
Higher-Order, Higher-Order Automatic Differentiation

(early, incomplete draft—comments invited∗)

Conal Elliott
conal@conal.net

Draft of January 23, 2020

1 Introduction
This note picks up where Elliott (2018) left off, and I assume the reader to be familiar with that
paper and have it close at hand. I am circulating this follow-on in fairly rough form for early
feedback, to then evolve in to a full research paper. The main new contributions are two senses
of “higher-order automatic differentiation”:

• derivatives of higher-order functions, and

• higher-order derivatives of functions, and

The former has been addressed in a recent paper (Vytiniotis et al., 2019), but in a way I find
dissatisfying for a variety of reasons described in Section 9 and discussed at length with the
authors.

Begin with the category of computably differentiable functions from Elliott (2018, Section
4.1):

newtype D a b = D (a → b × (a (b))

where a (b is the type of linear maps from a to b. The function around which the automatic
differentiation (AD) algorithm is organized simply “zips” together a function f : a → b and its
derivative D f : a → a (b:1,2,3

D̂ : (a → b)→ D a b

D̂ f = D (λ a → (f a,D f a))
= D (f MD f)

∗For the latest version of this document and the repository location for questions, suggestions, bugs, etc, see
http://conal.net/papers/higher-order-ad.

1[Red bracketed remarks are notes to myself.]
2This paper generally uses Haskell notation but deviates slightly by using a single colon rather than double

colon for type signatures. [Experimental.]
3The infix operators for function types (“→”) and linear maps (“(”) both associate to the right and have

equal, very low precedence. For instance, “a → a (b” means a → (a (b).

1

http://conal.net/papers/higher-order-ad

2 Conal Elliott

Note that this definition is not computable, since D is not (Pour-El and Richards, 1978, 1983).
The whole specification of AD is then simply that D̂ is a homomorphism with respect to a
standard compositional vocabulary of functions, namely that of cartesian categories, plus a
collection of numeric primitives like (uncurried) addition and multiplication, sin and cos , etc.
An example of such a homomorphism equation is D̂ g ◦ D̂ f = D̂ (g ◦ f), in which the only
unknown is the meaning of the LHS (◦), i.e., sequential composition in the category D . Solving
the collection of such homomorphism equations yields correct-by-construction AD.

The function D̂ is invertible, i.e., D̂−1 ◦ D̂ = id , where D̂−1 simply drops the derivative:4

D̂−1 : D a b → (a → b)

D̂−1 (D h) = exl ◦ h

Indeed, D̂−1 is a left inverse of D̂:

D̂−1 (D̂ f)

= D̂−1 (D (f MD f)) -- D̂ definition
= exl ◦ (f MD f) -- D̂−1 definition
= f -- cartesian law: exl ◦ (g M h) = g

As defined so far, D̂−1 is not a right inverse to D̂, since the linear map portion might not
be the true derivative. We will thus restrict the category D to be the image of D̂, which is to
say that D̂ is surjective, i.e., the derivative is correct.5 This restriction guarantees that D̂−1

is indeed a right inverse of D̂. Given f̂ : D a b (with the mentioned restriction), there is an
f : a → b such that f̂ = D̂ f , so6

D̂ (D̂−1 f̂)

= D̂ (D̂−1 (D̂ f)) -- f̂ = D̂ f

= D̂ f -- D̂−1 ◦ D̂ = id

= f̂ -- D̂ f = f̂

Thus, D̂ ◦ D̂−1 = id as well.
AD is often described as coming in forward and reverse “modes”. For many practical

applications (including deep learning and other high-dimensional optimization problems), reverse
mode is much more efficient than forward mode. As typically presented, reverse mode is also
much more complicated, but this difference appears to be due only to unfortunate choices in
how to understand and implement AD. Instead, a single, simple algorithm works for forward,
reverse, and other modes. Reverse mode is distinguished only by using a different linear map
representation resulting from a simple classic trick (Elliott, 2018).

This general AD algorithm is justified by three main theorems about differentiation:
Theorem 1 (compose/“chain” rule).

D (g ◦ f) a = D g (f a) ◦ D f a
4This paper uses “exl ” and “exr ” to name left and right product projections (defined on cartesian categories),

rather than Haskell’s (function-only) “fst” and “snd ”.
5 Haskell’s type system is not expressive enough to capture this restriction by itself, so the restriction will be

only implied in this draft. For more rigor, one could use a language (extension) with refinement types such as
Liquid Haskell [ref] or a dependently-typed language such as Agda [ref] or Idris [ref].

6This reasoning hold for any surjective function with a left inverse.

Higher-Order, Higher-Order Automatic Differentiation 3

Theorem 2 (cross rule).

D (f × g) (a, b) = D f a ×D g b

Theorem 3 (linear rule). For all linear functions f ,

D f a = f

In addition to these three theorems, we need a collection of facts about the derivatives of various
mathematical operations, e.g., D̂ sin x = scale (cos x), where scale : a → a (a is uncurried
scalar multiplication (so scale s is linear for all s).

2 Some Additional Properties of Differentiation
A few additional properties of differentiation will prove useful in extending Elliott (2018) to
higher-order functions and higher-order derivatives.

2.1 Pair-Valued Domains

One half of the curry/uncurry isomorphism involves functions of pair-valued domains. The
notion of partial derivatives is helpful for differentiating such functions.7

Lemma 4 (proved in Section A.1). Given a function f : a × b → c,

D f (a, b) = Dl f (a, b) ODr f (a, b)

where Dl and Dr construct the (“first” and “second”, or “left” and “right”) “partial derivatives” of
f at (a, b), defined as follows:

Dl : (a × b → c)→ a × b → (a (c)
Dl f (a, b) = D (f ◦ (, b)) a

Dr : (a × b → c)→ a × b → (b (c)
Dr f (a, b) = D (f ◦ (a,)) b

The notation “(a,)” and “(b,)” refers to right and left “sections” of pairing: (, b) a = (a,) b =
(a, b). Equivalently,

Dl f (a, b) = D f (a, b) ◦ inl
Dr f (a, b) = D f (a, b) ◦ inr

Note also that f ◦ (a,) = curry f a and f ◦ (, b) = curry ′ f b, where

curry f a b = f (a, b)
curry ′ f b a = f (a, b)

As an example of how this decomposition of D f helps construct derivatives, suppose that f
is bilinear, which is to say that f is linear in each argument, while holding the other constant.
More formally bilinearity of f means that f ◦ (a,) and f ◦ (b,) (equivalently, curry f a and
curry ′ f b) are both linear for all a and b.

7Recall that, on linear maps, (f O g) (a, b) = f a + g b, inl a = (a, 0), and inr b = (0, b)

4 Conal Elliott

Corollary 4.1. If f : a × b → c is bilinear then

D f (a, b) = f ◦ (, b) O f ◦ (a,)

Proof.

D f (a, b)
= Dl f (a, b) ODr f (a, b) -- Lemma 4
= D (f ◦ (, b)) a OD (f ◦ (a,)) b -- Dl and Dr definitions
= f ◦ (, b) O f ◦ (a,) -- linearity

For instance, the derivative of uncurried multiplication is given by the Leibniz product rule:

D (uncurry (∗)) (a, b)
= uncurry (∗) ◦ (, b) O uncurry (∗) ◦ (a,)
= (∗ b) O (a ∗)
= λ (da, db)→ da ∗ b + a ∗ db

More generally, consider differentiating interacts with uncurrying:

Corollary 4.2 (proved in Section A.2).

D (uncurry g) (a, b) = at b ◦ D g a OD (g a) b

As a special case, let g be curried multiplication:

D (uncurry (∗))
= at b ◦ D (∗) a OD (a∗) b
= at b ◦ (∗) O (a∗)
= (∗ b) O (a ∗)

which agrees with the calculation above.
For cartesian closure, we’ll need the derivative of another function with a pair-valued domain:

eval : (a → b)× a → b
eval (f , a) = f a -- on functions

(Since eval is neither linear nor bilinear, Theorem 3 and Corollary 4.1 are inapplicable.) We’ll
need one more linear map operation, which is curried, reverse function application:8

at : a → (a → b) (b
at a df = df a

Corollary 4.3 (proved in Section A.3).

