

Declarative Event-Oriented Programming
 Conal Elliott

Microsoft Research
http://research.microsoft.com/~conal

ABSTRACT

Events play an important role in the construction of most software
that involves interaction or simulation. Typically, programmers
make use of a fixed set of low level events supplied by a window
system, possibly augmented with timers and UI components.
Event handling generally involves some interpretation of these
event occurrences, followed by external actions or modifications
to program state.

It is possible to extend the event paradigm by using an algebra of
events to synthesize new kinds of events tailored specifically for a
domain or application. In turn, these new events may be used to
synthesize yet others, and so on, to an arbitrarily sophisticated
degree. This programming paradigm, which we call event-
oriented programming, aids in the factoring of programs into
understandable and reusable pieces.

We propose a declarative approach to event-oriented program-
ming, based on a powerfully expressive event language with a
lightweight notation. We illustrate this new approach through the
design of an interactive curve editor.

1. INTRODUCTION

The notion of event is central in the construction of most software
that involves interaction or simulation. Such software is typically
organized around a centralized event queue and the event loop
that removes and acts on events. For example, under Microsoft
Windows®, the operating system posts messages describing oc-
currences of user interaction events, such as mouse clicks, key
presses, and window resizing. A Windows program repeatedly
removes a message from the queue, and passes it to the window
procedure, which examines its type and invokes appropriate ap-
plication code. It is also often useful to add higher-level event
types. Sometimes, as in the case of menus, buttons and dialog
boxes, these new types are packaged up into reusable widget li-
braries. In other cases, as in collisions during a game, the higher-
level events are about an application's content rather than its user
interface.

While the notion of an event is natural in many applications, the
support provided by modern window systems has some serious
weaknesses that interfere with program construction and mainte-
nance. Some of these weaknesses stem from the fact that events
are often just symbols with no intrinsic meaning.

Consider the event of the user pressing the left mouse button. In
Windows, this event is called WM_LBUTTONDOWN, and each
occurrence contains a snapshot of the mouse position and the state
of the control and shift keys. If an application should respond to
all left button presses that its window receives, the programmer
will write some window procedure code that looks like the follow-
ing:

 swi t ch (msg) {
 . . .
 case WM_LBUTTONDOWN:
 keySt at e = wPar am;
 xPos = LOWORD(l Par am) ;
 yPos = HI WORD(l Par am) ;
 . . . / / r esponse goes her e
 br eak;
 . . .
 }

Suppose that an event of interest is one of the following:

• the user pressing an arrow key;

• the left button being pressed while the mouse is over an ob-
ject of interest;

• the same example, but with the event data being an index of
the selected object;

• the right and left buttons being pressed within 50 millisec-
onds of each other; or

• the collision of two objects, with the event data being the
instantaneous relative velocity.

The nature of events as intrinsically meaningless identifiers pre-
vents any of these examples from being encapsulated as an event.
Of course, an application designer can still conceive of these
events and implement detection and response to them. In the
implementation, however, the represented events remain trivially
simple, while the response code and supporting data structures
and state variables become increasingly complex.

GUI frameworks like Microsoft's MFC® and Visual Basic® help
somewhat by breaking up event handling into separate methods,
each with its own, tailored interface. However, the set of possible
event response methods is still limited to the same generic set.
Moreover, all consequences of any given event are handled in a
single handler method.

An object-oriented representation of events, as in the Java 1.1
AWT event model, addresses some of these problems. Event
response programming is even less monolithic than in MFC or
Visual Basic, since a program may conveniently separate different
responses to an event into different event “ listeners” that may be
registered and unregistered with an event, dynamically [13].
When an event occurs, a corresponding method is automatically
invoked on each registered listener. The use of inner classes, a
feature added in Java 1.1, is a considerable notational help. It is
also possible to define arbitrary new kinds of events. However,
doing so is tedious, because the framework's AWTEvent -
Mul t i cast er class (which manages listener lists) can only
supply a fixed set of overloadings for the listener add and r e-
move methods. New kinds of events may easily have signatures
that do not match any of the given overloadings. In such a case,
the programmer of the new kind of event must also implement all
of the list management needed to support multiple listeners.

This paper introduces an alternative paradigm we call declarative
event-oriented programming (DEOP) that addresses the short-
comings mentioned above. DEOP provides an algebra of event
combinators with a simple semantic model and embedded in a
functional host language. The semantics of events is purely com-
positional, relying in no way on names.

These ideas in this paper have been implemented in Fran (“Func-
tional reactive animation”), a library for use with the functional
programming language Haskell [17]. Previous papers have pre-
sented Fran’s basic building blocks for reactive animation [12],
emphasized behaviors rather than events [9], application to 3D
graphics [8], language embedding [8], and implementation
[10][11]. The main new contribution of this paper is the explicit
focus on declarative event-oriented programming. We attempt to
convey this new paradigm for programming interaction applica-
tions, illustrate its use by means of a running example, and con-
trast it with the dominant but ill-structured approach, which is
based on imperative callback procedures.

2. DECLARATIVE EVENT-ORIENTED
PROGRAMMING

The essential idea in this paper is to enrich the popular notion of
events into a powerfully expressive algebra that includes not only
primitive events, but also operators for building up more complex
events from simpler ones. Benefits of this approach include the
following.

• Modularity/reuse. Programmers can factor tasks involving
interactivity and reactivity into easily understood pieces, and
develop libraries of reusable interaction components. Event
handling is factored into a set of independent, incremental
enhancements, encapsulated within the events that make up a
program.

• Lightweight notation. Programs describe high level events as
what they are, not as sequences of steps to decode event
data, test conditions, maintain global data structures, post
events, etc. The notational style is algebraic, composing op-
erators in succinct nested expressions, as in commonplace
calculations on numbers.

• Flexible naming. Events are completely independent from
their naming, which fully exploits the naming mechanisms

supported by a programming language, including lexical
scoping, inclusion in objects and data structures, selective
exportation from modules, and linking. Accidental name col-
lisions are caught by the compiler or linker. As importantly,
an event may be anonymous, being described merely in the
construction of a more complex event. (The same property
for numerical computation is a key advantage of high-level
programming languages over assembly language.)

