveGUI‘ (pbgame vel)) -<

(inpS,(bprops,restart))

let bprops = (btext "Play Again!"

. enabled allowRestart)

let gameDone = (ebind True gameEnds)

‘emerge‘ (ebind False restart)

allowRestart <- stepper False -< gameDone

returnA -< (picS,())

The enabled property of the button is controlled by the allowRestart signal,
which is False initially, set to True when a game ends, and set to False again
when the restart button is pressed. As mentioned in section 3.5, the function
composition operator (.) is used to combine button properties in the definition
of bprops.

18

Courtney and Elliott

4.4 Exploring Modularity

Thus far our discussion has simply explored how we can implement user in-
terfaces in a purely functional way. This is certainly an interesting academic
exercise, and carries with it (we hope) the benefits of increased reasoning
power that we expect from purely functional programming models. But we
might be tempted to ask if there are any other purely pragmatic advantages to
a purely functional approach? In this section, we explore two such advantages:
continuous spatial scaling and multiple views.

4.4.1 Transforming GUIs

One difference between Fruit and every other production user interface toolkit
we are aware of (for either imperative or functional languages) is that Fruit
provides a uniform model and programming interface for both “low-level” in-
teractive graphics and “high level” user interface components such as buttons.
Moreover, since GUIs are first class values that denote pure functions, we can
use higher-order operators to manipulate GUIs in useful ways.

One of the most basic higher-order functions is the function composition
operator (.); we use >>> instead, but the denotation is equivalent. (Recall that
(>>>) is reverse composition, so f >>> g = g . f for the function space
arrow.) Armed with just this operator, we can define spatial transformation
of a GUI. We will define a generalized transformGUI operator that applies an
(affine) spatial transform to a GUI to produce a new GUI:

transformGUI :: G.Transform ->

GUI b c -> GUI b c

Assuming that we have a basic understanding of spatial transformation for
pictures, how shall we define spatial transformation of a GUI?

First, let’s quickly review spatial transform for pictures. When we apply a
spatial transform to a picture, it changes the size, position, or orientation of the
picture. Consider translation of a picture by a displacement vector (∆x, ∆y).
In general, this translation maps every (x, y) position in the original image to
an (x′, y′) position in the new image by:

(x′, y′) = (x + ∆x, y + ∆y)

or, more generally, if tf represents the transformation, and (%$) is the apply-
transform operator:

(x′, y′) = tf %$ (x, y)

Note that %$ is defined as part of the Transformable type class, so instance
declarations may be given for any type that supports spatial transformation.

Since a GUI’s visual output is a signal of Picture, and our graphics library
supports applying affine transforms to Picture values, we can transform a
GUI’s output by point-wise application of the transform to the picture output
signal. But what about input?

If g is a GUI, point-wise transformation of g’s picture signal will map every

19

Courtney and Elliott

(x, y) position in g’s coordinate system to (x′, y′). In order to give an accurate
input signal to g, transformGUI must map every (x′, y′) mouse position back
to its corresponding (x, y) position in g. This suggests a general principle
for transforming functions: To transform a function (in time or in space),
apply the transform point-wise to the output, and apply the inverse transform
point-wise to the input. This idea corresponds exactly to Pan’s spatial “hyper-
filters” [8], i.e., spatial transformations of Image → Image functions.

The implementation of transformGUI is then simply:

transformGUI tf g = proc (inp, b) ->

(pic, c) <- g -< (inverse tf %$ inp, b)

returnA -< (tf %$ pic, c)

This model for transforming GUIs is used in the implementation of the
layout combinators to reposition their second argument GUI. The transform to
apply to the second argument is determined dynamically by applying a bounds

operation point-wise to the Picture signal produced by the first argument
GUI.

