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ABSTRACT 

Events play an important role in the construction of most software 
that involves interaction or simulation.  Typically, programmers 
make use of a fixed set of low level events supplied by a window 
system, possibly augmented with timers and UI components.  
Event handling generally involves some interpretation of these 
event occurrences, followed by external actions or modifications 
to program state. 

It is possible to extend the event paradigm by using an algebra of 
events to synthesize new kinds of events tailored specifically for a 
domain or application.  In turn, these new events may be used to 
synthesize yet others, and so on, to an arbitrarily sophisticated 
degree.  This programming paradigm, which we call event-
oriented programming, aids in the factoring of programs into 
understandable and reusable pieces. 

We propose a declarative approach to event-oriented program-
ming, based on a powerfully expressive event language with a 
lightweight notation.  We illustrate this new approach through the 
design of an interactive curve editor. 

1. INTRODUCTION 

The notion of event is central in the construction of most software 
that involves interaction or simulation. Such software is typically 
organized around a centralized event queue and the event loop 
that removes and acts on events. For example, under Microsoft 
Windows®, the operating system posts messages describing oc-
currences of user interaction events, such as mouse clicks, key 
presses, and window resizing. A Windows program repeatedly 
removes a message from the queue, and passes it to the window 
procedure, which examines its type and invokes appropriate ap-
plication code. It is also often useful to add higher-level event 
types. Sometimes, as in the case of menus, buttons and dialog 
boxes, these new types are packaged up into reusable widget li-
braries. In other cases, as in collisions during a game, the higher-
level events are about an application's content rather than its user 
interface.  

While the notion of an event is natural in many applications, the 
support provided by modern window systems has some serious 
weaknesses that interfere with program construction and mainte-
nance. Some of these weaknesses stem from the fact that events 
are often just symbols with no intrinsic meaning.  

Consider the event of the user pressing the left mouse button. In 
Windows, this event is called WM_LBUTTONDOWN, and each 
occurrence contains a snapshot of the mouse position and the state 
of the control and shift keys. If an application should respond to 
all left button presses that its window receives, the programmer 
will write some window procedure code that looks like the follow-
ing:  
 
  swi t ch ( msg)  {  
    . . .  
    case WM_LBUTTONDOWN:  
      keySt at e = wPar am;   
      xPos = LOWORD( l Par am) ;   
      yPos = HI WORD( l Par am) ;   
      . . .   / /  r esponse goes her e 
      br eak;  
    . . .  
  }  

Suppose that an event of interest is one of the following:  

• the user pressing an arrow key;  

• the left button being pressed while the mouse is over an ob-
ject of interest;  

• the same example, but with the event data being an index of 
the selected object;  

• the right and left buttons being pressed within 50 millisec-
onds of each other; or  

• the collision of two objects, with the event data being the 
instantaneous relative velocity.  

The nature of events as intrinsically meaningless identifiers pre-
vents any of these examples from being encapsulated as an event. 
Of course, an application designer can still conceive of these 
events and implement detection and response to them.  In the 
implementation, however, the represented events remain trivially 
simple, while the response code and supporting data structures 
and state variables become increasingly complex. 

GUI frameworks like Microsoft's MFC® and Visual Basic® help 
somewhat by breaking up event handling into separate methods, 
each with its own, tailored interface. However, the set of possible 
event response methods is still limited to the same generic set.  
Moreover, all consequences of any given event are handled in a 
single handler method. 

 

 

 



 

  

An object-oriented representation of events, as in the Java 1.1 
AWT event model, addresses some of these problems.  Event 
response programming is even less monolithic than in MFC or 
Visual Basic, since a program may conveniently separate different 
responses to an event into different event “ listeners”  that may be 
registered and unregistered with an event, dynamically [13]. 
When an event occurs, a corresponding method is automatically 
invoked on each registered listener.  The use of inner classes, a 
feature added in Java 1.1, is a considerable notational help.  It is 
also possible to define arbitrary new kinds of events.  However, 
doing so is tedious, because the framework's AWTEvent -
Mul t i cast er  class (which manages listener lists) can only 
supply a fixed set of overloadings for the listener add and r e-
move methods.  New kinds of events may easily have signatures 
that do not match any of the given overloadings.  In such a case, 
the programmer of the new kind of event must also implement all 
of the list management needed to support multiple listeners. 

This paper introduces an alternative paradigm we call declarative 
event-oriented programming (DEOP) that addresses the short-
comings mentioned above. DEOP provides an algebra of event 
combinators with a simple semantic model and embedded in a 
functional host language.  The semantics of events is purely com-
positional, relying in no way on names. 

These ideas in this paper have been implemented in Fran (“Func-
tional reactive animation”), a library for use with the functional 
programming language Haskell [17].  Previous papers have pre-
sented Fran’s basic building blocks for reactive animation [12], 
emphasized behaviors rather than events [9], application to 3D 
graphics [8], language embedding [8], and implementation 
[10][11].  The main new contribution of this paper is the explicit 
focus on declarative event-oriented programming.  We attempt to 
convey this new paradigm for programming interaction applica-
tions, illustrate its use by means of a running example, and con-
trast it with the dominant but ill-structured approach, which is 
based on imperative callback procedures. 

2. DECLARATIVE EVENT-ORIENTED  
PROGRAMMING 

The essential idea in this paper is to enrich the popular notion of 
events into a powerfully expressive algebra that includes not only 
primitive events, but also operators for building up more complex 
events from simpler ones. Benefits of this approach include the 
following. 

• Modularity/reuse. Programmers can factor tasks involving 
interactivity and reactivity into easily understood pieces, and 
develop libraries of reusable interaction components. Event 
handling is factored into a set of independent, incremental 
enhancements, encapsulated within the events that make up a 
program.  