• Safety. Definition and use of events are type-checked at com-
pile time. In contrast, posting and decoding a Windows event
requires unsafe type casting to and from the generic l Par am
and wPar am.

In contrast with the conventional approach, the events described
in this paper have intrinsic meaning, based on a simple but quite
general model. The meaning of an event is a (possibly infinite)
sequence of occurrences, each of which is a time/value pair. 1
Another notion, useful in conjunction with events, is the behavior,
whose meaning is simply a function of continuous time.

The event-forming operators discussed in this paper fall into the
following categories:

• transforming an event's data;

• forming the union of two events; and

• filtering out some event occurrences.

There are other operators as well, not illustrated in this paper:

• monitoring time-varying conditions; and

• sequential chains of events.

3. THE EXAMPLE

In the next several sections, we will build up an interactive “poly-
Bezier” curve editor. Bezier curves are popular in computer
graphics and manufacturing because they are well behaved and
visually pleasant. Each curve is defined by four control points.
The first and fourth lie at the curve's endpoints, while the middle
two typically lie off of the curve. These inner control points allow
the user to tug at the curvature. A poly-Bezier curve is the union
of a sequence of simple Bezier pieces, in which the first control

1 For this reason, “event source” may be a more appropriate name.

Also, note that this model is a departure from that given in [12],
which modeled an event as a single occurrence. The stream
model allows much more powerful encapsulation.

Figure 1. Poly-Bezier curve

point of each piece after the first one coincides with fourth control
point of the previous piece, as in Figure 1.

4. RENDERING CONTROL POINTS

The first step in our development is an editor for a single control
point. We will represent a control point as a pair containing a
trajectory and a status flag indicating whether it may be grabbed.

 t ype CPoi nt = (Poi nt 2B, Bool B)

As a convention, the Fran type names “Poi nt 2B” , “Bool B” , etc
are synonyms for “Behavi or Poi nt 2” , “Behavi or Bool ” ,
etc, meaning time-varying 2D points, Booleans, etc.

We will want a control point's appearance to indicate whether it
can be grabbed. Because this is the first example code, however,
we will first consider how to render just a point, without this indi-
cation. We “ render” a control point, i.e., turn it into an image
animation (I mageB), simply as a small shape, moved according
to the given trajectory. The shape is a star when “excited” (grab-
bable) and a circle otherwise.2

 r ender CPoi nt : : CPoi nt - > I mageB
 r ender CPoi nt (pos, exci t ed) =
 moveTo pos (
 st r et ch poi nt Si ze (
 i f B exci t ed st ar c i r c l e))

 poi nt Si ze : : Real B
 poi nt Si ze = 0. 07

Functions like moveTo, st r et ch, and r ender CPoi nt oper-
ate on time-varying values (behaviors). One may think of these
operations as building up a “ temporal display list” to be traversed
iteratively by Fran’s run-time system during presentation.

Lesson
Motion and animation are not the byproducts of program execu-
tion, as in traditional imperative programming, but first-class val-
ues, expressed directly.

5. A SIMPLE CONTROL POINT EDITOR

Next comes the control point editor, which takes a static (not
time-varying) start point and user input stream (represented in
Fran by a value of type User), and synthesizes an interactive
control point. The user can grab the control point with the left

2 Haskellisms: The first line of this example is a type declaration

for r ender CPoi nt , saying that it is a function from CPoi nt
values to animations. Although in almost all cases, the Haskell
compiler or interpreter can infer types automatically, we give
types explicitly to clarify the examples. In place of formal pa-
rameters, one may give patterns to be matched. In the second
line, pattern matching pulls apart the single, pair-valued argu-
ment to r ender CPoi nt , extracting the components pos and
exci t ed. Application of a function f to arguments x , y , ... is
written simply "f x y . . . ". For example, the body of the
definition of r ender Poi nt is the application of the Fran
moveTo function to two arguments, with the first being pos
and the second being the application of the function st r et ch
to poi nt Si ze and ci r c l e.

mouse button when the mouse cursor is close enough to it (within
two radii).3

 edi t CPoi nt : : User - > S. Poi nt 2 - > CPoi nt
 edi t CPoi nt u p0 = (pos, c l oseEnough)
 wher e
 pos, l ast Rel ease : : Poi nt 2B
 pos = i f B gr abbi ng (mouse u) l ast Rel ease
 l ast Rel ease =
 st epper p0 (r el ease ` snapshot _` pos)

 c l oseEnough, gr abbi ng : : Bool B
 c l oseEnough =
 di st ance2 pos (mouse u) <* gr abDi st ance
 gr abbi ng = st epper Fal se (gr ab - => Tr ue
 . | . r el ease - => Fal se)

 gr ab, r el ease : : Event ()
 gr ab = l bp u ` whenE` cl oseEnough
 r el ease = l br u ` whenE` gr abbi ng

 gr abDi st ance : : Real B
 gr abDi st ance = 2 * poi nt Si ze

Here are brief, informal descriptions of each definition within the
“wher e” clause, from top to bottom. Technical details follow.

• The position is defined as a behavior-level (time-varying)
conditional: the mouse position when the user is grabbing,
and the position of the last release otherwise.

• The last release position is the start point at first, and then
becomes a snapshot of the control point position whenever
released.

• The control point position is considered “close enough” to
grab when it is within gr abDi st ance (two radii) of the
mouse's position. (The “<* ” operator is the behavior-level
version of the familiar less-than operator. For most functions
and operators on numbers, the usual name is overloaded to
mean the behavior-level version as well. In other cases, an
asterisk or “B” is added to the end of the usual name.)

• The boolean grabbing behavior is piecewise constant (a “step
function”), initially false. It becomes true whenever the user
grabs the control point, and false when the user releases it.

• The grab event is considered to occur when the user presses
the left button when “close enough”.

• Similarly, the release event is considered to occur when the
user releases the left button while grabbing.

3 Haskellisms: The first line in this example says that edi t -

CPoi nt is a function that takes a user value and a static point,
and yields a control point. (The "- >" type operator is right-
associative, so literally, edi t CPoi nt takes one argument and
produces a function that takes another argument.) Function
names made up of alphanumeric characters may be used as infix
operators by surrounding them with backquotes, as in
` whenE` below. Names made up of symbol characters, such
as ". | . " below, are treated as infix by default. The trivial type
"() " is similar to C's voi d type. Its one value contains no in-
formation.