4.4.2 Spatial Scalability

While our basic layout combinators only use basic horizontal and vertical
translations, the transformGUI operator can apply any affine transform to a
GUI. For example, here is a version of Paddleball that runs in a window 1/2
the size of the original:

-- uniform scaling transform (from Graphics library):

uscale :: Double -> Transform

minipb :: Double -> GUI () (Maybe ())

minipb vel =

transformGUI (uscale 0.5) (pball vel)

When run, minipb displays a fully functional version of Paddleball shrunk
down to postage stamp size. This type of zooming capability is obviously ex-
tremely useful for implementing vector or bitmap graphics editors, document
previewers, etc. where zooming is a natural operation. But recent work in
the Human/Computer Interaction (HCI) community has proposed continu-
ous zooming can be a useful abstraction in its own right for many applica-
tions [17] [2]. Providing continuous zoom allows graphical interfaces to be
designed so that users can “zoom out” for an overview of the data and “zoom
in” for more detail. Pad [17] and Jazz [2] are two recent research projects
that augment the widget set of a traditional imperative GUI toolkit with the
abstraction of a continuously zoomable drawing surface.

The starting points for Pad and Jazz were the toolkits Tk and Swing,
respectively. Because the Tk and Swing programming interfaces hide their
connection with the graphics subsystem, Pad and Jazz are essentially new
GUI toolkits, and require that existing applications be rewritten from scratch

20

Courtney and Elliott

to take advantage of the zooming capabilities. In contrast, Fruit makes the
connection to the interactive graphics subsystem seamless and explicit in the
type of GUI. As minipb demonstrates, this explicit connection to interactive
graphics allows us to incorporate novel ideas (such as continuous zooming)
without a major restructuring of the library or completely rewriting applica-
tions.

4.5 Adding Multiple Views

Many GUI-based applications need multiple views on to the same underlying
data set. For example, an icon editor might allow the user to open two views
of the icon, one showing an editable, highly zoomed-in view where each pixel
is a large square, and the other showing a preview of the icon at normal size.
As the icon is edited in the zoomed view, the preview view should be updated.

We can really distinguish two kinds of views: passive and active. A passive
view observes the underlying data set, but does not provide any means for
interacting directly with the data set. The preview window of the icon editor
just described is an example of such a passive view. In contrast, an active
view is interactive: user actions in either view are reflected in other views and
the underlying data set.

The requirement for multiple views is so common in user interfaces that
the Model-View-Controller (MVC) design pattern has emerged as a way to
structure imperative object-oriented programs to support multiple views when
using imperative GUI toolkits [11].

For many practical applications (such as icon editors, illustration pro-
grams, etc.), the multiple views provided by the application are views of the
same underlying (time-varying) picture, with different affine transformations
applied to produce the view. For example, a zoomed-in view of an icon is a
view of the same picture as a zoomed-out view; the pictures differ only by a
scaling transformation. For simple cases such as this, multiple views may be
added in Fruit to any GUI, without any pre-meditation on the part of the
original GUI programmer.

Passive Views

A view can be though of as “a GUI with no mind of its own”, as shown
in figure 6. A view obtains its Picture signal from some external source and
delivers its GUIInput signal to some external source. Concretely, a view is
a GUI that takes a Picture signal as its auxiliary semantic signal, and uses
this signal as its own Picture signal. Similarly, it delivers its GUIInput signal
as its auxiliary output signal. This describes a simple crossover configuration
that leads to the following definition:

view :: GUI G.Picture GUIInput

view = arr swap

21

Courtney and Elliott

(to window system)

(to master GUI)

GUIInput

Picture

Picture

GUIInput

Fig. 6. Implementation of a view

Fig. 7. Multiple Views

Given this definition, we can implement a version of Paddleball that has two
views next to each other, as shown in figure 7:

pbview :: Double -> GUI () ()

pbview vel = proc (inpS,_) -> do

rec (picS,(activeIn,_)) <-

(view ‘besideGUI‘ view) -<

(inpS,(gamePic,gamePic))

(gamePic,_) <- (rpball1 vel) -<

(activeIn,Nothing)

22

Courtney and Elliott

returnA -< (picS,())

In this implementation, there are two views adjacent to each other. The view
on the left is an active view, as its auxiliary input signal (activeIn) is fed as
the input signal to the actual rpball1 GUI. The view on the right is passive:
Its picture signal is the same (gamePic) signal as the active view on the left,
but its GUIInput signal is not connected to anything.