• Lightweight notation. Programs describe high level events as 
what they are, not as sequences of steps to decode event 
data, test conditions, maintain global data structures, post 
events, etc.  The notational style is algebraic, composing op-
erators in succinct nested expressions, as in commonplace 
calculations on numbers. 

• Flexible naming. Events are completely independent from 
their naming, which fully exploits the naming mechanisms 

supported by a programming language, including lexical 
scoping, inclusion in objects and data structures, selective 
exportation from modules, and linking. Accidental name col-
lisions are caught by the compiler or linker. As importantly, 
an event may be anonymous, being described merely in the 
construction of a more complex event. (The same property 
for numerical computation is a key advantage of high-level 
programming languages over assembly language.)  

• Safety. Definition and use of events are type-checked at com-
pile time. In contrast, posting and decoding a Windows event 
requires unsafe type casting to and from the generic l Par am 
and wPar am.  

In contrast with the conventional approach, the events described 
in this paper have intrinsic meaning, based on a simple but quite 
general model.  The meaning of an event is a (possibly infinite) 
sequence of occurrences, each of which is a time/value pair. 1 
Another notion, useful in conjunction with events, is the behavior, 
whose meaning is simply a function of continuous time. 

The event-forming operators discussed in this paper fall into the 
following categories:  

• transforming an event's data;  

• forming the union of two events; and  

• filtering out some event occurrences.  

There are other operators as well, not illustrated in this paper:  

• monitoring time-varying conditions; and  

• sequential chains of events. 

3. THE EXAMPLE 

In the next several sections, we will build up an interactive “poly-
Bezier”  curve editor. Bezier curves are popular in computer 
graphics and manufacturing because they are well behaved and 
visually pleasant. Each curve is defined by four control points. 
The first and fourth lie at the curve's endpoints, while the middle 
two typically lie off of the curve. These inner control points allow 
the user to tug at the curvature. A poly-Bezier curve is the union 
of a sequence of simple Bezier pieces, in which the first control 

                                                                 
1 For this reason, “event source”  may be a more appropriate name.  

Also, note that this model is a departure from that given in [12], 
which modeled an event as a single occurrence.  The stream 
model allows much more powerful encapsulation. 

 

Figure 1. Poly-Bezier  curve 



 

  

point of each piece after the first one coincides with fourth control 
point of the previous piece, as in Figure 1. 

4. RENDERING CONTROL POINTS 

The first step in our development is an editor for a single control 
point. We will represent a control point as a pair containing a 
trajectory and a status flag indicating whether it may be grabbed. 
 
  t ype CPoi nt  = ( Poi nt 2B,  Bool B)  

As a convention, the Fran type names “Poi nt 2B” , “Bool B” , etc 
are synonyms for “Behavi or  Poi nt 2” , “Behavi or  Bool ” , 
etc, meaning time-varying 2D points, Booleans, etc. 

We will want a control point's appearance to indicate whether it 
can be grabbed.  Because this is the first example code, however, 
we will first consider how to render just a point, without this indi-
cation.  We “ render”  a control point, i.e., turn it into an image 
animation (I mageB), simply as a small shape, moved according 
to the given trajectory. The shape is a star when “excited”  (grab-
bable) and a circle otherwise.2 
 
  r ender CPoi nt  : :  CPoi nt  - > I mageB  
  r ender CPoi nt  ( pos,  exci t ed)  = 
    moveTo pos (  
      st r et ch poi nt Si ze (  
        i f B exci t ed st ar  c i r c l e) )   
 
  poi nt Si ze : :  Real B 
  poi nt Si ze = 0. 07 

Functions like moveTo, st r et ch, and r ender CPoi nt  oper-
ate on time-varying values (behaviors). One may think of these 
operations as building up a “ temporal display list”  to be traversed 
iteratively by Fran’s run-time system during presentation. 

Lesson 
Motion and animation are not the byproducts of program execu-
tion, as in traditional imperative programming, but first-class val-
ues, expressed directly. 

5. A SIMPLE CONTROL POINT EDITOR 

Next comes the control point editor, which takes a static (not 
time-varying) start point and user input stream (represented in 
Fran by a value of type User ), and synthesizes an interactive 
control point. The user can grab the control point with the left 

                                                                 
2 Haskellisms: The first line of this example is a type declaration 

for r ender CPoi nt , saying that it is a function from CPoi nt  
values to animations.  Although in almost all cases, the Haskell 
compiler or interpreter can infer types automatically, we give 
types explicitly to clarify the examples.  In place of formal pa-
rameters, one may give patterns to be matched.  In the second 
line, pattern matching pulls apart the single, pair-valued argu-
ment to r ender CPoi nt , extracting the components pos  and 
exci t ed.  Application of a function f  to  arguments x  , y , ... is 
written simply "f  x  y  . . . ".  For example, the body of the 
definition of r ender Poi nt  is the application of the Fran 
moveTo function to two arguments, with the first being pos  
and the second being the application of the function st r et ch 
to poi nt Si ze and ci r c l e. 

mouse button when the mouse cursor is close enough to it (within 
two radii).3 
 
  edi t CPoi nt  : :  User  - > S. Poi nt 2 - > CPoi nt  
  edi t CPoi nt  u p0 = ( pos,  c l oseEnough)  
   wher e 
     pos,  l ast Rel ease : :  Poi nt 2B 
     pos = i f B gr abbi ng ( mouse u)  l ast Rel ease 
     l ast Rel ease =  
       st epper  p0 ( r el ease ` snapshot _`  pos)  
 
     c l oseEnough,  gr abbi ng : :  Bool B 
     c l oseEnough =  
       di st ance2 pos ( mouse u)  <*  gr abDi st ance 
     gr abbi ng = st epper  Fal se ( gr ab    - => Tr ue  
                          . | .   r el ease - => Fal se)  
 
     gr ab,  r el ease : :  Event  ( )  
     gr ab    = l bp u ` whenE`  cl oseEnough 
     r el ease = l br  u ` whenE`  gr abbi ng 
 
  gr abDi st ance : :  Real B 
  gr abDi st ance = 2 *  poi nt Si ze 

Here are brief, informal descriptions of each definition within the 
“wher e”  clause, from top to bottom. Technical details follow. 