D eval (f , a) = at a OD f a

8Linearity of at a follows from the usual definition of addition and scaling on functions.

Higher-Order, Higher-Order Automatic Differentiation 5

2.2 Function-Valued Codomains

It will also be useful to calculate derivatives of functions with higher-order codomains.9 We’ll
need another linear map operation, which is the indexed variant of (M) (and a specialization of
Haskell’s flip function):

forkF : (b → a (c)→ (a (b → c)
forkF h = λ da b → h b da

Lemma 5 (proved in Section A.4). Given a function g : a → b → c,

D g a = forkF (λ b → D (at b ◦ g) a).

Corollary 5.1 (proved in Section A.5).

D (curry f) a = forkF (Dl f ◦ (a,))

3 Cartesian Closure, first attempt

While D is a category and a cartesian category at that, as specified by D̂ being a cartesian
functor, another question naturally arises. Can D̂ also be a cartesian closed functor? In other
words, are there definitions of eval , curry , and uncurry on D such that

curry (D̂ f) = D̂ (curry f)

uncurry (D̂ g) = D̂ (uncurry g)

eval = D̂ eval

As usual, we’ll want to solve each homomorphism equation for its single unknown, which is a
categorical operation on D (on the LHS).

3.1 Curry

Start with curry , simplifying the LHS:

curry (D̂ f)

= curry (D (f MD f)) -- D̂ definition

Then the RHS:

D̂ (curry f)

= D (curry f MD (curry f)) -- D̂ definition
= D (λ a → (curry f a,D (curry f) a)) -- (M) on functions
= D (λ a → ((λ b → f (a, b)), forkF (Dl f ◦ (a,)))) -- Corollary 5.1
= D (λ a → ((λ b → f (a, b)), forkF (λ b → Dl f (a, b)))) -- (◦) on functions
= D (λ a → ((λ b → f (a, b)), forkF (λ b → D f (a, b) ◦ inl))) -- Section A.1

9[The previous section and this one provide “adjoint” techniques in a sense that currying is an adjunction
from functions from products to functions to functions. Is there something else interesting to say here?]

6 Conal Elliott

The last form uses f and D f , which can be extracted from D̂ f = D (f MD f): Thus a sufficient
condition for our homomorphic specification (curry (D̂ f) = D̂ (curry f)) is

curry (D ff ′) = D (λ a → ((λ b → f (a, b)), forkF (λ b → f ′ (a, b) ◦ inl)))
where (f , f ′) = fork−1 ff ′

The fork−1 function is half of an isomorphism that holds for all cartesian categories:

fork : Cartesian k ⇒ (a ‘k ‘ c)× (a ‘k ‘ d)→ (a ‘k ‘ (c × d))
fork = uncurry (M)

fork−1 : Cartesian k ⇒ (a ‘k ‘ (c × d))→ (a ‘k ‘ c)× (a ‘k ‘ d)
fork−1 h = (exl ◦ h, exr ◦ h)

Lemma 6. The pair of functions fork and fork−1 form an isomorphism in all cartesian categories
and a linear isomorphism in the category of vector spaces and linear maps.10 (Proof: Exercise.)

Another such linear isomorphism can be found in cocartesian categories. The following types
are specialized to biproduct categories (such as linear maps):

join : Cocartesian k ⇒ (a ‘k ‘ c)× (a ‘k ‘ d)→ (a ‘k ‘ (c × d))
join = uncurry (O)

join−1 : Cocartesian k ⇒ (a ‘k ‘ (c × d))→ (a ‘k ‘ c)× (a ‘k ‘ d)
join−1 h = (h ◦ inl , h ◦ inr)

Lemma 7. The pair of functions join and join−1 form an isomorphism in all cocartesian
categories and a linear isomorphism in the category of vector spaces and linear maps. (Proof:
Exercise.)

These two isomorphism pairs were used by Elliott (2018) to construct a correct-by-construction
implementation of reverse-mode AD, by merely altering the representation of linear maps used
in the simple, general AD algorithm.

Another useful operation is the uncurried version of the monoidal (×):

cross : Monoidal k ⇒ (a ‘k ‘ c)× (b ‘k ‘ d)→ ((a × b) ‘k ‘ (c × d))
cross = uncurry (×)

Lemma 8. In the category of vector spaces and linear maps, the cross function is linear. (Proof:
Exercise.)

Although fork and fork−1 form an isomorphism and hence preserve information, fork−1 can
result in a loss of efficiency, due to computation that can be (and often is) in common to a
function f and its derivative D f . Indeed, the definition of fork−1 h above shows that h gets
replicated. It’s unclear how to avoid this redundancy problem in practice with currying when D
is used to represent computably differentiable functions. Personal experience with compiling to

10[To do: name this category early (say “Vecs” for a semiring s) and refer to by name where needed.]

Higher-Order, Higher-Order Automatic Differentiation 7

categories Elliott (2017) suggests that most uses of curry generated during translation from the
λ calculus (e.g., Haskell) are in fact transformed away at compile time using various equational
CCC laws. Still, it does seem an important question to explore.

Intriguingly, curried functions can also help eliminate redundant computation suggested by
uncurried counterparts functions. Given a function g : a → b → c, it is sometimes convenient
to “partially apply” g to an argument u and then apply the resulting g u : b → c to many
different v : b. In some cases, a considerable amount of work can be done based solely on u,
saving residual work to be done for different b values. In such situations, uncurry g loses this
performance advantage.

3.2 Uncurry

Next, let’s tackle uncurry , whose defining homomorphism is

uncurry (D̂ g) = D̂ (uncurry g)

Simplify the LHS:

uncurry (D̂ g)

= uncurry (D (g MD g)) -- D̂ definition

Then the RHS:

D̂ (uncurry g)

= D (uncurry g MD (uncurry g)) -- D̂ definition
= D (λ (a, b)→ (uncurry g (a, b),D (uncurry g) (a, b))) -- (M) definition
= D (λ (a, b)→ (g a b,D (uncurry g) (a, b))) -- uncurry on functions
= D (λ (a, b)→ (g a b, at b ◦ D g a OD (g a) b)) -- Corollary 4.2

Now we have a problem with solving the defining homomorphism above. Although we can
extract g and D g from D̂ g , we cannot extract D (g a). Or rather we can, but not computably.

3.3 Eval

We don’t need to work out both uncurry and eval , since each can be defined in terms of the
other:

eval = uncurry id
uncurry g = eval ◦ (g × id)

= eval ◦ first g

Since we got stuck on uncurry , however, let’s try eval as well to see if we learn anything new.
The corresponding homomorphism equation has a particularly simple form:

eval = D̂ eval

It might appear that we have succeeded at the start, taking the equation to be a definition
for eval . Recall, however, that D̂ is noncomputable, being defined via D (differentiation itself).
Simplifying the RHS,

8 Conal Elliott

D̂ eval

= D (eval MD eval) -- D̂ definition
= D (λ (f , a)→ (eval (f , a),D eval (f , a))) -- (M) on functions
= D (λ (f , a)→ (f a,D eval (f , a))) -- eval on functions
= D (λ (f , a)→ (f a, at a OD f a)) -- Corollary 4.3

As with uncurrying (Section 3.2), the final form is well-defined but is not a computable recipe,
leaving us in a pickle. Next, let’s look for some wiggle room.

4 Object Mapping
The choice of category-associated products and exponentials is a degree of freedom not exercised
in the development of AD in Elliott (2018) (or above) and is tied closely to another such choice
available in the general notion of cartesian closed functor in category theory. In general, a
functor has two aspects:

• a mapping from arrows to arrows, and

• a mapping from objects to objects.

The functor D̂ defined (noncomputably) above implicitly chooses an identity object mapping, as
evident in its type signature D̂ : (a → b)→ D a b. The type of D̂ plus the requirement that it
be a cartesian closed functor implies that the object mapping aspect of D̂ is the identity. More
generally, however, we can define an object mapping O : Type → Type for a new functor Do:11

Do : (a → b)→ D (O a) (O b)

Each cartesian category k has its own notion of categorical product a×k b (satisfying a universality
property), and similarly for cocartesian categories (with categorical products and coproducts
coinciding for biproduct categories). Likewise, each cartesian closed category k has its own
notion of exponential objects a⇒k b.