We can try out our simple control point editor by writing a tester
function. This function combines edi t CPoi nt and r ender -
CPoi nt , uses the static 2D origin as the starting position, and
places the result over a white background. Note that an “ interac-
tive animation” is a function that maps user-input streams to an-
imations.

 edi t CPoi nt Test : : User - > I mageB
 edi t CPoi nt Test u =
 r ender CPoi nt (edi t CPoi nt u S. or i gi n2) ` over `
 whi t eI m

 whi t eI m : : I mageB
 whi t eI m = wi t hCol or whi t e sol i dI mage

Figure 2 shows the result, with user input echoed at the bottom of
the window.4

The definition of edi t CPoi nt above illustrates declarative
event-oriented programming. Some of the events are named
(gr ab and r el ease), while others are expressed anonymously
in the construction of the behaviors gr abbi ng and l ast Re-
l ease. Although one may read these definitions idiomatically as
in the informal explanation above, their meanings come precisely
from the composition of independently meaningful operations.
Consider first the definition of gr ab. The function l bp maps a
user value into an event each of whose occurrences indicates that
the given user's left mouse button is being pressed. (Recall that
an event is a sequence of occurrences, each of which is a
time/value pair.5) There is no useful explicit data, so it has the
following type declaration.

 l bp : : User - > Event ()

The function “whenE” (here used in infix) acts to filter out some
of the occurrences of an event. It allows through only those occur-
ring when a boolean behavior is true. It has the following type
declaration.6

4 Figures like this one show snapshots of an animation. Read the

top row from left to right, then the second row, and so on. To
save space, many intermediate frames have been removed. See
ht t p: / / r esear ch. mi cr osof t . com/ ~conal / ppdp00
for animated versions of all of the figures in this paper.

5 Typically, early occurrences need to be accessible before later
ones can be known, so the sequences must be represented lazily.

6 Haskellism: In type declarations, non-capitalized names, like a
here, are type variables, indicating polymorphism, i.e., the abil-

 whenE : : Event a - > Bool B - > Event a

The definition of gr abbi ng uses two more event-building op-
erators: “ - =>” and “ . | . ” . The “ - =>” operator has higher syn-
tactic precedence (binding more tightly), and has type

 (- =>) : : Event a - > b - > Event b

It replaces the value in every occurrence of an event with a given
value. Here, the value from gr ab, which is always the trivial
value (of type “ () ”), is replaced by Tr ue, and the value from
r el ease, also trivial, is replaced by Fal se, producing two new
boolean events.

The merge operator “ . | . ” has type

 (. | .) : : Event a - > Event a - > Event a

Given events e1 and e2, the new event e1. | . e2 has as its oc-
currences the union of occurrences of e1 and e2. (For simulta-
neous occurrences, order in e1 and e2 is preserved and those of
e1 appear before those of e2 in the result.) In our example, the
merged event occurs with value Tr ue whenever the gr ab event
occurs and with value Fal se whenever the r el ease event
occurs. The gr abbi ng boolean behavior is then defined by
applying the st epper function, which has the following type.

 st epper : : a - > Event a - > Behavi or a

The behavior it creates starts out with the value given by the first
argument and changes with each occurrence of the event argu-
ment. In this case, the gr abbi ng behavior starts Fal se and
switches to Tr ue when the control point is grabbed and Fal se
when the control point is released.

Finally, the definition of l ast Rel ease illustrates the use of
events to make behavior snapshots. The event function used is

 snapshot _ : : Event a - > Behavi or b - > Event b

An event “e ` snapshot _` b” occurs whenever e occurs, but
its values are the values of b at the occurrence times. In our ex-
ample above, the control point's position is snapshotted on each
release, yielding a point-valued event, which is used to make the
piecewise-constant l ast Rel ease behavior.

Lessons
This first example of declarative event-oriented programming
illustrates a few lessons.

• Separate the model from the presentation (here a Poi nt 2B
and an I mageB, respectively).

• Remember with snapshot _ and st epper .

• Enrich and merge events with “ - =>” and “ . | . ” .

• Specialize with whenE.

6. A FIRST CURVE EDITOR

It is now a simple matter to put together a curve editor, represent-
ing curves as lists of control points. First define the appearance of
a curve: rendered control points over a blue poly-Bezier curve.

ity to work with all types. For instance, whenE applies to any
kind of event and yields an event of the same type.

Figure 2. editCPoint

We use the Fran function over s to overlay the list of rendered
control points, and its binary version over , to combine with the
Bezier image.7

 r ender Cur ve : : [CPoi nt] - > I mageB
 r ender Cur ve cpoi nt s =
 over s (map r ender CPoi nt cpoi nt s) ` over `
 wi t hCol or bl ue (
 pol yBezi er (map f st cpoi nt s))

Next, define a curve editor. (The edi t CPoi nt function is being
partially applied, yielding a function that is mapped over the ini-
tial points.)

 edi t Cur ve : : [S. Poi nt 2] - > User - > [CPoi nt]
 edi t Cur ve i ni t Poi nt s u =
 map (edi t CPoi nt u) i ni t Poi nt s

Finally, put the pieces together: given an initial list of static
points, make an interactive curve, render the result, and place it
over a graph paper background.

 edi t or : : [S. Poi nt 2] - > User - > I mageB
 edi t or i ni t Poi nt s u =
 r ender Cur ve (edi t Cur ve i ni t Poi nt s u) ` over `
 gr aphPaper

Figure 3 shows a sample use of edi t or .

Lesson
Look for smaller constituent problems (e.g., point editing), espe-
cially those repeated in the larger problem. Solve the sub-
problems, test your solutions, and then compose them.

7 Haskellisms: For any type a, the type [a] contains all lists

whose members are all of type a. Thus r ender Cur ve is a
function from control point lists to image animations. The map
function takes a function and a list of values and yields a new
list made up of the given function applied to each member of
the given list. The f st function extracts the first member of a
pair, in this case each control point's position.

