Push-pull functional reactive programming

Conal Elliott

3 September, 2009

Haskell Symposium

Conal Elliott Push-pull functional reactive programming

@ Functional reactive programming
@ Semantics
@ Building blocks
@ Refactoring

© Future values
@ Class instances
@ Future times

© mproving values
@ Description and problems
@ Improving

@ Unambiguous choice

Conal Elliott Push-pull functional reactive programming

Functional reactive programming e

Building blocks
Refactoring

What is Functional Reactive Programming?

Composable dynamic values,
with simple & precise semantics.

Continuous time (zoomable).

Fine-grain, deterministic concurrency.

Conal Elliott Push-pull functional reactive programming

Functional reactive programming Clenramies

Building blocks
Refactoring

Classic FRP — semantic model

Behaviors (signals) are flows of values, punctuated by event
occurrences.

[Behavior,] =T — «

[Event,] =[7 x] -- monotonic

Conal Elliott Push-pull functional reactive programming

Functional reactive programming e

Building blocks
Refactoring

Behaviors compose

time :: Behaviort
[time] = id

pure :: o« — Behavior,,
[pure a] = At — a
= pure a

(<>) :: Behavior,_,3 — Behavior, — Behaviorg
[fs <& as] = At — (([fs] t) ([as] t))
= [fs] <& [as]

Conal Elliott Push-pull functional reactive programming

Functional reactive programming e

Building blocks
Refactoring

Events compose

@ :: Event,,

1 =11

() :: Event,, — Event, — Event,
[e ® €] = [e] ‘merge' [€]

fmap n:: (o« —) — Event, — Eventg
[fmap £ e = map (\(t,a) — (t.f 2)) [e]
= fmap (fmap f) [e]

Conal Elliott Push-pull functional reactive programming

Functional reactive programming e

Building blocks
Refactoring

Events punctuate behaviors

stepper :: « — Event, — Behavior,

More generally,

switcher :: Behavior, — Eventpgenavior, — Behavior,,

Conal Elliott Push-pull functional reactive programming

Functional reactive programming e

Building blocks
Refactoring

Main idea of the paper:
Behaviors are chains of simple phases

So represent as such:
Behavior, = (T — a) x (T x Behavior,)

Catch: We need lazy expiration times.

Conal Elliott Push-pull functional reactive programming

Functional reactive programming e

Building blocks
Refactoring

Generalize/simplify — Reactive values

Behavior,, = (T —) x (T x Behavior,)
Generalize:

Reactiveg = 3 x (T x Reactiveg) -- discrete reactive
And specialize:

[TFun,] =7 — « -- continuous non-reactive

Behavior = Reactive o TFun

This representation provides Functor and Applicative instances.

Conal Elliott Push-pull functional reactive programming

Functional reactive programming e

Building blocks
Refactoring

TFun constant-folds

data Funta= K a| Fun (t — a)
[Funta]l=t— a

data TFun= FunT

[K a] = const a
[Funf] =f

instance Functor (TFun t) where
fmap f (Ka) =K (fa)
fmap f (Fun g) = Fun (f o g)

etc

Conal Elliott Push-pull functional reactive programming

Functional reactive programming e

Building blocks
Refactoring

Generalize/simplify — Future values

Reactiveg = 3 x (T x Reactive)
becomes
Future, = T x~

Reactiveg = [x Futurepeactive,

Conal Elliott Push-pull functional reactive programming

Functional reactive programming e

Building blocks
Refactoring

Events are future reactives

Reactiveg = 3 X Futuregeactive,
becomes

Event,, = FUtureReactivea

Reactiveg = 3 x Eventg

Conal Elliott Push-pull functional reactive programming

Functional reactive programming e

Building blocks
Refactoring

Summarizing

Future, = T x 0%

Event, = Futuregeactive,
Reactiveg = 3 x Eventg
Behavior = Reactive o TFun

data Funta= K a| Fun (t — a)

Conal Elliott Push-pull functional reactive programming

Future values Class instances
Future times

Future values are mostly easy

newtype Future o = Fut (T, a)

deriving (Functor, Applicative, Monad)

For Applicative and Monad, the T monoid uses max and —oo.

Conal Elliott Push-pull functional reactive programming

Future values Class instances
Future times

What about Monoid?
A first try:

() chooses the earlier of two futures:

instance Monoid (Future o)) where
) = Fut (oo, 1)

u,0(Fut (%5, _)) ® up@(Fut (tp, _)) =
if 1, < 1, then u, else uy

We'll have to compare future times without knowing both fully.
Even so, there's a problem ...