• The position is defined as a behavior-level (time-varying) 
conditional: the mouse position when the user is grabbing, 
and the position of the last release otherwise.  

• The last release position is the start point at first, and then 
becomes a snapshot of the control point position whenever 
released.  

• The control point position is considered “close enough”  to 
grab when it is within gr abDi st ance (two radii) of the 
mouse's position. (The “<* ”  operator is the behavior-level 
version of the familiar less-than operator.  For most functions 
and operators on numbers, the usual name is overloaded to 
mean the behavior-level version as well.  In other cases, an 
asterisk or “B”  is added to the end of the usual name.)  

• The boolean grabbing behavior is piecewise constant (a “step 
function”), initially false. It becomes true whenever the user 
grabs the control point, and false when the user releases it.  

• The grab event is considered to occur when the user presses 
the left button when “close enough”.  

• Similarly, the release event is considered to occur when the 
user releases the left button while grabbing.  

                                                                 
3 Haskellisms: The first line in this example says that edi t -

CPoi nt  is a function that takes a user value and a static point, 
and yields a control point. (The "- >" type operator is right-
associative, so literally, edi t CPoi nt  takes one argument and 
produces a function that takes another argument.)  Function 
names made up of alphanumeric characters may be used as infix 
operators by surrounding them with backquotes, as in 
` whenE`  below.  Names made up of symbol characters, such 
as ". | . " below, are treated as infix by default. The trivial type 
"( ) " is similar to C's voi d type. Its one value contains no in-
formation. 

 



 

  

We can try out our simple control point editor by writing a  tester 
function.   This function combines edi t CPoi nt  and r ender -
CPoi nt , uses the static 2D origin as the starting position, and 
places the result over a white background.   Note that an “ interac-
tive animation”  is a function that maps user-input streams to an-
imations. 
 
  edi t CPoi nt Test  : :  User  - > I mageB 
  edi t CPoi nt Test  u = 
   r ender CPoi nt  ( edi t CPoi nt  u S. or i gi n2)  ` over `  
   whi t eI m 
 
  whi t eI m : :  I mageB 
  whi t eI m = wi t hCol or  whi t e sol i dI mage 

Figure 2 shows the result, with user input echoed at the bottom of 
the window.4 

The definition of edi t CPoi nt  above illustrates declarative 
event-oriented programming.  Some of the events are named 
(gr ab and r el ease), while others are expressed anonymously 
in the construction of the behaviors gr abbi ng and l ast Re-
l ease.  Although one may read these definitions idiomatically as 
in the informal explanation above, their meanings come precisely 
from the composition of independently meaningful operations.  
Consider first the definition of gr ab.   The function l bp maps a 
user value into an event each of whose occurrences indicates that 
the given user's left mouse button is being pressed.  (Recall that 
an event is a sequence of occurrences, each of which is a 
time/value pair.5)  There is no useful explicit data, so it has the 
following type declaration. 
 
  l bp : :  User  - > Event  ( )  

The function “whenE”  (here used in infix) acts to filter out some 
of the occurrences of an event. It allows through only those occur-
ring when a boolean behavior is true.  It has the following type 
declaration.6 

                                                                 
4 Figures like this one show snapshots of an animation. Read the 

top row from left to right, then the second row, and so on.  To 
save space, many intermediate frames have been removed. See 
ht t p: / / r esear ch. mi cr osof t . com/ ~conal / ppdp00 
for animated versions of all of the figures in this paper. 

5 Typically, early occurrences need to be accessible before later 
ones can be known, so the sequences must be represented lazily. 

6 Haskellism: In type declarations, non-capitalized names, like a 
here, are type variables, indicating polymorphism, i.e., the abil-

 
  whenE : :  Event  a - > Bool B - > Event  a 

The definition of gr abbi ng uses two more event-building op-
erators: “ - =>”  and “ . | . ” .  The “ - =>”  operator has higher syn-
tactic precedence (binding more tightly), and has type 
 
  ( - =>)  : :  Event  a - > b - > Event  b 

It replaces the value in every occurrence of an event with a given 
value.  Here, the value from gr ab, which is always the trivial 
value (of type “ ( ) ” ), is replaced by Tr ue, and the value from 
r el ease, also trivial, is replaced by Fal se, producing two new 
boolean events. 

The merge operator “ . | . ”  has type 
 
  ( . | . )  : :  Event  a - > Event  a - > Event  a 

Given events e1 and e2, the new event e1. | . e2 has as its oc-
currences the union of occurrences of e1 and e2.  (For simulta-
neous occurrences, order in e1 and e2 is preserved and those of 
e1 appear before those of e2 in the result.)  In our example, the 
merged event occurs with value Tr ue whenever the gr ab event 
occurs and with value Fal se whenever the r el ease event 
occurs.  The gr abbi ng boolean behavior is then defined by 
applying the st epper  function, which has the following type. 
 
  st epper  : :  a - > Event  a - > Behavi or  a 

The behavior it creates starts out with the value given by the first 
argument and changes with each occurrence of the event argu-
ment.  In this case, the gr abbi ng behavior starts Fal se and 
switches to Tr ue when the control point is grabbed and Fal se 
when the control point is released. 