7. A COMPARISON

Consider how one might implement the curve editor in the event
loop style, say under Windows. Preserving most of the conceptual
structure of the version above, it might work as follows.

• Declare a global array of control point state data structures,
initialized when a curve file is loaded. Minimally, each state
could consist of a point and a boolean, corresponding to
l ast Rel ease and gr abbi ng respectively.

• On WM_LBUTTONDOWN: For each control point, if its posi-
tion is close enough to the mouse position, set the grabbing
flag to true.

• On WM_LBUTTONUP: For each control point, if its grabbing
flag is true, set its position to the current mouse position and
set its grabbing flag to false.

• On WM_TI MER: For each control point, if its grabbing flag is
set, set its position. to the mouse's.

• On WM_MOUSEMOVE: If any control point has its grabbing
flag set, mark the window as needing to be repainted, which
will generate a WM_PAI NT event. (A simpler, but less effi-
cient, alternative is to to generate WM_PAI NT events in re-
sponse to a timer or in "idle processing".)

• On WM_PAI NT: First draw the graph paper background and
the poly-Bezier curve. Then iterate through the control
points. For each one, draw it at a position that is equal to the
mouse's position if control point's grabbing flag is set, and
equal to the l ast Rel ease point otherwise.

Notice that this event loop version would be much less modular
and concise than the version given in Sections 5 and 6. The com-
plexities of the point editor are exposed to the curve editor rather
than neatly encapsulated. Consider what would happen if more
features were added, such as sensitivity of the curve segments.
The reactivity to user input of all kinds of elements would be
mixed together in the single monolithic event loop.

We can also compare to an object-oriented design. In Java, such a
design could represent the control point states as objects in a new
CPoi nt class derived from the appropriate event listener classes,
and adding a di spl ay method. After these control point objects
are created, they would be inserted into the appropriate listener
lists. The reactions sketched just above to WM_LBUTTONDOWN,
etc would be moved into the CPoi nt event handler methods.

Like declarative programming, object-oriented design encourages
explicit modeling of the conceptual entities in a task, moving
complexity out of monolithic bodies of code and into well-
insulated pieces that may then be composed. However, object-
oriented programs typically embrace the imperative programming
style within their methods, and in doing so compromise the prin-
ciple of modeling. Moreover, object-oriented languages impose
much more notational overhead. In this light, the style proposed
in this paper may be seen as a stateless and extremely fine-grained
form of object-orientation, with an unusually lightweight notation.
(See [29] for a description of a fine-grained object-oriented im-
plementation of a predecessor of Fran.)

Figure 3. editor

8. CONTROL POINT EDITING WITH
UNDO

We now add the ability to undo an unlimited number of editing
operations. Undo can be implemented by maintaining a stack of
information with which to reset the state to what it was just before
the change. Edits generate pushes and undos generate pops.

Instead of building stack maintenance into our editor, we will
implement a polymorphic, unbounded stack manager. This stack
manager is a sort of server, accepting push and pop requests, and
providing replies to “ legitimate” pop requests, i.e., those made
when the stack is non-empty. The stack itself is hidden in the
stack manager's implementation.8

 st acker : : Event a - > Event () - > Event a
 st acker push t r yPop =
 l egi t Pop ` snapshot _` headB st ack
 wher e
 l egi t Pop : : Event ()
 l egi t Pop = t r yPop ` whenE` not B (nul l B st ack)
 - - changeSt ack : : Event ([a] - > [a])
 changeSt ack = l egi t Pop - => t ai l
 . | . push ==> (:)
 - - st ack : : Behavi or [a]
 st ack = st epAccum [] changeSt ack

The definition works by maintaining a list-valued behavior called
st ack , which is used and defined as follows.

• The st acker function returns an event whose occurrences
contain a snapshot of the top of the stack at each legitimate
pop.

• A legitimate pop is an attempt when the stack is not empty.

• The changeSt ack event's values are functions from stacks
to stacks. A legitimate pop request leads to popping (via
t ai l), and a push with value x leads to pushing x (by par-
tially applying the Haskell cons function “ : ” to x).

• The stack starts out empty, and changes whenever change-
St ack occurs. The function associated with an occurrence
of changeSt ack is applied to the previous value of the
stack, giving a cumulative effect.

The “==>” operator is similar to “ - =>” , but applies a given func-
tion to each occurrence value of its event argument. It has the
following type.

 (==>) : : Event a - > (a - > b) - > Event b

The function st epAccum builds a piecewise-constant behaviors
by cumulatively applying occurrences of a function-valued event,
and has is the following (polymorphic) type:

 st epAccum : : a - > Event (a - > a) - > Behavi or a

Given the stacker function, it is now almost trivial to add undo to
the control point editor. The only changes (shown in bold) are to
consider undo events to be releases, to push on every gr ab event,

8 Haskellism: Lines beginning with “ - - ” are comments. Due to a

restriction in Haskell's type system, the polymorphic types of
changeSt ack and st ack cannot be given explicitly, so we
insert them as comments.

and try to undo when the user presses control-Z (as detected by
the Fran function char Pr ess).

 edi t CPoi nt Undo : : User - > S. Poi nt 2 - > CPoi nt
 edi t CPoi nt Undo u p0 = (pos, c l oseEnough)
 wher e
 pos, l ast Rel ease : : Poi nt 2B
 pos = i f B gr abbi ng (mouse u) l ast Rel ease
 l ast Rel ease =
 st epper p0 (r el ease ` snapshot _` pos . | .
 undo)

 c l oseEnough, gr abbi ng : : Bool B
 c l oseEnough =
 di st ance2 pos (mouse u) <* gr abDi st ance
 gr abbi ng =
 st epper Fal se (gr ab - => Tr ue
 . | . r el ease - => Fal se)

 gr ab, r el ease : : Event ()
 gr ab = l bp u ` whenE` cl oseEnough
 r el ease = l br u ` whenE` gr abbi ng

 gr abPos, undo : : Event S. Poi nt 2
 gr abPos = gr ab ` snapshot _` pos
 undo = st acker gr abPos (char Pr ess ' \ ^ Z' u)

Undoing works correctly in this new version. See Figure 4.