Multiple Active Views

Adding passive views to a GUI is certainly useful for many applications.
But it is much more interesting, useful and symmetric to provide multiple
active views, so that the user can interact with any view.

Recall from section 3.1 that we defined GUIInput to account for a focus
model : At every point in time, the visual input signal to a GUI is either
(Nothing, Nothing) (when the component does not have focus), or (Just

kbd,Just mouse) when the GUI has mouse focus. Further, as described in
section 4.4.1, the layout combinators perform clipping as well as transforma-
tion to ensure that only the GUI under the mouse receives (a transformed view
of) the GUIInput signal. Recall, too, that our programming model includes a
set of event source combinators that operate on signals of Maybe values.

Armed with this knowledge, we can now consider how to implement ac-
tive views. In the implementation of pbview, each view is passed to the
besideGUI layout combinator. The besideGUI combinator uses clipping and
transformation to demultiplex its input signal into two signals, one for each
child. At every point in time, one child’s input signal is (Just kbd, Just

mouse) while the other’s is (Nothing, Nothing)). Regardless of which GUI

has focus, the input signal will be transformed into the child’s local coordinate
system. Given this knowledge, it is a simple matter to define a mergeGUIInput

combinator that will merge two disjoint GUIInput signals back in to a single
signal by favoring the Just values and discarding the Nothing values. We
define mvpball (“multi-view paddleball”) as:

-- event merge, left-biased (from AFRP library):

emerge :: Maybe a -> Maybe a -> Maybe a

emerge mbeL mbeR = maybe mbeR id mbeL

mergeGUIInput :: GUIInput -> GUIInput ->

GUIInput

mergeGUIInput (mbkA,mbmA) (mbkB,mbmB) =

(mbkA ‘emerge‘ mbkB,

mbmA ‘emerge‘ mbmB)

mvpball :: Double -> GUI () ()

mvpball vel = proc (inpS,_) -> do

rec (combinedPic,(leftIn,rightIn)) <-

23

Courtney and Elliott

Fig. 8. Dynamic Labels Example

(view ‘besideGUI‘ view) -<

(inpS,(masterPic,masterPic))

let mergedIn = mergeGUIInput leftIn rightIn

(masterPic,_) <- (rpball1 vel) -<

(mergedIn,())

returnA -< (combinedPic,())

In this version of Paddleball, both views are treated symmetrically: The user
can play or press the restart button in either view, and the action is reflected
in both views.

Fruit is the only toolkit we are aware of that provides multiple active
views “for free”, without requiring any extra forethought or planning by the
programmer of the original GUI.

4.6 Dynamic Interfaces

Thus far, all of the GUIs we have defined have been essentially static in the
sense that the set of interface components visible on screen is fixed over the
lifetime of the program. To support realistic user interfaces, it must be possible
to dynamically add or remove components from the interface at runtime.

To demonstrate Fruit’s support for dynamic interfaces, we implement an
application (dynLabels) that dynamically adds new labels to an interface in
response to a button press. The application is shown in figure 8. Every time
the button is pressed, a new label is added to the interface (at the right edge
of the current GUI) that display a count of how many times the button has
been pressed in the program thus far. The screenshot shows the program after
the button has been pressed six times. 8

Since GUIs are first class values, we can maintain the current GUI that
appears on-screen (using, say, stepAccum or some other accumulating signal
transformer), and add to this GUI by using a layout combinator. Using such an
accumulator in conjunction with switch allows us to switch from displaying
one GUI to displaying the updated GUI. This pattern is so common and useful
that we provide an accumST combinator to support it:

accumST :: (ST b c -> d -> ST b c)

8 This example only adds components to the interface and does not remove them. Extend-
ing to allow removal as well as addition is straightforward.