Finally, the definition of l ast Rel ease illustrates the use of 
events to make behavior snapshots. The event function used is 
 
  snapshot _ : :  Event  a - > Behavi or  b - > Event  b 

An event “e ` snapshot _`  b”  occurs whenever e occurs, but 
its values are the values of b at the occurrence times.  In our ex-
ample above, the control point's position is snapshotted on each 
release, yielding a point-valued event, which is used to make the 
piecewise-constant l ast Rel ease behavior. 

Lessons 
This first example of declarative event-oriented programming 
illustrates a few lessons.  

• Separate the model from the presentation (here a Poi nt 2B 
and an I mageB, respectively).  

• Remember with snapshot _ and st epper .  

• Enrich and merge events with “ - =>”  and “ . | . ” . 

• Specialize with whenE.   

6. A FIRST CURVE EDITOR 

It is now a simple matter to put together a curve editor, represent-
ing curves as lists of control points.  First define the appearance of 
a curve: rendered control points over a blue poly-Bezier curve. 

                                                                                                           
ity to work with all types.  For instance, whenE applies to any 
kind of event and yields an event of the same type. 

 

 
Figure 2. editCPoint 



 

  

We use the Fran function over s  to overlay the list of rendered 
control points, and its binary version over , to combine with the 
Bezier image.7 
 
  r ender Cur ve : :  [ CPoi nt ]  - > I mageB 
  r ender Cur ve cpoi nt s = 
    over s ( map r ender CPoi nt  cpoi nt s)    ` over `  
    wi t hCol or  bl ue (  
     pol yBezi er  ( map f st  cpoi nt s) )  

Next, define a curve editor. (The edi t CPoi nt  function is being 
partially applied, yielding a function that is mapped over the ini-
tial points.) 
 
  edi t Cur ve : :  [ S. Poi nt 2]  - > User  - > [ CPoi nt ]  
  edi t Cur ve i ni t Poi nt s u =  
    map ( edi t CPoi nt  u)  i ni t Poi nt s 

Finally, put the pieces together: given an initial list of static 
points, make an interactive curve, render the result, and place it 
over a graph paper background. 
 
  edi t or  : :  [ S. Poi nt 2]  - > User  - > I mageB 
  edi t or  i ni t Poi nt s u =  
    r ender Cur ve ( edi t Cur ve i ni t Poi nt s u)  ` over `  
    gr aphPaper  

Figure 3 shows a sample use of edi t or .  

Lesson 
Look for smaller constituent problems (e.g., point editing), espe-
cially those repeated in the larger problem.  Solve the sub-
problems, test your solutions, and then compose them.  

                                                                 
7 Haskellisms: For any type a, the type [ a]  contains all lists 

whose members are all of type a.  Thus r ender Cur ve is a 
function from control point lists to image animations.  The map 
function takes a function and a list of values and yields a new 
list made up of the given function applied to each member of 
the given list. The f st  function extracts the first member of a 
pair, in this case each control point's position. 

7. A COMPARISON 

Consider how one might implement the curve editor in the event 
loop style, say under Windows. Preserving most of the conceptual 
structure of the version above, it might work as follows.  

• Declare a global array of control point state data structures, 
initialized when a curve file is loaded. Minimally, each state 
could consist of a point and a boolean, corresponding to 
l ast Rel ease and gr abbi ng respectively.  

• On WM_LBUTTONDOWN: For each control point, if its posi-
tion is close enough to the mouse position, set the grabbing 
flag to true.  

• On WM_LBUTTONUP: For each control point, if its grabbing 
flag is true, set its position to the current mouse position and 
set its grabbing flag to false.  

• On WM_TI MER: For each control point, if its grabbing flag is 
set, set its position. to the mouse's.  

• On WM_MOUSEMOVE: If any control point has its grabbing 
flag set, mark the window as needing to be repainted, which 
will generate a WM_PAI NT event. (A simpler, but less effi-
cient, alternative is to to generate WM_PAI NT events in re-
sponse to a timer or in "idle processing".)  

• On WM_PAI NT: First draw the graph paper background and 
the poly-Bezier curve. Then iterate through the control 
points. For each one, draw it at a position that is equal to the 
mouse's position if control point's grabbing flag is set, and 
equal to the l ast Rel ease point otherwise.  

Notice that this event loop version would be much less modular 
and concise than the version given in Sections 5 and 6. The com-
plexities of the point editor are exposed to the curve editor rather 
than neatly encapsulated. Consider what would happen if more 
features were added, such as sensitivity of the curve segments. 
The reactivity to user input of all kinds of elements would be 
mixed together in the single monolithic event loop.  

We can also compare to an object-oriented design.  In Java, such a 
design could represent the control point states as objects in a new 
CPoi nt  class derived from the appropriate event listener classes, 
and adding a di spl ay  method.  After these control point objects 
are created, they would be inserted into the appropriate listener 
lists.  The reactions sketched just above to WM_LBUTTONDOWN, 
etc would be moved into the CPoi nt  event handler methods. 

Like declarative programming, object-oriented design encourages 
explicit modeling of the conceptual entities in a task, moving 
complexity out of monolithic bodies of code and into well-
insulated pieces that may then be composed. However, object-
oriented programs typically embrace the imperative programming 
style within their methods, and in doing so compromise the prin-
ciple of modeling.  Moreover, object-oriented languages impose 
much more notational overhead. In this light, the style proposed 
in this paper may be seen as a stateless and extremely fine-grained 
form of object-orientation, with an unusually lightweight notation. 
(See [29] for a description of a fine-grained object-oriented im-
plementation of a predecessor of Fran.)  

 

Figure 3. editor  



 

  

8. CONTROL POINT EDITING WITH 
UNDO 

We now add the ability to undo an unlimited number of editing 
operations.  Undo can be implemented by maintaining a stack of 
information with which to reset the state to what it was just before 
the change.  Edits generate pushes and undos generate pops. 