The generalized interface for cartesian closed categories with per-category exponentials is as
follows:12

class Cartesian k ⇒ CartesianClosed k where
type (⇒k) : Type → Type → Type
curry : ((a ×k b) ‘k ‘ c)→ (a ‘k ‘ (b⇒k c))
uncurry : (a ‘k ‘ (b⇒k c))→ ((a ×k b) ‘k ‘ c)
eval : ((a⇒k b)×k a) ‘k ‘ b

where a⇒k b is a type of “exponential objects” (first class functions/arrows) from a to b for the
category k .

The property of being a closed cartesian functor requires O to preserve categorical products
and exponentials, i.e.,

11[Experiment with different notation for O a, e.g., “ ā”.]
12These operations support higher-order programming and arise during translation from a typed lambda

calculus (e.g., Haskell) to categorical vocabulary (Elliott, 2017).

Higher-Order, Higher-Order Automatic Differentiation 9

O (a × b) = O a ×D O b
O (a → b) = O a⇒D O b

The usual notion of cartesian products are working fine, so we’ll continue to choose a ×D b =
a×b. While D̂ being a closed cartesian functor (CCF) from (→) to D implies an noncomputable
eval and uncurry (Section 3.2 and Section 3.3), our goal is to define ⇒D and Do such that Do is
a CCF with computable operations.

Consider again the homomorphic specification for eval (part of the CCF definition): eval =
Do eval . The RHS eval (on functions) has type (a → b)× a → b, while the LHS eval (on D)
has type

D (O ((a → b)× a)) (O b)
= D (O (a → b)×O a) (O b)
= D ((O a⇒D O b)×O a) (O b)

The difficulty with our attempt at eval in Section 3.3 was that we were given a (computable)
function f , but we also needed its (noncomputable) derivative D f . Similarly, with uncurry in
Section 3.2, we were given g : a → b → c, and we needed not only g a but also D (g a). In both
cases the exponential object was a function, but we also needed its (computable) derivative.

This analysis suggests that we include a derivative in the exponential object, simply by
choosing ⇒D to be D itself. Additionally, map scalars to themselves and cartesian products to
cartesian products:

O R = R
O (a × b) = O a ×D O b = O a ×O b
O (a → b) = O a⇒D O b = D (O a) (O b)

We will need to convert between a and O a, which we can do with a family of linear
isomorphisms13 indexed by a:14

class HasO t where
type O t
o : t → O t
o−1 : O t → t

For scalar types a and the unit type, O a = a, the isomorphism is trivial:

instance HasO R where
type O R = R
o = id
o−1 = id

instance HasO () where
type O () = ()

13The implicit requirements for all HasO instances are thus that o ◦ o−1 = id , o−1 ◦ o = id , and to and o−1

are linear.
14[It may be more elegant to combine the functions o and o−1 into a single isomorphism.]

10 Conal Elliott

o = id
o−1 = id

For products, convert components independently:15

instance (HasO a,HasO b)⇒ HasO (a × b) where
type O (a × b) = O a ×O b
o = o × o
o−1 = o−1 × o−1

The new functor Do converts its given a → b to O a → O b and then applies the D̂ functor:16

(⇒) : (p ′ → p)→ (q → q ′)→ ((p → q)→ (p ′ → q ′))
f ⇒ h = λ g → h ◦ g ◦ f

wrapo : (a → b)→ (O a → O b)
wrapo = o−1 ⇒ o

wrap−1
o : (O a → O b)→ (a → b)

wrap−1
o = o ⇒ o−1

Do : (a → b)→ D (O a) (O b)

Do = D̂ ◦ wrapo

D−1
o : D (O a) (O b)→ (a → b)

D−1
o = wrap−1

o ◦ D̂−1

Lemma 9 (proved in Section A.6). wrapo and wrap−1
o form a linear isomorphism.

Lemma 10 (proved in Section A.7). Do and D−1
o form a linear isomorphism.

Lemma 11 (proved in Section A.8). wrapo is a cartesian functor.

The cartesian category operations already defined on D (Elliott, 2018) are solutions to
homomorphism equations saying that D̂ is a cartesian functor. Thanks to the simple, regular
structure of o and o−1,

Theorem 12. Do is a cartesian functor.

Proof: D̂ is a cartesian functor (Elliott, 2018), as is wrapo (Lemma 11), so Do = D̂ ◦ wrapo is
also.

What about exponentials and cartesian closure? As mentioned above, O (a → b) =
O a⇒D O b = D (O a) (O b), which suggests using Do and D−1

o for o and o−1:

instance (HasO a,HasO b)⇒ HasO (a → b) where
type O (a → b) = D (O a) (O b)
o = Do
o−1 = D−1

o

A useful consequence:
15Recall that (f × g) (a, b) = (f a, g b), so o (a, b) = (o × o) (a, b) = (o a, o b), and similarly for o−1.
16[Consider dropping the (⇒) definition and uses here.]

Higher-Order, Higher-Order Automatic Differentiation 11

Lemma 13 (proved in Section A.9).

wrapo (curry f) = D̂ ◦ curry (wrapo f)

Corollary 13.1.
curry (wrapo f) = D̂−1 ◦ wrapo (curry f)

Proof. Left-compose D̂−1 with both sides of Lemma 13; then simplify and reverse the resulting
equation.

Let’s now try to solve the CCF equations for Do. This time begin with eval :

Lemma 14 (proved in Section A.10). With the following (effective) definition of eval on D ,
eval = Do eval :

eval = D (λ (D h, a)→ let (b, f ′) = h a in (b, at a ◦ D̂−1 O f ′))

For uncurry , use the standard definition uncurry g = eval ◦ first g .
The definition of curry in Section 3.1 worked fine, but we’ll need to check again, as we

did with the cartesian category operations (Theorem 12). The homomorphism equation is
curry (Do f) = Do (curry f), to be solved for the unknown LHS curry (on D), with f : a× b → c.
First let fo = wrapo f . Simplify the LHS:

curry (Do f)

= curry (D̂ (wrapo f)) -- Do definition
= curry (D̂ fo) -- fo definition
= curry (D (fo MD fo)) -- D̂ definition

Then the RHS:17

Lemma 15 (proved in Section A.11).

Do (curry f) =
D (λ a → (D (λ b → (fo (a, b),Dr fo (a, b)))

, λ da → D (λ b → (Dl fo (a, b) da, at da ◦ Dr (Dl fo) (a, b)))))

where fo = wrapo f .

The RHS uses fo (a, b) and D fo (a, b) (via its components Dl fo (a, b) and Dr fo (a, b)), but
it also uses a second partial derivative Dr (Dl fo) (a, b), which is not available from the curry
argument D (fo MD fo).

17[State, prove, and use a lemma about D̂ (g ◦ f) a for linear g and another for linear f . Maybe also Do (g ◦ f) a
for linear g or f .]

12 Conal Elliott

5 Where Are We?
Let’s now reflect on what we’ve learned so far:

• The cartesian functor (CF) D̂:(a → b)→ D a b also forms a cartesian closed functor (CCF)
with suitable definitions of curry , uncurry , and eval , but not computably (Section 3).
More specifically, curry is computable, but uncurry and eval are not, since they need to
synthesize derivatives of regular computable functions.

• General categorical functors can remap objects (here, types) as well as morphisms (here,
functions). Exploiting this degree of freedom, define Do : (a → b)→ D (O a) (O b), where
O : Type → Type replaces regular functions with computably differentiable functions, i.e.,
O (u → v) = D (O u) (O v). This new function is defined in terms of the old one,
Do = D̂ ◦ wrapo, and indeed Do is a CF as well. In the absence of higher-order functions,
O is the identity mapping, and Do coincides with D̂.

• Computably satisfying the required homomorphism properties of Do for uncurry and eval
becomes easy, since the operations are given the required derivatives rather than having
to synthesize them. Unfortunately, now curry becomes noncomputable because it has to
synthesize partial second derivatives.

6 Higher-Order Derivatives
Where can we go from here? An obvious next step is to add second order derivatives to the
representation of computably differentiable functions. It seem likely, however, that the CCF
specification would reveal that curry needs at least third order derivatives, and so on. In other
words, differentiation of higher-order functions requires all higher-order derivatives of functions.