24

Courtney and Elliott

-> ST b c -> ST (b,Maybe d) c

The accumST f st0 -< (iS,eS) will behave initially as (st0 -< iS). When
an event occurs on eS, accumST passes the current signal transformer and the
event occurrence value to f to obtain a new signal transformer. The accumST

will then switch in to the signal transformer returned, which becomes the
“current” signal transformer. The code for dynLabels is:

-- A set of counting labels:

countLabels :: GUI (Maybe ()) ()

countLabels =

let addLabel :: GUI () () ->

Int -> GUI () ()

addLabel labels n = labels

‘besideGUI_‘ (mkLabel n)

in proc (inpS,es) -> do

lblNumE <- countE -< es

(picS,_) <- accumST addLabel (mkLabel 0)

-< ((inpS,()),lblNumE)

returnA -< (picS, ())

dynLabels :: GUI () ()

dynLabels = proc (inpS,_) -> do

rec (picS,(pressES,_)) <-

(fbutton ‘besideGUI‘ countLabels) -<

(inpS,(btext "press me!", pressES))

returnA -< (picS,())

5 Related Work

There have been many, many GUI toolkits implemented for Haskell, including
Haggis [10], TkGofer [5], FranTk [23], and Fudgets [4]. These toolkits cover
the spectrum from the mostly imperative (Haggis) to the mostly functional
(Fudgets).

FranTk is similar to Fruit in the sense that it too uses the Fran reactive pro-
gramming model (and its combinators) to specify the connections between user
interface components. However, FranTk uses an imperative model for creat-
ing widgets, maintaining program state (with mutable variables or “MVars”),
and wiring of cyclic connections (which occur in most GUIs, including the
examples in this paper).

The closest relative to our work is Fudgets. Fudgets are implemented as
stream processors, where each Fudget has high level and low level input and
output streams. The high-level streams in Fudgets serve a role similar to the
auxiliary semantic signals in our GUI type. The programming interface to
Fudgets is very similar to that of Fruit, although Fudgets is based on discrete,

25

Courtney and Elliott

asynchronous streams, whereas Fruit is based on continuous, synchronous sig-
nals.

Another difference is that Fruit is based on an abstract conceptual model
of GUIs, whereas Fudgets is based on augmenting Haskell’s stream-based I/O
system with request and response types for the X Window system. Since we
have not seen a formal definition of X windows, it is not clear to us what the
denotational model of a Fudget is, beyond saying that it is a stream processor
that emits and consumes X protocol requests. We believe that Fruit’s model
enables more precise reasoning about Fruit programs.

However, the Fruit programming interface is not without cost. Because
any Fudget can emit an I/O request, a Fudget to perform file or network I/O
can be added to a Fudget program just as easily as adding a graphical Fudget.
In contrast, adding such features to Fruit would require explicit threading of
the I/O actions through the Fruit program.

Finally, our work is similar to (and partially inspired by) Pike’s pioneer-
ing work on Mux [20] [19], implemented in the language Newsqueak [21], a
successor to Cardelli and Pike’s language Squeak [3]. In Mux, every applica-
tion is a process that communicates with the window system using CSP-style
synchronous channels. The interface to each process has two input channels
for keyboard and mouse input, and an output channel for producing pictures.
The Mux window system itself is such a process that does simple multiplexing
and demultiplexing to route messages between its input and output channels
and those of its children. Thinking about composition of independent windows
as multiplexing and demultiplexing is similar to our layout combinators.