Lessons

• The interface to st acker is that of a service, rather than a
data structure. To form request channels, pass one or more
event argument in to the service function. To get results out,
return one or more events. Encapsulate internal state by
means of locally defined behaviors and events.

• By generalizing a specific requirement (undo) to a more gen-
eral service (a polymorphic stacker), we avoiding complicat-
ing the point editor and we made a very reusable tool. The
curve editor in next section benefits from this decision.

• For incremental changes, use function-valued events and
st epAccum, and leave the accumulation to Fran.

Figure 4. editCPointUndo

9. CURVE EDITING WITH UNDO

Unfortunately, the control point editor in the previous section is
not appropriate for making a curve editor with undo. The prob-
lem is that each control point has its own undo stack. When the
user presses control-Z, all moved control points will back up.

We can fix this problem by moving the undo stacking out of the
point editor, where it is replicated, into the curve editor. The
point editors can no longer determine the undo event by them-
selves, so they will instead be told as an argument. In addition,
since the curve editor will be doing the stacking, the point editor
must return the formerly private gr ab event. No other changes
are required.

 edi t CPoi nt Undo : : User - > Event S. Poi nt 2
 - > S. Poi nt 2
 - > (CPoi nt , Event S. Poi nt 2)
 edi t CPoi nt Undo u undo p0 =
 ((pos, c l oseEnough) , gr abPos)
 wher e
 pos = i f B gr abbi ng (mouse u) l ast Rel ease
 l ast Rel ease =
 st epper p0 (r el ease ` snapshot _` pos . | .
 undo)

 c l oseEnough =
 di st ance2 pos (mouse u) <* gr abDi st ance
 gr abbi ng = st epper Fal se (gr ab - => Tr ue
 . | . r el ease - => Fal se)

 gr ab = l bp u ` whenE` cl oseEnough
 r el ease = l br u ` whenE` gr abbi ng
 gr abPos = gr ab ` snapshot _` pos

The new curve editor below stacks the position of a point being
moved, together with which point. The individual control point
grab events are tagged each with its index and then combined with
anyE, which is the “ . | . ” operator applied to lists of events.
The resulting cur veGr ab event is used for stacking, and the
resulting undo event is then filtered for each control point, using
the suchThat event operator. Only undos with the appropriate
index are passed through, and the indices are dropped.9

 t ype UndoRecor d = (I nt , S. Poi nt 2)

 edi t Cur veUndo : : [S. Poi nt 2] - > User - > [CPoi nt]
 edi t Cur veUndo i ni t Poi nt s u = cpoi nt s
 wher e
 - - Tag and mer ge t he CPoi nt gr ab event s
 cur veGr ab : : Event UndoRecor d
 cur veGr ab =
 anyE (zi pWi t h t ag i ndi ces poi nt Gr abs)
 wher e
 - - pai r i wi t h e' s occur r ence dat a
 t ag i e = e ==> (i ` pai r `)

 i ndi ces = [1 . . l engt h i ni t Poi nt s]

9 Haskellisms: The function zi pWi t h is a variant of map for

functions of two arguments. The operator "." means function
composition. An infix operator, such as "==" and ` pai r ` be-
low, may be surrounded by parentheses and given an argument
on the left or right, yielding a function that takes the missing ar-
gument and applies the operator.

Figure 5. editor with undo

 - - The undo event : st ack cur ve gr abs and
 - - t r y t o r est or e on cont r ol - Z' s
 undo : : Event UndoRecor d
 undo = st acker cur veGr ab (char Pr ess ' \ ^ Z' u)

 - - Edi t an i ndexed CPoi nt .
 edi t CP : : I nt - > S. Poi nt 2
 - > (CPoi nt , Event S. Poi nt 2)
 edi t CP i p0 = edi t CPoi nt Undo u undoThi s p0
 wher e
 - - Undo i f a poi nt t agged i comes of f
 - - t he undo st ack. Dr op t ag.
 undoThi s =
 undo ` suchThat ` ((== i) . f st) ==> snd

 - - Appl y edi t CP t o cor r espondi ng i ndi ces
 - - and i ni t i al poi nt s, and spl i t (unzi p)
 - - t he r esul t i ng cpoi nt s and gr abs i nt o t wo
 - - l i s t s.
 (cpoi nt s, poi nt Gr abs) =
 unzi p (z i pWi t h edi t CP i ndi ces i ni t Poi nt s)

This new curve editor correctly supports undoing. See Figure 5.

Lessons

• As with st acker , the use of events as arguments and return
values in edi t CPoi nt sets up communication channels be-
tween concurrent activities, while local definitions serve to
insulate each from irrelevant details in the other's inner work-
ings. In fact, exactly this mechanism is used to communi-
cate user interaction to an animation. A User value is es-
sentially an event over values of type User Act i on.

• Event tagging and event filtering are dual techniques, used to
merge and separate sets of events. They allow one program
component (edi t Cur veUndo here) to act as a “post of-
fice” , collecting and routing messages.

10. SAVING CURVES

We next add the ability for the user to save an edited curve, by
pressing the ‘s’ key, or by closing the editor window. The editor
will assure the user that the curve is being saved, by displaying a
spinning message, thanks to the following function, which takes a
message and an event that indicates when to save, and yields an
animated image. 10

 spi nMessage : : St r i ng - > Event a - > I mageB
 spi nMessage message saveE =
 st r et ch saveSi ze $
 t ur n saveAngl e $
 wi t hCol or (col or HSL saveAngl e 0. 5 0. 5) $
 st r i ngI m message
 wher e
 saveDur = 1. 5 - - ar t i f i c i al dur at i on
 s i nceSave = swi t cher saveDur (
 t i meSi nceE saveE)
 - - Fr act i on r emai ni ng (one down t o zer o)
 saveLef t = (saveDur - s i nceSave) / saveDur
 ` max` 0
 saveSi ze = 2. 5 * saveLef t
 saveAngl e = 2 * pi * saveLef t

10 Haskellism: An alternative notation for function application is

the right-associative, infix operator “$” . Because it has very
low syntactic precedence, it is sometimes used to reduce the
need for parentheses.