In order to construct higher-order derivatives, it will help to examine the linearity properties
of our familiar categorical vocabulary, which turns out to be mostly linear with just a bit of
bilinearity. As noted in Elliott (2018), the categorical operation id ; the cartesian operations exl ,
exr , dup; and the cocartesian operations inl , inr , and jam are all linear. Lemmas 6 and 7 have
already noted that the functions fork and join (uncurried versions of (M) and (O) defined in
Section 3.1) are linear (as well as isomorphisms). Next, let comp be uncurried composition:18

comp : Category k ⇒ (b ‘k ‘ c)× (a ‘k ‘ b)→ (a ‘k ‘ c)
comp = uncurry (◦)

Lemma 16 (proved in Section A.12). On linear maps, comp is bilinear.

Lemma 17 (proved in Section A.13). Given any bilinear function h:

a. curry h a is linear for all a.

b. curry ′ h b is linear for all b.

c. curry h and curry ′ h are linear.
18[Maybe define comp only for linear maps.]

Higher-Order, Higher-Order Automatic Differentiation 13

d. D h is linear.

Corollary 17.1. On linear maps,

a. (g ◦) is linear for all g.

b. (◦ f) is linear for all f .

c. (◦) and flip (◦) are linear.

d. D comp is linear.

These properties will help re-express Theorems 1 and 2 and related facts in a form more
amenable to constructing higher derivatives:

Lemma 18 (proved in Section A.14).

a. D (g ◦ f) = comp ◦ (D g ◦ f MD f).

b. D (f × g) = cross ◦ (D f ×D g).

c. D (f M g) = fork ◦ (D f MD g).

d. For a linear function f , D f = const f .

e. For any function f : a × b → c, D f = join ◦ (Dl f ×Dr f).

f. For a bilinear function f : a × b → c, D f = join ◦ (curry ′ f × curry f) ◦ swap.

g. On linear maps, D comp = join ◦ (flip (◦)× (◦)) ◦ swap.

Let us now consider the task of constructing all orders of derivatives. The D category
encapsulates a function f and its first derivative, i.e., the zeroth and first derivatives of f , which
we might write as “D̂ f = D0 f MD1 f ”. Our new category will encapsulate all derivatives of f ,
i.e.,19

D∗ f = D0 f MD1 f MD2 f M · · ·

where

D0 f = f
Dn+1 f = Dn (D f)

Then

D∗ f
= D0 f MD1 f MD2 f MD3 f M · · ·
= f MD1 f MD2 f MD3 f M · · ·
= f MD0 (D f) MD1 (D f) MD2 (D f) M · · ·
= f MD∗ (D f)

19Take M to be right-associative.

14 Conal Elliott

which we can take as a recursive definition of D∗. Define a corresponding type of infinitely
differentiable functions:20

type D∗ a b = a → T a b

type T a b = b × T a (a (b)

D∗ : (a → b)→ D∗ a b
D∗ f = f MD∗ (D f)

We will want to find cartesian category operations for D∗ such that D∗ is a cartesian functor
(CF), which will be coinductively assumed at several points below.

Start with the constant-zero function21: zero : a → b:

D∗ zero
= zero MD∗ (D zero) -- D∗ definition
= zero MD∗ zero -- D zero = const zero = zero
= zero M zero -- coinduction
= zero -- Zero on pairs

Then constant functions more generally:

D∗ (const b)
= const b MD∗ (D (const b)) -- D∗ definition
= const b MD∗ zero -- D (const b) = zero
= const b M zero -- above

Next, linear functions f :

D∗ f
= f MD∗ (D f) -- D∗ definition
= f MD∗ (const f) -- f linearity
= f M const f M zero -- above

We will have several uses of this formula, so name it:

linear : (a (b)→ D∗ a b
linear f = f M const f M zero

For instance, the following definitions of id , exl and exr satisfy the associated homomorphism
(cartesian functor) properties:

id = linear id
exl = linear exl
exr = linear exr

Next, bilinear functions g :
20For notational simplicity, we’ll drop the newtype isomorphisms.
21As usual, types are restricted to vector spaces over a common field, which we can take to be R

Higher-Order, Higher-Order Automatic Differentiation 15

D∗ g
= g MD∗ (D g) -- D∗ definition
= g M linear (D g) -- derivative of bilinear is linear
= g M linear (join ◦ (curry ′ g × curry g) ◦ swap) -- Lemma 18f

Specialize to uncurried linear map composition:

D∗ comp
= comp M linear (join ◦ (curry ′ comp × curry comp) ◦ swap) -- above
= comp M linear (join ◦ (flip (◦)× (◦)) ◦ swap) -- comp definition

Name D∗ comp for future use:

comp ′ : D∗ ((b (c)× (a (b)) (a (c)
comp ′ = comp M linear (join ◦ (flip (◦)× (◦)) ◦ swap)

Then sequential compositions:

D∗ (g ◦ f)
= g ◦ f MD∗ (D (g ◦ f)) -- D∗ definition
= g ◦ f MD∗ (comp ◦ (D g ◦ f MD f)) -- Lemma 18a
= g ◦ f MD∗ comp ◦ (D∗ (D g) ◦ D∗ f MD∗ (D f)) -- coinduction
= g ◦ f M comp ′ ◦ (D∗ (D g) ◦ D∗ f MD∗ (D f)) -- above

Note that all of the components here (g , f , D∗ (D g), D∗ f , and D∗ (D f)) are available in D∗ g
and D∗ f , so we have a computable recipe for (◦) on D∗. [To do: fill in the details.]

Finally, f M g :

D∗ (f M g)
= (f M g) MD∗ (D (f M g)) -- D∗ definition
= (f M g) MD∗ (fork ◦ (D f MD g)) -- Lemma 18c
= (f M g) MD∗ fork ◦ (D∗ (D f) MD∗ (D g)) -- coinduction
= (f M g) M linear fork ◦ (D∗ (D f) MD∗ (D g)) -- fork linearity (Lemma 6)

Again, the components here (f , g , D∗ (D f), and D∗ (D g)) are all available from D∗ f and
D∗ g , so we have a computable recipe for (M) on D∗. [To do: fill in the details.]

Working here

7 Avoiding redundant computation

The D̂ functor was carefully chosen to enable elimination of redundant computation between
a function and its derivative. The potential for redundancy is apparent in the chain rule
(Theorem 1):

D (g ◦ f) a = D g (f a) ◦ D f a

16 Conal Elliott

This theorem reveals that computation of (g ◦ f) a and D (g ◦ f) a at both involve computing
f a. Since sequential composition is a very commonly used building block of computations, it is
thus typical for functions and their derivatives to involve common work. This fact motivates the
choice D̂ f = f MD f over D0

+ f = (f ,D f) (Elliott, 2018, Section 3.1). While both options can
give rise to compositional (functorial) AD, D0

+ precludes sharing of work, while D̂ enables such
sharing, with just a bit of care:

D ĝ ◦ D f̂ = D (λ a → let {(b, f ′) = f̂ a; (c, g ′) = ĝ b} in (c, g ′ ◦ f ′))

We can calculate this definition in a categorical/pointfree form using Lemma 18a:22,23

D̂ (g ◦ f)

= D (g ◦ f MD (g ◦ f)) -- D̂ definition
= D (g ◦ f M comp ◦ (D g ◦ f MD f)) -- Lemma 18a
= D (second comp ◦ (g ◦ f M (D g ◦ f MD f))) -- Lemma 19c below
= D (second comp ◦ assocR ◦ ((g ◦ f MD g ◦ f) MD f)) -- [justify this step]
= D (second comp ◦ assocR ◦ ((g MD g) ◦ f MD f)) -- Gibbons (2002, Section 1.5.1).
= D (second comp ◦ assocR ◦ (unD (D̂ g) ◦ f MD f)) -- D̂ definition
= D (second comp ◦ assocR ◦ first (unD (D̂ g)) ◦ (f MD f)) -- Lemma 19b below
= D (second comp ◦ assocR ◦ first (unD (D̂ g)) ◦ unD (D̂ f)) -- D̂ definition

We can thus define

D ĝ ◦ D f̂ = D (second comp ◦ assocR ◦ first (unD (D ĝ)) ◦ unD (D f̂))

= D (second comp ◦ assocR ◦ first ĝ ◦ f̂)

with the consequence that D̂ g ◦ D̂ f = D̂ (g ◦ f). In this form, f̂ and ĝ each appear once, so as
long as D f̂ and D ĝ are nonredundant, D ĝ ◦D f̂ will be nonredundant as well. Inlining the
definitions of comp and of second , assocR, and first for functions and then simplifying yields
the pointful definition above.

