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What is Functional Reactive Programming?

Composable dynamic values,

. . . with simple & precise semantics.

Continuous time (zoomable).

Fine-grain, deterministic concurrency.
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Classic FRP – semantic model

Behaviors (signals) are flows of values, punctuated by event
occurrences.

[[Behaviorα]] = T → α

[[Eventα]] = [ T̂ × α ] -- monotonic
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Behaviors compose

time :: BehaviorT
[[time]] = id

pure :: α→ Behaviorα

[[pure a]] = λt → a
= pure a

(<∗>) :: Behaviorα→β → Behaviorα → Behaviorβ

[[fs <∗> as]] = λt → (([[fs]] t) ([[as]] t))
= [[fs]]<∗> [[as]]
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Events compose

∅ :: Eventα

[[∅]] = [ ]

(⊕) :: Eventα → Eventα → Eventα

[[e ⊕ e ′]] = [[e]] ‘merge‘ [[e ′]]

fmap n :: (α→ β)→ Eventα → Eventβ

[[fmap f e]] = map (λ(t, a)→ (t, f a)) [[e]]
= fmap (fmap f ) [[e]]
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Events punctuate behaviors

stepper :: α→ Eventα → Behaviorα

More generally,

switcher :: Behaviorα → EventBehaviorα → Behaviorα
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Main idea of the paper:
Behaviors are chains of simple phases

So represent as such:

Behaviora = (T → a)× (T̂ × Behaviora)

Catch: We need lazy expiration times.
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Generalize/simplify – Reactive values

Behaviorα = (T → α)× (T̂ × Behaviorα)

Generalize:

Reactiveβ = β × (T̂ × Reactiveβ) -- discrete reactive

And specialize:

[[TFunα]] = T → α -- continuous non-reactive

Behavior = Reactive ◦ TFun

This representation provides Functor and Applicative instances.

Conal Elliott Push-pull functional reactive programming



Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

TFun constant-folds

data Fun t a = K a | Fun (t → a)
[[Fun t a]] = t → a

data TFun = Fun T

[[K a]] = const a
[[Fun f ]] = f

instance Functor (TFun t) where
fmap f (K a) = K (f a)
fmap f (Fun g) = Fun (f ◦ g)

etc
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Generalize/simplify – Future values

Reactiveβ = β × (T̂ × Reactiveβ)

becomes

Futureγ = T̂ × γ

Reactiveβ = β × FutureReactiveβ

Conal Elliott Push-pull functional reactive programming



Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

Events are future reactives

Reactiveβ = β × FutureReactiveβ

becomes

Eventα = FutureReactiveα

Reactiveβ = β × Eventβ
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Summarizing

Futureγ = T̂ × γ

Eventα = FutureReactiveα

Reactiveβ = β × Eventβ

Behavior = Reactive ◦ TFun

data Fun t a = K a | Fun (t → a)

Conal Elliott Push-pull functional reactive programming



Functional reactive programming
Future values

Improving values
Unambiguous choice

Class instances
Future times

Future values are mostly easy

newtype Future α = Fut (T̂ , α)

deriving (Functor ,Applicative,Monad)

For Applicative and Monad , the T̂ monoid uses max and −∞.

Conal Elliott Push-pull functional reactive programming



Functional reactive programming
Future values

Improving values
Unambiguous choice

Class instances
Future times

What about Monoid?
A first try:

(⊕) chooses the earlier of two futures:

instance Monoid (Future α) where

∅ = Fut (∞,⊥)

ua@(Fut (t̂a, ))⊕ ub@(Fut (t̂b, )) =
if t̂a 6 t̂b then ua else ub

We’ll have to compare future times without knowing both fully.
Even so, there’s a problem ...
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(⊕) must be even lazier.

First try:

ua@(Fut (t̂a, ))⊕ ub@(Fut (t̂b, )) =
if t̂a 6 t̂b then ua else ub

Produces no information until resolving t̂a 6 t̂b.

Consider (ua ⊕ ub)⊕ uc , where uc is earliest. Oops.

Solution:

Fut (t̂a, a)⊕ Fut (t̂b, b) =
Fut (t̂a ‘min‘ t̂b, if t̂a 6 t̂b then a else b)

Can be optimized.
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What are future times?

type T̂ = Max (AddBounds (Improving T ))

Max monoid for derived Applicative Future (and Monad)

AddBounds for the Future and Max monoids

Improving for partiality
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What are improving values?

Lazy values, as a monotonic sequence of lower bounds

Invented by Warren Burton in the 1980s

Operations for min and max

Purely functional implementation
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Improving values have some problems.

Expensive to step through accumulated lower bounds

Redundant traversal

Needs a generator of lower bounds
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Can we improve on improving values?

What operations do we use on T̂ ?

exact :: Improvinga → a
compare I :: Improvinga → a→ Ordering
min :: Improvinga → Improvinga → Improvinga

(6) :: Improvinga → Improvinga → Bool

Puzzle: Can exact and compare I implement min and (6)?
If so,

data Improving a =
Imp {exact :: a, compare I :: a→ Ordering }
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Comparing improving values – dilemma

How to compare future times: t̂a 6 t̂b? Two ideas:

ab = compare I t̂a (exact t̂b) 6≡ GT

ba = compare I t̂b (exact t̂a) 6≡ LT

Which to try first? We can’t know beforehand.
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Try both

Same answer when defined, so try in parallel and take first answer

ab ‘unamb‘ ba

Referentially transparent? Yes:

ab ‘unamb‘ ba ≡ ab t ba

Crucial: ab and ba agree when defined.
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unamb is handy

parCommute op x y = (x ‘op‘ y) ‘unamb‘ (y ‘op‘ x)

por = parCommute (∨)
pand = parCommute (∧)

-- handy with unamb
assuming :: Bool → a→ a
assuming True a = a
assuming False = ⊥

Conal Elliott Push-pull functional reactive programming



Functional reactive programming
Future values

Improving values
Unambiguous choice

Symmetric short-circuiting

parAnnihilator op a x y =
assuming (x ≡ a) a ‘unamb‘
assuming (y ≡ a) a ‘unamb‘
(x ‘op‘ y)

por = parAnnihilator (∨) True
pand = parAnnihilator (∧) False

pmul = parAnnihilator (×) 0

pmin = parAnnihilator min minBound
pmax = parAnnihilator max maxBound
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min is simple – almost

data Ordering = LT | EQ | GT deriving (Eq,Ord ,Bounded , ...)

compare (a ‘min‘ b) x = compare a x ‘min‘ compare b x

Similarly,

compare I (t̂a ‘min‘ t̂b) t = compare I t̂a t ‘min‘ compare I t̂b t

Too strict. Consider exact t̂a < t < exact t̂b. Easy fix, via unamb:

compare I (t̂a ‘min‘ t̂b) t = compare I t̂a t ‘pmin‘ compare I t̂b t
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Summary

Refactored FRP suggests hybrid data/function representation

Data-driven but still pull-based, due to blocking threads

Semantic determinacy saved, thanks to unambiguous choice
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Future work

Subtle RTS and/or laziness.

Measure and tune, esp improving values & unamb.

Useful for arrow-based FRP?

More fun with unamb

Event is fishy. No semantic TCM, monad assoc can fail.

Extend caching to TFun.
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