Instead of building stack maintenance into our editor, we will 
implement a polymorphic, unbounded stack manager.  This stack 
manager is a sort of server, accepting push and pop requests, and 
providing replies to “ legitimate”  pop requests, i.e., those made 
when the stack is non-empty.  The stack itself is hidden in the 
stack manager's implementation.8 
 
  st acker  : :  Event  a - > Event  ( )  - > Event  a 
  st acker  push t r yPop =  
    l egi t Pop ` snapshot _`  headB st ack 
   wher e 
     l egi t Pop : :  Event  ( )  
     l egi t Pop = t r yPop ` whenE`  not B ( nul l B st ack)  
     - -  changeSt ack : :  Event  ( [ a]  - > [ a] )  
     changeSt ack = l egi t Pop - => t ai l   
      . | .  push     ==> ( : )  
     - -  st ack : :  Behavi or  [ a]  
     st ack = st epAccum [ ]  changeSt ack 

The definition works by maintaining a list-valued behavior called 
st ack , which is used and defined as follows.  

• The st acker  function returns an event whose occurrences 
contain a snapshot of the top of the stack at each legitimate 
pop.  

• A legitimate pop is an attempt when the stack is not empty.  

• The changeSt ack  event's values are functions from stacks 
to stacks.  A legitimate pop request leads to popping (via 
t ai l ), and a push with value x leads to pushing x (by par-
tially applying the Haskell cons function “ : ”  to x).  

• The stack starts out empty, and changes whenever change-
St ack  occurs.  The function associated with an occurrence 
of changeSt ack  is applied to the previous value of the 
stack, giving a cumulative effect. 

The “==>”  operator is similar to “ - =>” , but applies a given func-
tion to each occurrence value of its event argument.  It has the 
following type. 
 
  ( ==>)  : :  Event  a - > ( a - > b)  - > Event  b 

The function st epAccum builds a piecewise-constant behaviors 
by cumulatively applying occurrences of a function-valued event, 
and has is the following (polymorphic) type: 
 
  st epAccum : :  a - > Event  ( a - > a)  - > Behavi or  a 

Given the stacker function, it is now almost trivial to add undo to 
the control point editor.  The only changes (shown in bold) are to 
consider undo events to be releases, to push on every gr ab event, 

                                                                 
8 Haskellism: Lines beginning with “ - - ”  are comments.  Due to a 

restriction in Haskell's type system, the polymorphic types of 
changeSt ack  and st ack  cannot be given explicitly, so we 
insert them as comments. 

and try to undo when the user presses control-Z (as detected by 
the Fran function char Pr ess ). 
 
  edi t CPoi nt Undo : :  User  - > S. Poi nt 2 - > CPoi nt  
  edi t CPoi nt Undo u p0 = ( pos,  c l oseEnough)  
   wher e 
     pos,  l ast Rel ease : :  Poi nt 2B 
     pos = i f B gr abbi ng ( mouse u)  l ast Rel ease 
     l ast Rel ease = 
       st epper  p0 ( r el ease ` snapshot _`  pos . | .  
           undo)  
 
     c l oseEnough,  gr abbi ng : :  Bool B 
     c l oseEnough = 
       di st ance2 pos ( mouse u)  <*  gr abDi st ance 
     gr abbi ng = 
       st epper  Fal se ( gr ab    - => Tr ue  
                  . | .  r el ease - => Fal se)  
 
     gr ab,  r el ease : :  Event  ( )  
     gr ab    = l bp u ` whenE`  cl oseEnough 
     r el ease = l br  u ` whenE`  gr abbi ng 
 
     gr abPos,  undo : :  Event  S. Poi nt 2 
     gr abPos = gr ab ` snapshot _`  pos 
     undo = st acker  gr abPos ( char Pr ess ' \ ^ Z'  u)  

Undoing works correctly in this new version.  See Figure 4. 

Lessons 

• The interface to st acker  is that of a service, rather than a 
data structure.  To form request channels, pass one or more 
event argument in to the service function.  To get results out, 
return one or more events.  Encapsulate internal state by 
means of locally defined behaviors and events.  

• By generalizing a specific requirement (undo) to a more gen-
eral service (a polymorphic stacker), we avoiding complicat-
ing the point editor and we made a very reusable tool. The 
curve editor in next section benefits from this decision.  

• For incremental changes, use function-valued events and 
st epAccum, and leave the accumulation to Fran. 

 

Figure 4. editCPointUndo 



 

  

9. CURVE EDITING WITH UNDO 

Unfortunately, the control point editor in the previous section is 
not appropriate for making a curve editor with undo.  The prob-
lem is that each control point has its own undo stack.  When the 
user presses control-Z, all moved control points will back up. 

We can fix this problem by moving the undo stacking out of the 
point editor, where it is replicated, into the curve editor.  The 
point editors can no longer determine the undo event by them-
selves, so they will instead be told as an argument.  In addition, 
since the curve editor will be doing the stacking, the point editor 
must return the formerly private gr ab event.  No other changes 
are required. 
 
  edi t CPoi nt Undo : :  User  - > Event  S. Poi nt 2 
                 - > S. Poi nt 2 
                 - > ( CPoi nt ,  Event  S. Poi nt 2)  
  edi t CPoi nt Undo u undo p0 = 
   ( ( pos,  c l oseEnough) ,  gr abPos)  
   wher e 
     pos = i f B gr abbi ng ( mouse u)  l ast Rel ease 
     l ast Rel ease = 
       st epper  p0 ( r el ease ` snapshot _`  pos . | .  
                   undo)  
 
     c l oseEnough = 
       di st ance2 pos ( mouse u)  <*  gr abDi st ance 
     gr abbi ng = st epper  Fal se ( gr ab    - => Tr ue  
         . | .  r el ease - => Fal se)  
 
     gr ab    = l bp u ` whenE`  cl oseEnough 
     r el ease = l br  u ` whenE`  gr abbi ng 
     gr abPos = gr ab ` snapshot _`  pos  