Lemma 19. The following properties hold for (M):

a. (h × k) ◦ (f M g) = h ◦ f M k ◦ g

b. first h ◦ (f M g) = h ◦ f M g

c. second k ◦ (f M g) = f M k ◦ g

Proof: For a, see Gibbons (2002, Section 1.5.1). Then b and c follow as corollaries from the
definitions first h = h × id and second k = id × k .

Working here

22[Define and use a variant of D̂ that omits D . Then introduce D in “We can thus define ...”.]
23The assocR operation in monoidal categories is defined for functions as assocR ((a, b), c) = (a, (b, c)).

Higher-Order, Higher-Order Automatic Differentiation 17

The calculation of D̂ (g ◦ f) above is somewhat tedious, and it’s unclear how to extend it
to higher derivatives. Some of the complexity comes from routing D f (i.e., exr ◦ D̂ f) around
D̂ g to compose derivatives (D g (f a) ◦ D f a). The motivation for this routing arises from an
asymmetry in D , namely that it maps just a primal value to a primal and derivative:

D̂′ : (a → b)→ (a → b × (a (b))

D̂′ f = f MD f

Suppose instead that we thread the primal/derivative pairs in as well as out.24,25

D̃′ : (a → b)→ ∀z .a × (z (a)→ b × (z (b)

∀f q .D̃′ f ◦ D̂′ q = D̂′ (f ◦ q) -- specification

Moreover, D̃′ suffices to compute D̂′:

D̂′ f

= D̂′ (f ◦ id)

= D̃′ f ◦ D̂′ id

= D̃′ f ◦ (id MD id)

= D̃′ f ◦ (λ z → (z , id))

Now consider sequential composition:

D̃′ (g ◦ f) ◦ D̂′ q

= D̂′ ((g ◦ f) ◦ q) -- specification of D̃′

= D̂′ (g ◦ (f ◦ q)) -- associativity of (◦)
= D̃′ g ◦ D̂′ (f ◦ q) -- specification of D̃′

= D̃′ g ◦ (D̃′ f ◦ D̂′ q) -- specification of D̃′

= (D̃′ g ◦ D̃′ f) ◦ D̂′ q -- associativity of (◦)

Hence D̃′ (g ◦ f) = D̃′ g ◦ D̃′ f by the following lemma.26

Lemma 20. For any f : a → b → c, if uncurry f is surjective and ∀x : a. g ◦ f x = g ′ ◦ f x ,
then g = g ′.

Proof.

g ◦ uncurry f
= λ (x , y)→ g (uncurry f (x , y)) -- η conversion
= λ (x , y)→ g (f x y) -- uncurry on functions

24[To do: find a (non-effective) definition for D̃′. Well, I know how to define D̃′ in this case:

D̃′ f (a, q ′) = (b, f ′ ◦ q ′) where (b, f ′) = D̂′ f a

How to extend to higher derivatives?]
25This formulation is similar to the use of dual numbers in forward-mode AD [ref].
26[Move lemma and proof to the appendix.]

18 Conal Elliott

= uncurry (λ x y → g (f x y)) -- uncurry on functions
= uncurry (λ x y → (g ◦ f x) y) -- (◦) on functions
= uncurry (λ x → g ◦ f x) -- η conversion
= uncurry (λ x → g ′ ◦ f x) -- assumption
= uncurry (λ x y → (g ′ ◦ f x) y) -- η conversion
= uncurry (λ x y → g ′ (f x y)) -- (◦) on functions
= λ (x , y)→ g ′ (f x y) -- uncurry on functions
= λ (x , y)→ g ′ (uncurry f (x , y)) -- uncurry on functions
= g ′ ◦ uncurry f -- η conversion

Since uncurry f is surjective, g = g ′.

Likewise, consider id :

D̃′ id ◦ D̂′ q

= D̂′ (id ◦ q)

= D̂′ q

= id ◦ D̂′ q

By Lemma 20, D̃′ id = id .

Working here

Parallel composition:

D̃′ (f M g) ◦ D̂′ q

= D̂′ ((f M g) ◦ q) -- D̃′ specification
= D̂′ (f ◦ q M g ◦ q) -- Cartesian law
= D̂′ (f ◦ q) N D̂′ (g ◦ q) -- [for suitable (N), probably as with (M) for D]
= D̃′ f ◦ D̂′ q N D̃′ g ◦ D̂′ q -- D̃′ specification
= (D̃′ f N D̃′ g) ◦ D̂′ q -- [To prove about (N)]

8 What’s Next?
[Yet to come:
• Avoid redundant computation in D∗. Doing so is fairly easy in D (zeroth and first

derivatives), but I don’t yet see how in D∗ (all derivatives).

• Spell out the Category and Cartesian instances that result from solving the cartesian
functor equations as in Section 6.

• Cartesian closure (curry and eval/uncurry) for D∗, exploiting higher-order derivatives.

• Variation of D∗: D∗ f = f MD (D∗ f).
]

Higher-Order, Higher-Order Automatic Differentiation 19

9 Related Work
The most closely related work I’m aware of is by Vytiniotis et al. (2019)27, who also define
an algorithm around the language of cartesian closed categories. There appear to be some
significant shortcomings, however, at least when considered as an extension to Elliott (2018):

• Although the work is referred to as “differentiable programming”, it appears to lack a
specification and proof that match this claim, i.e., one defined by the mathematical
operation of differentiation. As such, it’s unclear to me whether the algorithm is about
differentiation or something else. In contrast, the specification at the center of Elliott
(2018) (and the extensions described above) is just (Fréchet) differentiation itself, combined
with the original function as needed by the chain rule, or rather the requirement that
the function-with-derivative satisfies a standard collection of homomorphism properties.
Correctness of the algorithm was defined as faithfulness to this simple specification, and
the algorithm is systematically derived from this specification and hence is correct by
construction.

• Functions are already well-defined as a vector space, and thus linear maps (including
derivatives) are as well, but the authors chose a different notion. They write

[...] what should be the tangent space of a function type? Perhaps surprisingly,
a function type itself is not the right answer. We provide two possible imple-
mentations for function tangents and differentiable currying, and explain the
tradeoffs.

There is no explanation, however, of what makes their answers “right” and the unsurprising
answer wrong. It is unclear what it could possibly mean for their answer to be right, since
the usual notion of derivative of a function f : a → b between vector spaces has type
a → a (b for all vector spaces a and b, including function types. This observation seems
to contradict the claim that the tangent space for a function types is not a function type.

• The algorithm presented is limited to reverse mode rather than a general AD algorithm as
in Elliott (2018) and the work described above.

Another related paper is Brunel et al. (2019). The authors write (in Section 1)

However, Elliot’s approach is still restricted to first-order programs (i.e., computa-
tional graphs): as far as we understand, the functor D is cartesian but not cartesian
closed, so the higher-order primitives (λ-abstraction and application) lack a satisfac-
tory treatment. This is implicit in Sect. 4.4 of Elliott (2018), where the author states
that he only uses biproduct categories: it is well-known that non-trivial cartesian
closed biproduct categories do not exist.

The confusion here—which was mistakenly encouraged by Elliott (2018)—is the idea that the
category of differentiable functions itself is (or need be) a biproduct category. Rather, all
that was needed is that the various representations of linear maps (derivatives) are biproduct
categories. This requirement is easily satisfied by construction, since these representations are
all calculated from their denotation (linear functions, itself a biproduct category) via simple
cocartesian functors.

27I am in the middle of an in-depth conversation with authors.

20 Conal Elliott

References
Aloïs Brunel, Damiano Mazza, and Michele Pagani. Backpropagation in the simply typed
lambda-calculus with linear negation. CoRR, abs/1909.13768, 2019.

Conal Elliott. Compiling to categories. In Proceedings of the ACM on Programming Languages
(ICFP), 2017.

