Push-pull functional reactive programming

Conal Elliott

3 September, 2009

Haskell Symposium

-

1 Functional reactive programming

- Semantics
- Building blocks
- Refactoring
- 2 Future values
 - Class instances
 - Future times

Improving values

- Description and problems
- Improving

Semantics Building blocks Refactoring

What is Functional Reactive Programming?

- Composable dynamic values,
- ... with simple & precise semantics.
- Continuous time (zoomable).
- Fine-grain, *deterministic* concurrency.

- 4 同 6 4 日 6 4 日 6

Semantics Building blocks Refactoring

Classic FRP – semantic model

Behaviors (signals) are flows of values, punctuated by event occurrences.

$$\llbracket Behavior_{\alpha} \rrbracket = \mathcal{T} \to \alpha$$

$$\llbracket Event_{\alpha} \rrbracket = [\widehat{\mathcal{T}} \times \alpha]$$
 -- monotonic

・ロン ・回と ・ヨン ・ヨン

æ

Semantics Building blocks Refactoring

Behaviors compose

time :: Behavior_{\mathcal{T}} [[time]] = id

$$pure :: \alpha \rightarrow Behavior_{\alpha}$$

 $\llbracket pure a \rrbracket = \lambda t \rightarrow a$
 $= pure a$

・ロン ・回と ・ヨン・

Э

Semantics Building blocks Refactoring

Events compose

 $\emptyset :: Event_{\alpha} \\ \llbracket \emptyset \rrbracket = []$

$$(\oplus) :: Event_{\alpha} \to Event_{\alpha} \to Event_{\alpha}$$
$$\llbracket e \oplus e' \rrbracket = \llbracket e \rrbracket `merge` \llbracket e' \rrbracket$$

$$egin{aligned} & ext{fmap } n :: (lpha o eta) o \mathsf{Event}_lpha o \mathsf{Event}_eta \ & ext{[fmap } f \ e ext{]]} = map \left(\lambda(t,a) o (t,f \ a)
ight) ext{[[e]]} \ & = fmap \ (fmap \ f) ext{[[e]]} \end{aligned}$$

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

Э

Semantics Building blocks Refactoring

Events punctuate behaviors

stepper :: $\alpha \rightarrow Event_{\alpha} \rightarrow Behavior_{\alpha}$

More generally,

switcher :: Behavior $_{\alpha} \rightarrow Event_{Behavior_{\alpha}} \rightarrow Behavior_{\alpha}$

・ロト ・回ト ・ヨト ・ヨト

2

Semantics Building blocks Refactoring

Main idea of the paper: Behaviors are chains of simple phases

So represent as such:

$$Behavior_a = (\mathcal{T} \rightarrow a) \times (\widehat{\mathcal{T}} \times Behavior_a)$$

Catch: We need lazy expiration times.

- 4 同 6 4 日 6 4 日 6

Semantics Building blocks Refactoring

Generalize/simplify – Reactive values

$$Behavior_{\alpha} = (\mathcal{T} \to \alpha) \times (\widehat{\mathcal{T}} \times Behavior_{\alpha})$$

Generalize:

$$Reactive_{\beta} = \beta \times (\widehat{T} \times Reactive_{\beta})$$
 -- discrete reactive

And specialize:

 $\llbracket TFun_{\alpha} \rrbracket = \mathcal{T} \rightarrow \alpha$ -- continuous non-reactive

Behavior = Reactive \circ TFun

This representation provides Functor and Applicative instances.

소리가 소문가 소문가 소문가

Functional reactive programming Future values Improving values Unambiguous choice Semantics Building blocks Refactoring

TFun constant-folds

data Fun t
$$a = K a | Fun (t \rightarrow a)$$

[[Fun t a]] = t $\rightarrow a$

data TFun = Fun T

instance Functor (TFun t) where fmap f (K a) = K (f a) fmap f (Fun g) = Fun (f \circ g)

イロト イヨト イヨト イヨト

3

Semantics Building blocks Refactoring

Generalize/simplify – Future values

$$Reactive_{eta} = eta imes (\widehat{\mathcal{T}} imes Reactive_{eta})$$

becomes

$$\mathit{Future}_{\gamma} = \widehat{\mathcal{T}} imes \gamma$$

 $Reactive_{\beta} = \beta \times Future_{Reactive_{\beta}}$

・ロト ・回ト ・ヨト ・ヨト

æ

Semantics Building blocks Refactoring

Events are future reactives

$$Reactive_{\beta} = \beta \times Future_{Reactive_{\beta}}$$

becomes

 $Event_{\alpha} = Future_{Reactive_{\alpha}}$

 $Reactive_{\beta} = \beta \times Event_{\beta}$

・ロト ・回ト ・ヨト ・ヨト

æ

Semantics Building blocks Refactoring

Summarizing

$$Future_{\gamma} = \widehat{\mathcal{T}} \times \gamma$$

 $Event_{\alpha} = Future_{Reactive_{\alpha}}$

$$Reactive_{\beta} = \beta \times Event_{\beta}$$

 $Behavior = Reactive \circ TFun$

data Fun t $a = K a | Fun (t \rightarrow a)$

・ロト ・回ト ・ヨト ・ヨト

3

Class instances Future times

Future values are mostly easy

newtype Future $\alpha = Fut (\hat{T}, \alpha)$

deriving (Functor, Applicative, Monad)

For Applicative and Monad, the $\widehat{\mathcal{T}}$ monoid uses max and $-\infty$.