The new curve editor below stacks the position of a point being 
moved, together with which point.  The individual control point 
grab events are tagged each with its index and then combined with 
anyE, which is the “ . | .  ”  operator applied to lists of events.  
The resulting cur veGr ab event is used for stacking, and the 
resulting undo event is then filtered for each control point, using 
the suchThat  event operator.  Only undos with the appropriate 
index are passed through, and the indices are dropped.9 
 
 
  t ype UndoRecor d = ( I nt ,  S. Poi nt 2)  
 
  edi t Cur veUndo : :  [ S. Poi nt 2]  - > User  - > [ CPoi nt ]  
  edi t Cur veUndo i ni t Poi nt s u = cpoi nt s 
   wher e 
     - -  Tag and mer ge t he CPoi nt  gr ab event s 
     cur veGr ab : :  Event  UndoRecor d 
     cur veGr ab = 
       anyE ( zi pWi t h t ag i ndi ces poi nt Gr abs)  
      wher e 
        - -  pai r  i  wi t h e' s occur r ence dat a 
        t ag i  e = e ==> ( i  ` pai r ` )         
 
     i ndi ces = [ 1 . .  l engt h i ni t Poi nt s]  
 

                                                                 
9 Haskellisms: The function zi pWi t h is a variant of map for 

functions of two arguments.  The operator "." means function 
composition. An infix operator, such as "==" and ` pai r `  be-
low, may be surrounded by parentheses and given an argument 
on the left or right, yielding a function that takes the missing ar-
gument and applies the operator. 

 
Figure 5. editor  with undo 



 

  

     - -  The undo event :  st ack cur ve gr abs and 
     - -  t r y t o r est or e on cont r ol - Z' s 
     undo : :  Event  UndoRecor d 
     undo = st acker  cur veGr ab ( char Pr ess ' \ ^ Z'  u)  
 
     - -  Edi t  an i ndexed CPoi nt .  
     edi t CP : :  I nt  - > S. Poi nt 2  
            - > ( CPoi nt ,  Event  S. Poi nt 2)  
     edi t CP i  p0 = edi t CPoi nt Undo u undoThi s p0 
      wher e 
        - -  Undo i f  a poi nt  t agged i  comes of f  
        - -  t he undo st ack.   Dr op t ag.  
        undoThi s =  
          undo ` suchThat `  ( ( == i )  .  f st )  ==> snd 
 
     - -  Appl y edi t CP t o cor r espondi ng i ndi ces  
     - -  and i ni t i al  poi nt s,  and spl i t  ( unzi p)  
     - -  t he r esul t i ng cpoi nt s and gr abs i nt o t wo  
     - -  l i s t s.  
     ( cpoi nt s,  poi nt Gr abs)  = 
       unzi p ( z i pWi t h edi t CP i ndi ces i ni t Poi nt s)  

This new curve editor correctly supports undoing.  See Figure 5. 

Lessons 

• As with st acker , the use of events as arguments and return 
values in edi t CPoi nt  sets up communication channels be-
tween concurrent activities, while local definitions serve to 
insulate each from irrelevant details in the other's inner work-
ings.   In fact, exactly this mechanism is used to communi-
cate user interaction to an animation.   A User  value is es-
sentially an event over values of type User Act i on.  

• Event tagging and event filtering are dual techniques, used to 
merge and separate sets of events.  They allow one program 
component (edi t Cur veUndo here) to act as a “post of-
fice” , collecting and routing messages.  

10. SAVING CURVES 

We next add the ability for the user to save an edited curve, by 
pressing the ‘s’  key, or by closing the editor window.  The editor 
will assure the user that the curve is being saved, by displaying a 
spinning message, thanks to the following function, which takes a 
message and an event that indicates when to save, and yields an 
animated image. 10 
 
  spi nMessage : :  St r i ng - > Event  a - > I mageB 
  spi nMessage message saveE =  
    st r et ch   saveSi ze  $ 
    t ur n      saveAngl e $ 
    wi t hCol or  ( col or HSL saveAngl e 0. 5 0. 5)  $ 
    st r i ngI m message 
   wher e 
     saveDur    = 1. 5    - -  ar t i f i c i al  dur at i on 
     s i nceSave =  swi t cher  saveDur  (  
                   t i meSi nceE saveE)  
     - -  Fr act i on r emai ni ng ( one down t o zer o)  
     saveLef t   = ( saveDur  -  s i nceSave) / saveDur  
                 ` max`  0 
     saveSi ze  = 2. 5 *  saveLef t  
     saveAngl e = 2 *  pi  *  saveLef t  

                                                                 
10 Haskellism: An alternative notation for function application is 

the right-associative, infix operator “$” .  Because it has very 
low syntactic precedence, it is sometimes used to reduce the 
need for parentheses. 

The amount of time since the last save event is defined to be 
saveDur  initially, and changes each time a save occurs to the 
(time-varying) length of time since that occurrence.  The 
t i meSi nceE function is not built into Fran, but may be defined 
easily, as follows. 
 
  t i meSi nceE : :  Event  a - > Event  Ti meB 
  t i meSi nceE e = e ` snapshot _`  t i me ==> si nce 
   wher e 
     s i nce : :  Ti me - > Ti meB 
     s i nce t 0 = t i me -  const ant B t 0 

At each occurrence of a given event e, the time is snapshotted to 
determine the occurrence time, which is passed to the si nce 
function, which converts it from a static number into a constant 
time-valued behavior (with const ant B), and then subtracts the 
result from the running time.   