The amount of time since the last save event is defined to be
saveDur initially, and changes each time a save occurs to the
(time-varying) length of time since that occurrence. The
t i meSi nceE function is not built into Fran, but may be defined
easily, as follows.

 t i meSi nceE : : Event a - > Event Ti meB
 t i meSi nceE e = e ` snapshot _` t i me ==> si nce
 wher e
 s i nce : : Ti me - > Ti meB
 s i nce t 0 = t i me - const ant B t 0

At each occurrence of a given event e, the time is snapshotted to
determine the occurrence time, which is passed to the si nce
function, which converts it from a static number into a constant
time-valued behavior (with const ant B), and then subtracts the
result from the running time.

By using “snapshot _” , “==>” and a few other basic event
operators, we can create highly reusable building blocks like
t i meSi nceE, or very task-specific events like si nceSave

The swi t cher function is like st epper , but takes an initial
behavior and a behavior-valued event yielding behaviors to switch
to. In fact, st epper is defined simply in terms of swi t cher ,
using const ant B to turn static values into constant behaviors,
as follows.

 swi t cher : : Behavi or a - > Event (Behavi or a)
 - > Behavi or a

 st epper x0 e = swi t cher (const ant B x0) (
 e ==> const ant B)

To see spi nMessage work, the following definition use the
message “goodbye” and restart whenever a key is pressed, as
shown in Figure 6.

 spi nMessageTest u =
 spi nMessage " goodbye" (keyPr essAny u)

The curve editor becomes more complicated in order to accom-
modate saving curves. For one thing, we use a more general vari-
ant of di spl ayU:

 di spl ayUI O : :
 (User - > (I mageB, Event (I O ()))) - > I O ()

The argument to di spl ayUI O constructs not only an image
animation, but also an action-valued event. On each occurrence
of the event, the corresponding action is executed. In this case,

Figure 6. spinM essageTest

the action saves a curve snapshot in a file. Here is the new editor
definition, followed by some brief explanation. Figure 7 shows
the execution.

edi t or 2 : : St r i ng - > I O ()
edi t or 2 f i l eName = do
 i ni t Poi nt s <- l oad f i l eName
 di spl ayUI OMon (edi t Render Save i ni t Poi nt s)
 wher e
 edi t Render Save i ni t Poi nt s u =
 (spi nMessage " Savi ng . . . " saveNow
 ` over ` r ender Cur ve xPoi nt s
 ` over ` gr aphPaper
 , doSave)
 wher e
 xPoi nt s = edi t Cur ve i ni t Poi nt s u
 pt sB = bLi st ToLi st B (map f st xPoi nt s)
 saveNow = char Pr ess ' s ' u . | . qui t u
 doSave = saveNow ` snapshot _` pt sB
 ==> save f i l eName

Some explanation:

• The animation part of edi t Render Save, as used by di s-
pl ayUI O, is the spinning message animation overlaying the
rendering of the curve being edited. The animated message
“Saving ...” is shown when saveNow occurs, which is de-
fined to be whenever the user presses the ‘s’ key or closes the
window.

• The action-valued event doSave also depends on
saveNow. At each occurrence, the list of curve points is
snapshotted, and passed as the second argument to the save
function, which gets the original file name as its first argu-

ment. Snapshotting the control points is a bit tricky. Since
r ender Poi nt s creates a list of pairs, we extract the first
half of each pair (via “map f st ”), and convert the resulting
list of behaviors into a behavior over lists.

11. RELATIVE MOTION

The previous versions had a bug: control points recenter on the
mouse when grabbing. Consequently, two control points can
easily become permanently stuck together:

The problem is that the control point's position is defined to be
equal to the mouse's while the control point is being grabbed:

 pos = i f B gr abbi ng (mouse u) l ast Rel ease
 l ast Rel ease = st epper p0 (
 r el ease ` snapshot _` pos)

Instead, we would like pos to be given the same movement as the
mouse relative to the locations at the time of grabbing. The
following revised definition achieves this relative motion.

edi t CPoi nt : : User - > S. Poi nt 2 - > CPoi nt
edi t CPoi nt u p0 = (pos, c l oseEnough)
 wher e
 pos = swi t cher (const ant B p0) (
 gr ab ` snapshot ` mouse u ==> r el Mot i on
 . | . r el ease ==> const ant B)
 wher e
 r el Mot i on (p, mp) =
 const ant B p . +^
 (mouse u . - . const ant B mp)

 gr ab = l bp u ` whenE` c l oseEnough
 ` snapshot _` pos

Figure 7. Editor with curve saving

 r el ease = l br u ` whenE` gr abbi ng
 ` snapshot _` pos
 gr abbi ng = st epper Fal se (
 gr ab - => Tr ue
 . | . r el ease - => Fal se)
 c l oseEnough =
 di st ance2 pos (mouse u) <* gr abDi st ance

For convenience, we have changed the gr ab and r el ease
events to contain the snapshotted point's position. The new defini-
tion of pos additionally snapshot the mouse's position. It then
feeds the resulting pair to r el Mot i on, which adds the control
point snapshot to the vector difference between the mouse posi-
tion and the snapshot of the mouse position. Thus the control
point gets the same relative motion as the mouse. The other posi-
tion-changing event is the control point's r el ease, which gets
converted from a static point to a constant behavior.

Aside: by convention, names end in “_” indicate a function that
forgets something, and have a nonforgetful version. For example,
the nonforgetful snapshot function has the following declara-
tion.

 snapshot : : Event a - > Behavi or b
 - > Event (a, b)

The forgetful version used in the previous editor versions is de-
fined in terms of the nonforgetful version, as follows, where snd
extracts the second member of a pair.

 snapshot _ : : Event a - > Behavi or b - > Event b
 e ` snapshot _` b = e ` snapshot ` b ==> snd

Event operators like snapshot , whenE and “==>” are all left-
associative and of equal precedence so that they may be cascaded
without parentheses, as in this definition and the most recent defi-
nition of pos within edi t CPoi nt .