- 4 同 6 4 日 6 4 日 6

Class instances Future times

What about Monoid? A first try:

 (\oplus) chooses the earlier of two futures:

instance Monoid (Future α) where

$$\emptyset = \mathit{Fut}\ (\infty, \bot)$$

$$u_a @(Fut (\hat{t}_a, _)) \oplus u_b @(Fut (\hat{t}_b, _)) =$$

if $\hat{t}_a \leqslant \hat{t}_b$ then u_a else u_b

We'll have to compare future times without knowing both fully. Even so, there's a problem ...

イロト イポト イヨト イヨト

Class instances Future times

(\oplus) must be even lazier.

First try:

$$u_a @(Fut (\hat{t}_a, _)) \oplus u_b @(Fut (\hat{t}_b, _)) =$$

if $\hat{t}_a \leq \hat{t}_b$ then u_a else u_b

Produces *no* information until resolving $\hat{t}_a \leqslant \hat{t}_b$.

Consider $(u_a \oplus u_b) \oplus u_c$, where u_c is earliest. *Oops*.

Solution:

$$egin{array}{l} {\it Fut} \ (\hat{t}_a,a) \oplus {\it Fut} \ (\hat{t}_b,b) = \ {\it Fut} \ (\hat{t}_a` {\it min}` \hat{t}_b, {f if} \ \hat{t}_a \leqslant \hat{t}_b {f then} \ a {f else} \ b \end{array}$$

Can be optimized.

(4回) (4回) (4回)

Class instances Future times

What are future times?

type $\widehat{\mathcal{T}} = Max (AddBounds (Improving <math>\mathcal{T}))$

- Max monoid for derived Applicative Future (and Monad)
- AddBounds for the Future and Max monoids
- Improving for partiality

イロト イポト イヨト イヨト

Description and problems Improving

What are improving values?

- Lazy values, as a monotonic sequence of lower bounds
- Invented by Warren Burton in the 1980s
- Operations for *min* and *max*
- Purely functional implementation

A (10) A (10) A (10) A

Description and problems Improving

Improving values have some problems.

- Expensive to step through accumulated lower bounds
- Redundant traversal
- Needs a generator of lower bounds

- 4 同 6 4 日 6 4 日 6

Description and problems Improving

Can we improve on improving values?

What operations do we use on $\widehat{\mathcal{T}}$?

 $\begin{array}{ll} exact & :: \ {\it Improving}_a \to a \\ compare_I :: \ {\it Improving}_a \to a \to {\it Ordering} \\ min & :: \ {\it Improving}_a \to {\it Improving}_a \to {\it Improving}_a \\ (\leqslant) & :: \ {\it Improving}_a \to {\it Improving}_a \to {\it Bool} \end{array}$

Puzzle: Can *exact* and *compare*₁ implement *min* and (\leq)? If so,

```
data Improving a =
Imp { exact :: a, compare<sub>1</sub> :: a \rightarrow Ordering }
```

イロト イポト イヨト イヨト

Description and problems Improving

Comparing improving values - dilemma

How to compare future times: $\hat{t}_a \leq \hat{t}_b$? Two ideas:

$$ab = compare_I \hat{t}_a (exact \hat{t}_b) \neq GT$$

 $ba = compare_I \hat{t}_b (exact \hat{t}_a) \neq LT$

Which to try first? We can't know beforehand.

イロン イヨン イヨン イヨン

Try both

Same answer when defined, so try in parallel and take first answer

abʻunambʻ ba

Referentially transparent? Yes:

ab 'unamb' $ba \equiv ab \sqcup ba$

Crucial: ab and ba agree when defined.

(4月) (4日) (4日)

unamb is handy

parCommute op x $y = (x \circ p' y) \circ unamb' (y \circ p' x)$

 $por = parCommute (\lor)$ $pand = parCommute (\land)$

-- handy with unamb assuming :: Bool \rightarrow a \rightarrow a assuming True a = a assuming False _ = \perp

イロン 不同と 不同と 不同と

Symmetric short-circuiting

parAnnihilator op a x y =
assuming (x
$$\equiv$$
 a) a 'unamb'
assuming (y \equiv a) a 'unamb'
(x 'op' y)

por
$$\ =$$
 parAnnihilator (ee) True

pand
$$=$$
 parAnnihilator (\wedge) False

$$pmul = parAnnihilator (\times) 0$$

pmax = parAnnihilator max maxBound

・ロト ・回ト ・ヨト ・ヨト

æ

min is simple – almost

data $\mathit{Ordering} = \mathit{LT} \mid \mathit{EQ} \mid \mathit{GT}$ deriving $(\mathit{Eq}, \mathit{Ord}, \mathit{Bounded}, ...)$

compare (a'min'b) x = compare a x'min' compare b x

Similarly,

$$compare_{I}(\hat{t}_{a} 'min' \hat{t}_{b}) t = compare_{I} \hat{t}_{a} t 'min' compare_{I} \hat{t}_{b} t$$

Too strict. Consider exact $\hat{t}_a < t < exact \hat{t}_b$. Easy fix, via unamb:

 $compare_{I}(\hat{t}_{a} 'min' \hat{t}_{b}) t = compare_{I} \hat{t}_{a} t 'pmin' compare_{I} \hat{t}_{b} t$

소리가 소문가 소문가 소문가

- Refactored FRP suggests hybrid data/function representation
- Data-driven but still pull-based, due to blocking threads
- Semantic determinacy saved, thanks to unambiguous choice

- 4 同 6 4 日 6 4 日 6

Future work

- Subtle RTS and/or laziness.
- Measure and tune, esp improving values & unamb.
- Useful for arrow-based FRP?
- More fun with unamb
- Event is fishy. No semantic TCM, monad assoc can fail.
- Extend caching to TFun.