By using “snapshot _” , “==>”  and a few other basic event 
operators, we can create highly reusable building blocks like 
t i meSi nceE, or very task-specific events like si nceSave 

The swi t cher  function is like st epper , but takes an initial 
behavior and a behavior-valued event yielding behaviors to switch 
to.  In fact, st epper  is defined simply in terms of swi t cher , 
using const ant B to turn static values into constant behaviors, 
as follows. 
 
  swi t cher  : :  Behavi or  a - > Event  ( Behavi or  a)  
           - > Behavi or  a 
 
  st epper  x0 e = swi t cher  ( const ant B x0)  (  
                   e ==> const ant B)  

To see spi nMessage work, the following definition use the 
message “goodbye”  and restart whenever a key is pressed, as 
shown in Figure 6. 
 
  spi nMessageTest  u =  
    spi nMessage " goodbye"  ( keyPr essAny u)  

The curve editor becomes more complicated in order to accom-
modate saving curves.  For one thing, we use a more general vari-
ant of di spl ayU: 
 
  di spl ayUI O : :   
    ( User  - > ( I mageB,  Event  ( I O ( ) ) ) )  - > I O ( )  

The argument to di spl ayUI O constructs not only an image 
animation, but also an action-valued event.  On each occurrence 
of the event, the corresponding action is executed.  In this case, 

 

Figure 6. spinM essageTest 



 

  

the action saves a curve snapshot in a file.  Here is the new editor 
definition, followed by some brief explanation. Figure 7 shows 
the execution. 
 
edi t or 2 : :  St r i ng - > I O ( )  
edi t or 2 f i l eName = do 
  i ni t Poi nt s <-  l oad f i l eName 
  di spl ayUI OMon ( edi t Render Save i ni t Poi nt s)  
 wher e 
   edi t Render Save i ni t Poi nt s u = 
     (  spi nMessage " Savi ng . . . "  saveNow  
       ` over `  r ender Cur ve xPoi nt s 
       ` over `  gr aphPaper  
     ,  doSave )  
    wher e 
      xPoi nt s = edi t Cur ve i ni t Poi nt s u 
      pt sB    = bLi st ToLi st B ( map f st  xPoi nt s)  
      saveNow = char Pr ess ' s '  u . | .  qui t  u 
      doSave  = saveNow ` snapshot _`  pt sB 
                        ==> save f i l eName 

Some explanation:  

• The animation part of edi t Render Save, as used by di s-
pl ayUI O, is the spinning message animation overlaying the 
rendering of the curve being edited.   The animated message 
“Saving ...”  is shown when saveNow occurs, which is de-
fined to be whenever the user presses the ‘s’  key or closes the 
window.  

• The action-valued event doSave also depends on 
saveNow.   At each occurrence, the list of curve points is 
snapshotted, and passed as the second argument to the save 
function, which gets the original file name as its first argu-

ment.  Snapshotting the control points is a bit tricky. Since 
r ender Poi nt s  creates a list of pairs, we extract the first 
half of each pair (via “map f st ” ), and convert the resulting 
list of behaviors into a behavior over lists.  

11. RELATIVE MOTION 

The previous versions had a bug: control points recenter on the 
mouse when grabbing.  Consequently, two control points can 
easily become permanently stuck together: 

The problem is that the control point's position is defined to be 
equal to the mouse's while the control point is being grabbed: 
 
  pos = i f B gr abbi ng ( mouse u)  l ast Rel ease 
  l ast Rel ease = st epper  p0 (  
                 r el ease ` snapshot _`  pos)  

Instead, we would like pos  to be given the same movement as the 
mouse relative to the locations at the time of grabbing. The 
following revised definition achieves this relative motion. 
 
edi t CPoi nt  : :  User  - > S. Poi nt 2 - > CPoi nt  
edi t CPoi nt  u p0 = ( pos,  c l oseEnough)  
 wher e 
   pos = swi t cher  ( const ant B p0)  (  
          gr ab ` snapshot `  mouse u ==> r el Mot i on 
      . | .  r el ease                 ==> const ant B)  
    wher e 
      r el Mot i on ( p,  mp)  = 
        const ant B p . +^  
        ( mouse u . - .  const ant B mp)  
 
      gr ab     = l bp u ` whenE`      c l oseEnough 
                       ` snapshot _`  pos 

 

Figure 7. Editor  with curve saving 



 

  

      r el ease  = l br  u ` whenE`      gr abbi ng 
                       ` snapshot _`  pos 
      gr abbi ng = st epper  Fal se (  
                       gr ab    - => Tr ue 
                   . | .  r el ease - => Fal se)  
   c l oseEnough = 
     di st ance2 pos ( mouse u)  <*  gr abDi st ance 

For convenience, we have changed the gr ab and r el ease 
events to contain the snapshotted point's position. The new defini-
tion of pos  additionally snapshot the mouse's position. It then 
feeds the resulting pair to r el Mot i on, which adds the control 
point snapshot to the vector difference between the mouse posi-
tion and the snapshot of the mouse position. Thus the control 
point gets the same relative motion as the mouse. The other posi-
tion-changing event is the control point's r el ease, which gets 
converted from a static point to a constant behavior. 

Aside: by convention, names end in “_”  indicate a function that 
forgets something, and have a nonforgetful version. For example, 
the nonforgetful snapshot  function has the following declara-
tion. 
 
  snapshot  : :  Event  a - > Behavi or  b  
           - > Event  ( a,  b)  

The forgetful version used in the previous editor versions is de-
fined in terms of the nonforgetful version, as follows, where snd 
extracts the second member of a pair. 
 
  snapshot _ : :  Event  a - > Behavi or  b - > Event  b 
  e ` snapshot _`  b = e ` snapshot `  b ==> snd 

Event operators like snapshot ,  whenE and “==>”  are all left-
associative and of equal precedence so that they may be cascaded 
without parentheses, as in this definition and the most recent defi-
nition of pos  within edi t CPoi nt . 