Conal Elliott Push-pull functional reactive programming

Future values Class instances
Future times

() must be even lazier.

First try:

u;@(Fut (24, -)) ® up@(Fut (tp,—)) =
if £, < p then u, else up,

Produces no information until resolving t, < .
Consider (u, @ up) ® uc, where uc is earliest. Oops.

Solution:

Fut (ts,a) @® Fut (tp, b) =
Fut (t, ‘min‘ tp, if , < %, then a else b)

Can be optimized.

Conal Elliott Push-pull functional reactive programming

Future values Class instances
Future times

What are future times?

type 7 = Max (AddBounds (Improving T))

@ Max monoid for derived Applicative Future (and Monad)
@ AddBounds for the Future and Max monoids

@ Improving for partiality

Conal Elliott Push-pull functional reactive programming

Description and problems
Improving values Improving

What are improving values?

Lazy values, as a monotonic sequence of lower bounds
Invented by Warren Burton in the 1980s

Operations for min and max

Purely functional implementation

Conal Elliott Push-pull functional reactive programming

Description and problems
Improving values Improving

Improving values have some problems.

@ Expensive to step through accumulated lower bounds
@ Redundant traversal

@ Needs a generator of lower bounds

Conal Elliott Push-pull functional reactive programming

Description and problems
Improving values Improving

Can we improve on improving values?

What operations do we use on 77

exact 2 Improving , — a

compare; :: Improving , — a — Ordering

min :: Improving , — Improving , — Improving ,
(<) :: Improving , — Improving , — Bool

Puzzle: Can exact and compare; implement min and ()7
If so,

data Improving a =
Imp { exact :: a, compare, :: a — Ordering }

Conal Elliott Push-pull functional reactive programming

Description and problems
Improving values Improving

Comparing improving values — dilemma

How to compare future times: ¥, < %7 Two ideas:

ab = compare, t, (exact tp) # GT
ba = compare, t, (exact t,) £ LT

Which to try first? We can't know beforehand.

Conal Elliott Push-pull functional reactive programming

Unambiguous choice

Try both

Same answer when defined, so try in parallel and take first answer
ab ‘unamb' ba

Referentially transparent? Yes:
ab ‘unamb' ba = ab Ll ba

Crucial: ab and ba agree when defined.

Conal Elliott Push-pull functional reactive programming

Unambiguous choice

unamb is handy

parCommute op x y = (x ‘op' y) ‘unamb' (y ‘op" x)

por = parCommute (V)
pand = parCommute (A)

-- handy with unamb
assuming :: Bool — a — a
assuming True a = a
assuming False _ = 1

Conal Elliott Push-pull functional reactive programming

Unambiguous choice

Symmetric short-circuiting

parAnnihilator op a x y =
assuming (x = a) a ‘unamb’
assuming (y = a) a ‘unamb'
(x‘op'y)

por = parAnnihilator (V) True
pand = parAnnihilator (\) False

pmul = parAnnihilator (x) 0

pmin = parAnnihilator min minBound
pmax = parAnnihilator max maxBound

Conal Elliott Push-pull functional reactive programming

Unambiguous choice

min is simple — almost

data Ordering = LT | EQ | GT deriving (Eq, Ord, Bounded, ...)

compare (a‘min' b) x = compare a x ‘min‘ compare b x
Similarly,

compare; (t, ‘min‘ tp) t = compare; t, t ‘min‘ compare, tp t

Too strict. Consider exact t, < t < exact . Easy fix, via unamb:

compare; (t, ‘min‘ tp) t = compare, t, t ‘pmin‘ compare, t t

Conal Elliott Push-pull functional reactive programming

Unambiguous choice

Summary

@ Refactored FRP suggests hybrid data/function representation
@ Data-driven but still pull-based, due to blocking threads

@ Semantic determinacy saved, thanks to unambiguous choice

Conal Elliott Push-pull functional reactive programming

Unambiguous choice

Future work

Subtle RTS and/or laziness.

Measure and tune, esp improving values & unamb.
Useful for arrow-based FRP?

More fun with unamb

Event is fishy. No semantic TCM, monad assoc can fail.
Extend caching to TFun.

Conal Elliott Push-pull functional reactive programming

	Functional reactive programming
	Semantics
	Building blocks
	Refactoring

	Future values
	Class instances
	Future times

	Improving values
	Description and problems
	Improving

	Unambiguous choice