The Fruit programming model owes much to its ancestors Fran and FRP.
The most recent implementation of SOE FRP includes input types in the def-
inition of Behavior, and an Arrow instance declaration for Behavior. The
SOE FRP combinators are defined as ordinary Haskell functions, and the in-
terface includes a primitive combinator, runningIn, that enables a signal to
masquerade as a Behavior. In contrast, our interface defines every combina-
tor as a signal transformer whose inputs are specified explicitly in its input
type, and we use the arrow combinators for composition and application. Our
programming interface thus gains modularity (as we can interpose functions
such as spatial transformation on an ST’s input signal), and emphasizes the
distinction between signal transformers and signals. However, we depend on
the arrows syntactic sugar to make our model viable for writing real programs.

6 Current Status

We have implemented a working prototype of Fruit that is capable of run-
ning all of the examples presented here. The prototype includes a basic
subset of the FRP combinators (implemented as synchronized stream pro-
cessors). For visual display, Fruit uses a new vector graphics library, Haven,
that we developed for this project. The interface to Haven is purely functional

26

Courtney and Elliott

and implementation-independent, but our reference implementation uses the
Java2D rendering engine. The low-level calls to Java2D are handled using
another tool, Elijah, that provides a connection to the Java Native Interface
via GreenCard, also implemented as a side project specifically for use in Fruit.
We plan to release both Haven and Elijah as independent projects.

We refer to Fruit as a “prototype” only because it does not yet include a
complete set of user interface components. Our focus thus far has been on
figuring out the right abstract conceptual model and demonstrating that this
model is viable and practical.

7 Conclusions and Future Work

In this paper, we presented a GUI toolkit for Haskell based on a formal model
of graphical user interfaces. We showed how this model could be embedded in
Haskell, and how the library could be used to construct a plausible example
application. We also demonstrated some of the benefits of our approach, by
showing how continuous spatial scaling and multiple views could be easily
accomodated within the model.

Our results so far are very preliminary but encouraging. Building a library
based on a formal model appears to be practical and provides some useful
additional benefits, but we need to explore both of these areas in more depth.

In the short term, we plan to replace our low-level stream-based FRP im-
plementation with a much more efficient data-driven implementation, add a
complete and realistic set of widgets, and add support for efficient dynamic
collections. In addition to this implementation work, we plan to further ex-
plore how we can incorporate modern user interface techniques into the model,
as suggested in Section 4.4.1. And, of course, we plan to implement some real
applications in Fruit, to further explore the benefits and limitations of our
approach.

8 Acknowledgements

Special thanks are due to Henrik Nilsson for many patient, thoughtful dis-
cussions on the issues presented in this paper. We are also very grateful to
members of the FRP research group at Yale (Paul Hudak, Liwen Huang, John
Peterson, Walid Taha, Valery Trifonov and Zhanyong Wan) for their work on
SOE FRP, many constructive discussions on semantics and implementation,
and for reviewing earlier drafts of this paper. We would also like to thank
to Magnus Carlsson, Christopher League, Ross Paterson and anonymous re-
viewers who read an earlier draft of this paper and provided very constructive
feedback. Finally, thanks to John Hughes and Ross Paterson for their work on
arrows and the arrows syntactic sugar. Without that framework, Fruit would
be an interesting theoretical model with no viable implementation.

27

Courtney and Elliott

References

[1] Backus, J., Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs, Communications of the ACM 21
(1978), pp. 613–641.

[2] Bederson, B., J. Meyer and L. Good, Jazz: An extensible zoomable user interface
graphics toolkit in java, in: Proceedings of the ACM SIGGRAPH Symposium on
User Interface Software and Technology (UIST), ACM, 2000, pp. 171–180.

[3] Cardelli, L. and R. Pike, Squeak: A language for communicating with mice, in:
B. A. Barsky, editor, Computer Graphics (SIGGRAPH ’85 Proceedings), 1985,
pp. 199–204.