Conal Elliott. The essence of automatic differentiation. In Proceedings of the ACM on Program-
ming Languages (ICFP), 2018.

Jeremy Gibbons. Calculating functional programs. In Algebraic and Coalgebraic Methods in the
Mathematics of Program Construction, volume 2297 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

Marian Boykan Pour-El and Ian Richards. Differentiability properties of computable functions—
A summary. Acta Cybernetica, 4(1):123–125, 1978.

Marian Boykan Pour-El and Ian Richards. Computability and noncomputability in classical
analysis. Transactions of the American Mathematical Society, 275(2):539–560, 1983.

Dimitrios Vytiniotis, Dan Belov, Richard Wei, Gordon Plotkin, and Martin Abadi. The
differentiable curry. October 2019. To appear in the Program Transformations workshop at
NeurIPS 2019.

A Proofs

A.1 Lemma 4

Suppose we have a function f : a × b → c, and we want to compute its derivative at a point in
its (pair-valued) domain. Because linear maps (derivatives) form a cocartesian category,28

D f (a, b) = D f (a, b) ◦ inl OD f (a, b) ◦ inr

Noting that (for linear maps) inl da = (da, 0) and inr db = (0, db), we can see that the “partial
derivatives” (D f (a, b) ◦ inl and D f (a, b) ◦ inr) allow only one half of a pair to change.

Next, note that D f (a, b) ◦ inl = D (f ◦ (, b)) a, by the following equational reasoning:

D (f ◦ (, b)) a
= D f ((, b) a) ◦ D (, b) a -- chain rule (Theorem 1)
= D f (a, b) ◦ D (, b) a -- (, b) definition
= D f (a, b) ◦ D (inl + const (0, b)) a -- inl on functions, and meaning of (, b)
= D f (a, b) ◦ (D inl a +D (const (0, b)) a) -- linearity of (+)
= D f (a, b) ◦ D inl a -- D (const z) a = 0
= D f (a, b) ◦ inl -- linearity of inl ; Theorem 3

Likewise, D f (a, b) ◦ inr = D (f ◦ (a,)) b.
28The cocartesian law h = h ◦ inl O h ◦ inr is dual to the cartesian law h = exl ◦ h M exr ◦ h (Gibbons, 2002).

https://arxiv.org/abs/1909.13768
https://arxiv.org/abs/1909.13768
http://conal.net/papers/compiling-to-categories
http://conal.net/papers/essence-of-ad/
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/acmmpc-calcfp.pdf
http://acta.bibl.u-szeged.hu/12271/1/cybernetica_004_fasc_001_123-125.pdf
http://acta.bibl.u-szeged.hu/12271/1/cybernetica_004_fasc_001_123-125.pdf
http://www.ams.org/journals/tran/1983-275-02/S0002-9947-1983-0682717-1/
http://www.ams.org/journals/tran/1983-275-02/S0002-9947-1983-0682717-1/
https://openreview.net/forum?id=ryxuz9SzDB
https://openreview.net/forum?id=ryxuz9SzDB

Higher-Order, Higher-Order Automatic Differentiation 21

A.2 Corollary 4.2

D (uncurry g) (a, b)
= Dl (uncurry g) (a, b) ODr (uncurry g) (a, b) -- Lemma 4
= D (uncurry g ◦ (, b)) a OD (uncurry g ◦ (a,)) b -- Dl and Dr definitions
= D (λ a ′ → uncurry g (a ′, b)) a O -- η expansion and simplification
D (λ b ′ → uncurry g (a, b ′)) b

= D (λ a ′ → g a ′ b) a OD (λ b ′ → g a b ′) b -- uncurry on functions
= D (at b ◦ g) a OD (g a) b -- at definition and η reduction
= D (at b) (g a) ◦ D g a OD (g a) b -- chain rule (Theorem 1)
= at b ◦ D g a OD (g a) b -- linearity of at

A.3 Corollary 4.3

D eval (f , a)
= Dl eval (f , a) ODr eval (f , a) -- Lemma 4
= D (eval ◦ (, a)) f OD (eval ◦ (f ,)) a -- Dl and Dr alternative definitions
= D (at a) f OD f a -- eval on functions; at definition
= at a OD f a -- linearity of at a
= λ (df , dx)→ df a +D f a dx -- (O) on linear maps ; at definition

Alternatively, calculate D eval via uncurry :

D eval (f , a)
= D (uncurry id) (f , a) -- eval = uncurry id
= at a ◦ D id a OD (id f) a -- Corollary 4.2
= at a ◦ id OD f a -- id linearity
= at a OD f a -- id as identity

A.4 Lemma 5

forkF (λ b → D (at b ◦ g) a)
= λ da b → D (at b ◦ g) a da -- forkF definition
= λ da b → (D (at b) (g a) ◦ D g a) da -- chain rule (Theorem 1)
= λ da b → (at b ◦ D g a) da -- at b linearity
= λ da b → at b (D g a da) -- (◦) on functions
= λ da b → D g a da b -- at definition
= D g a -- η reduction (twice)

22 Conal Elliott

A.5 Corollary 5.1

D (curry f) a
= forkF (λ b → D (at b ◦ curry f)) a -- Lemma 5
= forkF (λ b → D (λ a → at b (curry f a))) a -- (◦) on functions
= forkF (λ b → D (λ a → curry f a b)) a -- at definition
= forkF (λ b → D (λ a → f (a, b))) a -- curry on functions
= forkF (λ b → D (f ◦ (, b))) a -- (, b) definition
= forkF (λ b → Dl f (a, b)) -- Dl definition
= forkF (Dl f ◦ (a,)) -- (a,) definition

A.6 Lemma 9

The functions wrapo and wrap−1
o form an isomorphism:

wrap−1
o (wrapo f)

= wrap−1
o (o ◦ f ◦ o−1) -- wrapo definition

= o−1 ◦ (o ◦ f ◦ o−1) ◦ o -- wrap−1
o definition

= (o−1 ◦ o) ◦ f ◦ (o−1 ◦ o) -- (◦) associativity
= id ◦ f ◦ id -- o−1 ◦ o = id
= f -- id is identity for (◦)

wrapo (wrap−1
o h)

= wrapo (o
−1 ◦ h ◦ o) -- wrap−1

o definition
= o ◦ (o−1 ◦ h ◦ o) ◦ o−1 -- wrapo definition
= (o ◦ o−1) ◦ h ◦ (o ◦ o−1) -- (◦) associativity
= id ◦ h ◦ id -- o ◦ o−1 = id
= h -- id is identity for (◦)

Linearity of wrapo and wrap−1
o follows from two facts:

• (◦ f) is linear for all f .

• (g ◦) is linear for all linear g .

Proof: exercise.

A.7 Lemma 10

The functions Do and D−1
o form an isomorphism:

D−1
o ◦ Do

= wrap−1
o ◦ D̂−1 ◦ D̂ ◦ wrapo -- D−1

o and Do definitions
= wrap−1

o ◦ wrapo -- D̂−1 ◦ D̂ = id
= id -- wrap−1

o ◦ wrapo = id

Do ◦ D−1
o

Higher-Order, Higher-Order Automatic Differentiation 23

= D̂ ◦ wrapo ◦ wrap−1
o ◦ D−1

o -- Do and D−1
o definitions

= D̂ ◦ D−1
o -- wrap−1

o ◦ wrapo = id

= id -- D̂−1 ◦ D̂ = id

Linearity of Do and D−1
o follows from linearity of D̂ and D̂−1 and Lemma 9.