 

12. RELATED WORK 

Esterel [3][2] is a language for synchronous concurrent program-
ming, especially useful in real-time programming. It adopts a 
synchronous model of concurrency, rather than the more popular 
asynchronous models, as in CSP [16]. Berry and Gonthier [3] 
point out that “deterministic concurrency is the key to the modular 
development of reactive programs and ... is supported by synchro-
nous languages such as Esterel.”  Communication is based on a 
instantaneous broadcast model. In contrast, asynchronous models 
lead to competition for communication, by removing queued 
events, which leads to nondeterminism. Fran shares these basic 
properties of instantaneous, synchronous, broadcast communica-
tion and the consequent determinism. Unlike Esterel, however, 
Fran has an additional continuous model of time (which is not the 
focus of this paper). Another difference is that Esterel has an ex-
tremely efficient implementation, based on compilation of concur-
rent programs into deterministic sequential automata. Perhaps the 
most obvious difference is that Esterel is an extension of impera-
tive programming, while Fran adopts a functional style.  

Like Esterel, Lustre [15] and Signal [14] are based on discrete, 
synchronous, concurrent programming models, and have efficient 
implementations based on compilation into sequential automata. 
Unlike Esterel, they are declarative, and so Fran is more closely 
related to them. Lustre has counterparts to several of the primitive 
and derived constructs in Fran, including when, and variants of 

st epper , and self-snapshotting behaviors (Lustre's “pr e”  opera-
tor).  The feel is different from Fran, due to the absence of con-
tinuous behaviors.  Lucid Synchrone [6] is even more closely 
related.  It is quite similar to Lustre, but is embedded in the host 
language Objective CAML. 

CML (Concurrent ML) formalized synchronous operations as 
first-class, purely functional, values called “events”  [27]. Fran's 
event operators “ . | . ”  and “==>”  correspond to CML's choose 
and wr ap functions. Also like Fran, CML embeds its event vo-
cabulary in an existing programming language.  There are sub-
stantial differences, however, between the meaning given to 
“events”  in these two approaches. In CML, events are ultimately 
used to perform an act i on, such as reading input from or writing 
output to a file or another process. In contrast, our events are used 
purely for the values they generate. These values often turn out to 
be behaviors, although they can also be new events, tuples, func-
tions, etc.  In addition, CML is built on a CSP-like nondeterminis-
tic rendezvous model for communication, rather than instantane-
ous broadcast.  Similarly, Concurrent Haskell [22] adds a small 
number of primitives to Haskell, and then uses them to build sev-
eral higher-level concurrency abstractions. Unlike the Esterel 
family of languages (and Fran), CML and Concurrent Haskell add 
concurrency nondeterministically. 

Squeak [5] was a small language in the CSP tradition, designed to 
simplify development of user interfaces.  Like the Esterel family 
of languages, Squeak compiles into an efficient sequential state 
machine. NewSqueak [25] extended the ideas in Squeak to a full 
programming language, having a C-like syntax, and anonymous 
functions.  Pike then built a complete window system in fewer 
than 300 lines of NewSqueak [25]. 

Scholz described a “monadic calculus of synchronous imperative 
streams”  that has a stream type, somewhat similar to Fran's behav-
iors, but based on a discrete model of time [30].  Its imperative 
nature allows one to perform side effects at any level of a behav-
ior, while Fran imposes a discipline, allowing side effects only 
through action-valued events.  

Fran has been used as the foundation of vision processing [1], 
robot control [21][20], and a mostly-functional GUI toolkit [28]. 

13. FUTURE WORK 

The example presented in this paper is of modest complexity.  
Examples that are more ambitious will probably suggest im-
provements in the vocabulary of events, as well as shed more light 
on design methodology. 

Efficient implementation of Fran continues to be a challenging 
problem.  The embedding of Fran in Haskell gives rise to consid-
erable flexibility and expressiveness, as well as a reasonably sim-
ple implementation, but has been more difficult to optimize than 
we expected. In contrast, the efficiency of the Esterel languages is 
quite impressive.  See [10] for a discussion of several approaches 
to implementing Fran.  We have also experimented with a promis-
ing fundamentally imperative implementation, described very 
briefly in [23] and [28].  Debugging and performance analysis are 
also serious problems in any very high level paradigm, because of 
the large gap between the programmer's model and the program's 
execution. 

Although Fran is embedded in Haskell, which is a very expressive 
programming language, we do not propose Fran/Haskell as an 



 

  

application programming language.  We believe that pragmatics 
require a more modest approach, namely using Fran to generate 
Haskell-based software components [24].  This language hybrid 
approach allows, for instance, the curve editor to rely on the fa-
cilities of a mainstream programming language to provide a mod-
ern graphical user interface, file I/O, etc.  

14. CONCLUSIONS 

Declarative event-oriented programming makes it convenient to 
encapsulate significant portions of an interactive application into a 
set of high level, reusable building blocks. These events appear to 
capture important aspects of an application's design directly, and 
so may be useful in reducing the cost of creation and maintenance 
of modern interactive software. 

As software becomes increasingly powerful, its internal complex-
ity tends to grow. As Edsger Dijkstra pointed out in his Turing 
Award lecture, the ideas we can express, and even think, are 
greatly influenced by the languages we use.  In order to achieve 
our software-building ambitions, we therefore need languages that 
support abstraction and factoring of algorithms to form “ intellec-
tually managable programs”. 

One hopes that tomorrow's programming languages will 
differ greatly from what we are used to now: to a much 
greater extent than hitherto they should invite us to re-
flect in the structure of what we write down all abstrac-
tions needed to cope conceptually with the complexity of 
what we are designing. [7] 
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