[4] Carlsson, M. and T. Hallgren, “Fudgets - Purely Functional Processes with
applications to Graphical User Interfaces,” Ph.D. thesis, Chalmers University
of Technology (1998).

[5] Claessen, K., T. Vullinghs and E. Meijer, Structuring graphical paradigms in
TkGofer, in: Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97), 1997, pp. 251–262.
URL citeseer.nj.nec.com/claessen97structuring.html

[6] Elliott, C., Functional implementations of continuous modelled animation, in:
Proceedings of PLILP/ALP ’98 (1998).

[7] Elliott, C., An embedded modeling language approach to interactive 3D and
multimedia animation, IEEE Transactions on Software Engineering 25 (1999),
pp. 291–308, special Section: Domain-Specific Languages (DSL).

[8] Elliott, C., Functional images, (to appear) Journal of Functional Programming
(JFP) (2001).
URL http:
//www.research.microsoft.com/~conal/papers/functional-images/

[9] Elliott, C. and P. Hudak, Functional reactive animation, in: International
Conference on Functional Programming, 1997, pp. 163–173.

[10] Finne, S. and S. P. Jones, Composing the user interface with Haggis, Lecture
Notes in Computer Science 1129 (1996).
URL http://citeseer.nj.nec.com/finne96composing.html

[11] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements
of Reusable Object-Oriented Software,” Addison Wesley, Massachusetts, 1994.

[12] Henderson, P., Functional programming, formal specification and rapid
prototyping, IEEE Transactions on Software Engineering 12 (1986), pp. 241–
250.

[13] Hudak, P., Modular domain specific languages and tools, in: Proceedings of Fifth
International Conference on Software Reuse, 1998, pp. 134–142.

28

Courtney and Elliott

[14] Hudak, P., “The Haskell School of Expression – Learning Functional
Programming through Multimedia,” Cambridge University Press, Cambridge,
UK, 2000.

[15] Hughes, J., Generalising monads to arrows, Science of Computer Programming
(2000), pp. 67–111.

[16] Paterson, R., A new notation for arrows, in: Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP 2001), 2001.

[17] Perlin, K. and D. Fox, Pad: An alternative approach to the computer interface,
Computer Graphics 27 (1993), pp. 57–72.

[18] Perlis, A., Epigrams on programming, ACM SIGPLAN Notices 17 (1982).
URL http://www.cs.yale.edu/homes/perlis-alan/quotes.html

[19] Pike, R., Window systems should be transparent, Computing Systems 1 (1988),
pp. 279–296.
URL http://citeseer.nj.nec.com/pike88window.html

[20] Pike, R., A concurrent window system, Computing Systems 2 (1989), pp. 133–
153.
URL http://citeseer.nj.nec.com/pike89concurrent.html

[21] Pike, R., Newsqueak: A language for communicating with mice (1989).

[22] Reynolds, J., “Theories of Programming Languages,” Cambridge University
Press, 1998.

[23] Sage, M., Frantk: A declarative gui system for haskell, in: Proceedings of the
ACM SIGPLAN International Conference on Functional Programming (ICFP
2000), 2000.
URL http://www.haskell.org/FranTk/userman.pdf

[24] Stoy, J. E., Some mathematical aspects of functional programming, in:
J. Darlington, P. Henderson and D. A. Turner, editors, Functional Programming
and its Applications, Cambridge University Press, 1982 pp. 217–252.

[25] Turner, D. A., Functional programs as executable specifications, Philosophical
Transactions of the Royal Society of London A312 (1984), pp. 363–388.

[26] Vullinghs, T., D. Tuinman and W. Schulte, Lightweight GUIs for functional
programming, in: PLILP, 1995, pp. 341–356.
URL citeseer.nj.nec.com/vullinghs95lightweight.html

[27] Wan, Z. and P. Hudak, Functional reactive programming from first principles,
in: Proc. ACM SIGPLAN’00 Conference on Programming Language Design and
Implementation (PLDI’00), 2000.

29