A.8 Lemma 11

The proof that wrapo is a cartesian functor mainly exploit the regular structure of o and o−1:

wrapo id
= o ◦ id ◦ o−1 -- wrapo definition
= o ◦ o−1 -- id is identity for (◦)
= id -- o ◦ o−1 = id

wrapo (g ◦ f)
= o ◦ g ◦ f ◦ o−1 -- wrapo definition
= o ◦ g ◦ o−1 ◦ o ◦ f ◦ o−1 -- o−1 ◦ o = id

= (o ◦ g ◦ o−1) ◦ (o ◦ f ◦ o−1) -- D̂ is a functor
= wrapo g ◦ wrapo f -- wrapo definition

wrapo (f × g) -- Do definition
= o ◦ (f × g) ◦ o−1 -- wrapo definition
= (o × o) ◦ (f × g) ◦ (o−1 × o−1) -- o on products
= o ◦ f ◦ o−1 × o ◦ g ◦ o−1 -- monoidal category law
= o ◦ f ◦ o−1 × o ◦ g ◦ o−1 -- D̂ is a monoidal functor
= wrapo f × wrapo g -- wrapo definition

wrapo exl -- Do definition
= o ◦ exl ◦ o−1 -- wrapo definition
= o ◦ exl ◦ (o−1 × o−1) -- o−1 on products
= o ◦ o−1 ◦ exl -- exl ◦ (f × g) = f ◦ exl for cartesian categories
= exl -- o ◦ o−1 = id

wrapo exr -- Do definition
= o ◦ exr ◦ o−1 -- wrapo definition
= o ◦ exr ◦ (o−1 × o−1) -- o−1 on products
= o ◦ o−1 ◦ exr -- exr ◦ (f × g) = g ◦ exr for cartesian categories
= exr -- o ◦ o−1 = id

wrapo dup -- Do definition
= o ◦ dup ◦ o−1 -- wrapo definition
= o ◦ (o−1 × o−1) ◦ dup -- dup ◦ f = (f × f) ◦ dup for cartesian categories
= o ◦ o−1 ◦ dup -- o−1 on products
= dup -- o ◦ o−1 = id

24 Conal Elliott

A.9 Lemma 13

wrapo (curry f)
= o ◦ curry f ◦ o−1 -- wrapo definition
= Do ◦ curry f ◦ o−1 -- o on functions
= D̂ ◦ wrapo ◦ curry f ◦ o−1 -- Do definition
= D̂ ◦ curry (wrapo f) -- below

For this last step,

wrapo ◦ curry f ◦ o−1

= λ a → wrapo (curry f (o−1 a)) -- η expansion
= λ a → o ◦ curry f (o−1 a) ◦ o−1 -- wrapo definition
= λ a b → o (curry f (o−1 a) (o−1 b)) -- η expansion
= λ a b → o (f (o−1 a, o−1 b)) -- curry on functions
= λ a b → o (f (o−1 (a, b))) -- o−1 on pairs
= λ a b → wrapo f (a, b) -- wrapo definition
= curry (wrapo f) -- curry on functions

Equivalently, curry (wrapo f) = D̂−1 ◦ wrapo (curry f).29

A.10 Do and eval

The homomorphism equation is eval = Do eval . Simplifying the RHS,

Do eval

= D̂ (wrapo eval) -- Do definition
= D̂ (o ◦ eval ◦ o−1) -- wrapo definition
= D̂ (o ◦ eval ◦ (D−1

o × o−1)) -- o−1 on (a → b)× a

= D̂ (λ (f̂ , a)→ (o ◦ eval ◦ (D−1
o × o−1)) (f̂ , a)) -- η expansion

= D̂ (λ (f̂ , a)→ o (eval (D−1
o f̂ , o−1 a))) -- (◦) and (×) on functions

= D̂ (λ (f̂ , a)→ o (D−1
o f̂ (o−1 a))) -- eval on functions

= D̂ (λ (f̂ , a)→ o (wrap−1
o (D̂−1 f̂) (o−1 a))) -- D−1

o definition
= D̂ (λ (f̂ , a)→ o ((o−1 ◦ D̂−1 f̂ ◦ o) (o−1 a)) -- wrap−1

o definition
= D̂ (λ (f̂ , a)→ o (o−1 (D̂−1 f̂ (o (o−1 a))))) -- (◦) on functions
= D̂ (λ (f̂ , a)→ D̂−1 f̂ a) -- o ◦ o−1 = id

= D̂ (uncurry D̂−1) -- uncurry on functions
= D (λ (f̂ , a)→ (uncurry D̂−1 (f̂ , a),D (uncurry D̂−1) (f̂ , a))) -- D̂ definition
= D (λ (f̂ , a)→ (D̂−1 f̂ a,D (uncurry D̂−1) (f̂ , a))) -- uncurry on functions
= D (λ (f̂ , a)→ (D̂−1 f̂ a, at a ◦ D D̂−1 f̂ OD (D̂−1 f̂) a)) -- Section A.2
= D (λ (f̂ , a)→ (D̂−1 f̂ a, at a ◦ D̂−1 OD (D̂−1 f̂) a)) -- D̂−1 linearity

Now note that
29[Maybe this form will help simplify another proof.]

Higher-Order, Higher-Order Automatic Differentiation 25

f̂

= D̂ (D̂−1 f̂) -- D̂ ◦ D̂−1 = id

= D (D̂−1 f̂ MD (D̂−1 f̂)) -- D̂ definition

Letting D h = f̂ , we have

h a = (D̂−1 f̂ MD (D̂−1 f̂)) a

= (D̂−1 f̂ a,D (D̂−1 f̂) a)

A bit of refactoring then replaces D̂−1 f̂ a and (the noncomputable) D (D̂−1 f̂ a), yielding a
computable form:

Do eval
= ...

= D (λ (D h, a)→ let (b, f ′) = h a in (b, at a ◦ D̂−1 O f ′))

Since this calculation was fairly involved, let’s get a sanity check on the types in the final
form:

(D h, a) : O ((a → b)× a)
: D (O a) (O b)×O a

D h : D (O a) (O b)
a : O a

h : O a → O b × (O a (O b)
h a : O b × (O a (O b)

(b, f ′) : O b × (O a (O b)
b : O b

f ′ : O a (O b

D̂−1 : D (O a) (O b) ((O a → O b)
at a : (O a → O b) (O b

at a ◦ D̂−1 : D (O a) (O b) (O b

at a ◦ D̂−1 O f ′ : D (O a) (O b)×O a (O b

(b, at a ◦ D̂−1 O f ′) : O b × (D (O a) (O b)×O a (O b)

λ (D h, a)→ ...in (b, at a ◦ D̂−1 O f ′) : O ((a → b)× a)→ O b × (D (O a) (O b)×O a (O b)

D (λ (D h, a)→ ...in (b, at a ◦ D̂−1 O f ′)) : D (O ((a → b)× a)) (O b)

eval : (a → b)× a → b
Do eval : D (O ((a → b)× a)) (O b)

A.11 Lemma 15

Letting fo = wrapo f ,

Do (curry f)

= D̂ (wrapo (curry f)) -- Do definition

26 Conal Elliott

= D̂ (D̂ ◦ curry (wrapo f)) -- Lemma 13
= D̂ (D̂ ◦ curry fo) -- fo definition
= D ((D̂ ◦ curry fo) MD (D̂ ◦ curry fo)) -- D̂ definition
= D (λ a → D̂ (curry fo a),D (D̂ ◦ curry fo) a) -- (M) definition
= D (λ a → D̂ (curry fo a), D̂ ◦ D (curry fo) a) -- chain rule; linearity of D̂
= D (λ a → D̂ (curry fo a), D̂ ◦ forkF (Dl fo ◦ (a,))) -- Theorem 2

Now, separately simplify the two main parts of this last form.

D̂ (curry fo a)

= D (λ b → (fo (a, b),Dr fo (a, b))) -- D̂ definition and Lemma 4

D̂ ◦ forkF (Dl fo ◦ (a,))
= D̂ ◦ (λ da b → (Dl fo ◦ (a,)) b da) -- forkF definition
= D̂ ◦ (λ da b → Dl fo (a, b) da) -- (◦) on functions
= λ da → D̂ (λ b → Dl fo (a, b) da) -- (◦) on functions
= λ da → D̂ (λ b → at da (Dl fo (a, b))) -- at definition
= λ da → D̂ (at da ◦ Dl fo ◦ (a,)) -- (◦) on functions
= λ da → D (λ b → ((at da ◦ Dl fo ◦ (a,)) b,D (at da ◦ Dl fo ◦ (a,)) b)) -- D̂ definition
= λ da → D (λ b → (Dl fo (a, b) da,D (at da ◦ Dl fo ◦ (a,)) b)) -- (◦) on functions

Now simplify the remaining differentiated composition:

D (at da ◦ Dl fo ◦ (a,)) b
= at da ◦ D (Dl fo ◦ (a,)) b -- chain rule; linearity of at da
= at da ◦ Dr (Dl fo) (a, b) -- Lemma 4

Putting the pieces back together,

Do (curry f) =
D (λ a → (D (λ b → (fo (a, b),Dr fo (a, b)))
, λ da → D (λ b → (Dl fo (a, b) da, at da ◦ Dr (Dl fo) (a, b)))))

A.12 Lemma 16

To show that comp = uncurry (◦) is bilinear, we can show that it is linear in each argument,
which is to say curry comp g = (g ◦) and curry ′ comp f = (◦ f) are linear for all g and f .