12. RELATED WORK

Esterel [3][2] is a language for synchronous concurrent program-
ming, especially useful in real-time programming. It adopts a
synchronous model of concurrency, rather than the more popular
asynchronous models, as in CSP [16]. Berry and Gonthier [3]
point out that “deterministic concurrency is the key to the modular
development of reactive programs and ... is supported by synchro-
nous languages such as Esterel.” Communication is based on a
instantaneous broadcast model. In contrast, asynchronous models
lead to competition for communication, by removing queued
events, which leads to nondeterminism. Fran shares these basic
properties of instantaneous, synchronous, broadcast communica-
tion and the consequent determinism. Unlike Esterel, however,
Fran has an additional continuous model of time (which is not the
focus of this paper). Another difference is that Esterel has an ex-
tremely efficient implementation, based on compilation of concur-
rent programs into deterministic sequential automata. Perhaps the
most obvious difference is that Esterel is an extension of impera-
tive programming, while Fran adopts a functional style.

Like Esterel, Lustre [15] and Signal [14] are based on discrete,
synchronous, concurrent programming models, and have efficient
implementations based on compilation into sequential automata.
Unlike Esterel, they are declarative, and so Fran is more closely
related to them. Lustre has counterparts to several of the primitive
and derived constructs in Fran, including when, and variants of

st epper , and self-snapshotting behaviors (Lustre's “pr e” opera-
tor). The feel is different from Fran, due to the absence of con-
tinuous behaviors. Lucid Synchrone [6] is even more closely
related. It is quite similar to Lustre, but is embedded in the host
language Objective CAML.

CML (Concurrent ML) formalized synchronous operations as
first-class, purely functional, values called “events” [27]. Fran's
event operators “ . | . ” and “==>” correspond to CML's choose
and wr ap functions. Also like Fran, CML embeds its event vo-
cabulary in an existing programming language. There are sub-
stantial differences, however, between the meaning given to
“events” in these two approaches. In CML, events are ultimately
used to perform an act i on, such as reading input from or writing
output to a file or another process. In contrast, our events are used
purely for the values they generate. These values often turn out to
be behaviors, although they can also be new events, tuples, func-
tions, etc. In addition, CML is built on a CSP-like nondeterminis-
tic rendezvous model for communication, rather than instantane-
ous broadcast. Similarly, Concurrent Haskell [22] adds a small
number of primitives to Haskell, and then uses them to build sev-
eral higher-level concurrency abstractions. Unlike the Esterel
family of languages (and Fran), CML and Concurrent Haskell add
concurrency nondeterministically.

Squeak [5] was a small language in the CSP tradition, designed to
simplify development of user interfaces. Like the Esterel family
of languages, Squeak compiles into an efficient sequential state
machine. NewSqueak [25] extended the ideas in Squeak to a full
programming language, having a C-like syntax, and anonymous
functions. Pike then built a complete window system in fewer
than 300 lines of NewSqueak [25].

Scholz described a “monadic calculus of synchronous imperative
streams” that has a stream type, somewhat similar to Fran's behav-
iors, but based on a discrete model of time [30]. Its imperative
nature allows one to perform side effects at any level of a behav-
ior, while Fran imposes a discipline, allowing side effects only
through action-valued events.

Fran has been used as the foundation of vision processing [1],
robot control [21][20], and a mostly-functional GUI toolkit [28].

13. FUTURE WORK

The example presented in this paper is of modest complexity.
Examples that are more ambitious will probably suggest im-
provements in the vocabulary of events, as well as shed more light
on design methodology.

Efficient implementation of Fran continues to be a challenging
problem. The embedding of Fran in Haskell gives rise to consid-
erable flexibility and expressiveness, as well as a reasonably sim-
ple implementation, but has been more difficult to optimize than
we expected. In contrast, the efficiency of the Esterel languages is
quite impressive. See [10] for a discussion of several approaches
to implementing Fran. We have also experimented with a promis-
ing fundamentally imperative implementation, described very
briefly in [23] and [28]. Debugging and performance analysis are
also serious problems in any very high level paradigm, because of
the large gap between the programmer's model and the program's
execution.

Although Fran is embedded in Haskell, which is a very expressive
programming language, we do not propose Fran/Haskell as an

application programming language. We believe that pragmatics
require a more modest approach, namely using Fran to generate
Haskell-based software components [24]. This language hybrid
approach allows, for instance, the curve editor to rely on the fa-
cilities of a mainstream programming language to provide a mod-
ern graphical user interface, file I/O, etc.

14. CONCLUSIONS

Declarative event-oriented programming makes it convenient to
encapsulate significant portions of an interactive application into a
set of high level, reusable building blocks. These events appear to
capture important aspects of an application's design directly, and
so may be useful in reducing the cost of creation and maintenance
of modern interactive software.

As software becomes increasingly powerful, its internal complex-
ity tends to grow. As Edsger Dijkstra pointed out in his Turing
Award lecture, the ideas we can express, and even think, are
greatly influenced by the languages we use. In order to achieve
our software-building ambitions, we therefore need languages that
support abstraction and factoring of algorithms to form “ intellec-
tually managable programs”.

One hopes that tomorrow's programming languages will
differ greatly from what we are used to now: to a much
greater extent than hitherto they should invite us to re-
flect in the structure of what we write down all abstrac-
tions needed to cope conceptually with the complexity of
what we are designing. [7]

REFERENCES

[1] Reid, A., J. Peterson, G. Hager, P. Hudak: Prototyping Real-
Time Vision Systems: An Experiment in DSL Design, ICSE
’99. ht t p: / / haskel l . or g/ f r ob/ i cse99/ -
v i s i onpaper . ps

[2] Berry, G., The Esterel v5 Language Primer. f t p: / / f t p. -
est er el . or g/ est er el / pub/ paper s/ pr i mer . pdf

[3] Berry, G. and G. Gonthier, The Synchronous Programming
Language ESTEREL: Design, Semantics, Implementation,
Science of Computer Programming, vol. 19, no.2 (1992) 83-
152. f t p: / / f t p- sop. i nr i a. f r / mei j e/ -
est er el / exampl es/ hdl c. ps. gz

[4] Bird, R. and P. Wadler, Introduction to Functional Pro-
gramming, Prentice-Hall, International Series in Computer
Science, 1987.

[5] Cardelli, L. and R. Pike, Squeak: A Language for Communi-
cating with Mice, Computer Graphics (SIGGRAPH '85 Pro-
ceedings), Vol. 19, pp. 199-204, July 1985.