First, (◦ f) is linear for any function f (not just linear):

(◦ f) (g + g ′)
= (g + g ′) ◦ f -- left section definition
= λ a → (g + g ′) (f a) -- η expansion
= λ a → g (f a) + g ′ (f a) -- addition on functions
= (λ a → g (f a)) + (λ a → g ′ (f a)) -- addition on functions

Higher-Order, Higher-Order Automatic Differentiation 27

= (g ◦ f) + (g ′ ◦ f) -- (◦) on functions
= (◦ f) g + (◦ f) g ′ -- left section definition

(◦ f) (s · g)
= (s · g) ◦ f -- left section definition
= λ a → (s · g) (f a) -- (◦) on functions
= λ a → s · g (f a) -- scaling on functions
= s · (λ a → g (f a)) -- scaling on functions
= s · (g ◦ f) -- (◦) on functions
= s · (◦ f) g -- left section definition

Second, (g ◦) is linear for any linear functions g :

(g ◦) (f + f ′)
= g ◦ (f + f ′) -- right section definition
= λ a → g ((f + f ′) a) -- η expansion
= λ a → g (f a + f ′ a) -- addition on functions
= λ a → g (f a) + g (f ′ a) -- linearity of g
= (λ a → g (f a)) + (λ a → g (f ′ a)) -- addition on functions
= (g ◦ f) + (g ◦ f ′) -- (◦) on functions
= (g ◦) f + (g ◦) f ′ -- right section definition

(g ◦) (s · f)
= g ◦ (s · f) -- right section definition
= λ a → g ((s · f) a) -- (◦) on functions
= λ a → g (s · f a) -- scaling on functions
= λ a → s · g (f a) -- linearity of g
= s · (g ◦ f) -- scaling on functions
= s · (g ◦) f -- right section definition

A.13 Lemma 17

Given any bilinear function h,

a. curry h a is linear for all linear functions g :

curry h a (b + b ′)
= h (a, b + b ′) -- curry on functions
= h (a, b) + h (a, b ′) -- bilinearity of h
= curry h a b + curry h a b ′ -- curry on functions

curry h a (s · b)
= h (a, s · b) -- curry on functions
= s · h (a, b) -- bilinearity of h

b. curry ′ h b is linear for all functions b: Proof similar to curry h a.

28 Conal Elliott

c. curry h and curry ′ h are linear:

curry h (a + a ′)
= λ b → curry h (a + a ′) b -- η expansion
= λ b → h (a + a ′, b) -- curry on functions
= λ b → h (a, b) + h (a ′, b) -- bilinearity of h
= (λ b → h (a, b)) + (λ b → h (a ′, b)) -- addition on functions
= curry h a + curry h a ′ -- curry on functions

curry h (s · a)
= λ b → curry h (s · a) b -- η expansion
= λ b → h (s · a ′, b) -- curry on functions
= λ b → s · h (a, b) -- bilinearity of h
= s · (λ b → h (a, b)) -- scaling on functions
= s · curry h a -- curry on functions

Similarly for curry ′ h.

d. D h is linear:

D h ((a, b) + (a ′, b ′))
= D h (a + a ′, b + b ′) -- (+) on functions
= h ◦ (, b + b ′) O h ◦ (a + a ′) -- Corollary 4.1
= λ (da, db)→ h (da, b + b ′) + h (a + a ′, db) -- (O) on functions
= λ (da, db)→ h (da, b) + h (da, b ′) + h (a, db) + h (a ′, db) -- bilinearity of h
= λ (da, db)→ h (da, b) + h (a, db) + h (da, b ′) + h (a ′, db) -- commutativity of (+)
= (λ (da, db)→ h (da, b) + h (a , db)) +

(λ (da, db)→ h (da, b ′) + h (a ′, db)) -- (+) on functions
= D h (a, b) +D h (a ′, b ′) -- Corollary 4.1

Similarly for scaling.

A.14 Lemma 18

a. Sequential composition:

D (g ◦ f)
= λ a → D (g ◦ f) a -- η expansion
= λ a → D g (f a) ◦ D f a -- chain rule (Theorem 1)
= λ a → (D g ◦ f) a ◦ D f a -- (◦) on functions
= λ a → (◦) ((D g ◦ f) a) (D f a) -- alternative notation
= λ a → uncurry (◦) ((D g ◦ f) a,D f a) -- uncurry on functions
= λ a → comp ((D g ◦ f) a,D f a) -- comp definition
= comp ◦ (λ a → ((D g ◦ f) a,D f a)) -- (◦) on functions
= comp ◦ (D g ◦ f MD f) -- (M) definition

Higher-Order, Higher-Order Automatic Differentiation 29

b. Cross:

D (f × g)
= λ (a, b)→ D (f × g) (a, b) -- η expansion
= λ (a, b)→ D f a ×D g b -- cross rule (Theorem 2)
= λ (a, b)→ uncurry (×) (D f a,D g b) -- uncurry on functions
= λ (a, b)→ cross (D f a,D g b) -- cross definition
= λ (a, b)→ cross ((D f ×D g) (a, b)) -- (×) on functions
= cross ◦ (D f ×D g) -- (◦) on functions

c. Fork:

D (f M g)
= D ((f × g) ◦ dup) -- cartesian law
= λ a → D ((f × g) ◦ dup) a -- η expansion
= λ a → D (f × g) (dup a) ◦ D dup a -- chain rule (Theorem 1)
= λ a → D (f × g) (a, a) ◦ D dup a -- dup for functions
= λ a → D f a ×D g a ◦ D dup a -- cross rule (Theorem 2)
= λ a → D f a ×D g a ◦ dup -- dup linearity
= λ a → D f a MD g a -- cartesian law
= fork ◦ (D f MD g) -- fork definition

d. A linear function f ,

D f
= λ a → D f a -- η expansion
= λ a → f -- Theorem 3
= const f -- const definition

e. Any function f : a × b → c,

D f
= λ (a, b)→ D f (a, b) -- η expansion
= λ (a, b)→ Dl f (a, b) ODr f (a, b) -- Lemma 4
= join ◦ (Dl f MDr f) -- join definition

f. A bilinear function f : a × b → c,

D f
= λ (a, b)→ D f (a, b) -- η expansion
= λ (a, b)→ f ◦ (, b) O f ◦ (a,) -- Corollary 4.1
= λ (a, b)→ curry ′ f b O curry f a -- section definitions
= λ (a, b)→ join (curry ′ f b, curry f a) -- join = uncurry (O)
= λ (a, b)→ join ((curry ′ f × curry f) (b, a)) -- (×) on functions
= λ (a, b)→ join ((curry ′ f × curry f) (swap (a, b))) -- swap on functions
= join ◦ (curry ′ f × curry f) ◦ swap -- (◦) on functions

30 Conal Elliott

g. Uncurried composition on linear maps,

D comp
= join ◦ (curry ′ comp × curry comp) ◦ swap -- previous (comp is bilinear)
= join ◦ (flip (◦)× (◦)) ◦ swap -- comp definition

	Introduction
	Some Additional Properties of Differentiation
	Pair-Valued Domains
	Function-Valued Codomains

	Cartesian Closure, first attempt
	Curry
	Uncurry
	Eval

	Object Mapping
	Where Are We?
	Higher-Order Derivatives
	Avoiding redundant computation
	What's Next?
	Related Work
	Proofs
	Lemma 4
	Corollary 4.2
	Corollary 4.3
	Lemma 5
	Corollary 5.1
	Lemma 9
	Lemma 10
	Lemma 11
	Lemma 13
	Do and eval
	Lemma 15
	Lemma 16
	Lemma 17
	Lemma 18