[6] Caspi, P. and M. Pouzet, Lucid Synchrone, version 1.01
Tutorial and reference manual. ht t p: / / f t p. l i p6. -
f r / l i p6/ sof t s/ l uci d- synchr one/ l s-
1. 01/ manual . ps. gz

[7] Dijkstra, E. W., The Humble Programmer (Turning Award
lecture), Communications of the ACM, 15(10), October
1972.

[8] Elliott, C., An Embedded Modeling Language Approach to
Interactive 3D and Multimedia Animation, IEEE Transac-
tions on Software Engineering, 25(3), May/June 1999, pp
291-308. ht t p: / / r esear ch. mi cr osof t . com-
/ ~conal / paper s/ t se- model ed- ani mat i on

[9] Elliott, C., Composing Reactive Animations, Dr. Dobb's
Journal, July 1998. Expanded version with animated GIFs:
ht t p: / / r esear ch. mi cr osof t . com/ ~conal / -
f r an/ t ut or i al . ht m

[10] Elliott, C., Functional Implementations of Continuous Mod-
eled Animation. Proceedings of PLILP/ALP '98. Expanded
version: ht t p: / / r esear ch. mi cr osof t . com/ -
scr i pt s/ pubDB/ pubsasp. asp?Recor dI D=164

[11] Elliott, C., From Functional Animation to Sprite-Based Dis-
play. Proceedings of PADL '99. Expanded version:
ht t p: / / r esear ch. mi cr osof t . com/ scr i pt s/ -
pubDB/ pubsasp. asp?Recor dI D=190

[12] Elliott, C. and P. Hudak, Functional Reactive Animation, in
Proceedings of the 1997 ACM SIGPLAN International Con-
ference on Functional Programming,
ht t p: / / r esear ch. mi cr osof t . com/ ~conal / -
paper s/ i cf p97. ps

[13] Flanagan, D., Java Examples in a Nutshell: A Companion
Volume to Java in a Nutshell. Published by O'Reilly & Asso-
ciates, 1997.

[14] Gautier, T., P. le Guernic and L. Besnard, SIGNAL: A De-
clarative Language for Synchronous Programming of Real-
Time Systems, Functional Programming Languages and
Computer Architecture, pp. 257-277, Springer-Verlag, 1987.

[15] Halbwachs, N., P. Caspi, P. Raymond and D. Pilaud, The
Synchronous Data Flow Programming Language LUSTRE,
Proceedings of the IEEE, 79(9), pp. 1305-1320, September
1991.

[16] Hoare, C. A. R., Communicating Sequential Processes, Com-
munications of the ACM, 21(8), pp. 666-677, August 1978.

[17] Hudak, P. and J. H. Fasel, A Gentle Introduction to Haskell.
SIGPLAN Notices, 27(5), May 1992. See
ht t p: / / haskel l . or g/ t ut or i al / i ndex. ht ml for
latest version.

[18] Hudak, P., S. L. Peyton Jones, and P. Wadler (editors), Re-
port on the Programming Language Haskell, A Non-strict
Purely Functional Language (Version 1.2). SIGPLAN No-
tices, March, 1992. See ht t p: / / haskel l . or g/ -
r epor t / i ndex. ht ml for the latest version.

[19] Hughes, J., Why Functional Programming Matters. The
Computer Journal, 32(2), pp. 98-107, April 1989.
ht t p: / / www. cs. chal mer s. se/ ~r j mh/ -
Paper s/ whyf p. ps .

[20] Peterson, J., G. D. Hager, and P, Hudak, A Language for
Declarative Robotic Programming, ICRA ’99.
ht t p: / / haskel l . cs. yal e. edu/ f r ob/ i cr a99/ -
i cr a99. ps

[21] Peterson, J., P. Hudak, and C. Elliott, Lambda in Motion:
Controlling Robots With Haskell. Proceedings of PADL '99.
ht t p: / / haskel l . or g/ f r ob/ padl 99/ padl 99. ps

[22] Peyton Jones, S., A. Gordon, and S. Finne, Concurrent Has-
kell, 23rd ACM Symposium on Principles of Programming
Languages, pp. 295-308, 21-24 January 1996,
ht t p: / / r esear ch. mi cr osof t . com/ ~si monpj / -
paper s/ concur r ent - haskel l . ps. gz .

[23] Peyton Jones, S., S. Marlow, and C. Elliott, Stretching the
storage manager: weak pointers and stable names in Haskell,
IFL'99. ht t p: / / r esear ch. mi cr osof t . com/ -
User s/ s i monpj / paper s/ weak. ps. gz

[24] Peyton Jones, S., E. Meijer, and D. Leijen, Scripting COM
Components in Haskell, Software Reuse 1998, ht t p: / / -
www. dcs. gl a. ac. uk/ ~si monpj / com. ps. gz .

[25] Pike, R., Newsqueak: A Language for Communicating with
Mice, CSTR143, Bell Labs, March 1989,
ht t p: / / cm. bel l - l abs. com/ cm/ cs/ cst r / -
143. ps. gz .

[26] Pike, R., A Concurrent Window System, Computing Sys-
tems, 2(2), pp. 133-153, spring 1989.

[27] Reppy, J. H., CML: A Higher-order Concurrent Language.
Proceedings of the ACM SIGPLAN '91 Conference on Pro-
gramming Language Design and Implementation, pages
293-305, 1991.

[28] Sage, M., FranTk - A declarative GUI language for Haskell.
To appear at ICFP '00.

[29] Schechter, G., C. Elliott, R. Yeung, and S. Abi-Ezzi, Func-
tional 3D Graphics in C++ - with an Object-Oriented, Multi-
ple Dispatching Implementation, in Proceedings of the 1994
Eurographics Object-Oriented Graphics Workshop. Springer
Verlag, ht t p: / / r esear ch. mi cr osof t . com/ -
~conal / paper s/ eoog94. ps

[30] Scholz, E., Imperative Streams—A Monadic Combinator
Library for Synchronous Programming, ICFP ‘98
ht t p: / / www. i nf . f u- ber l i n. de/ ~schol z/ I cf p-
Publ i shed- Fi nal . ps

