
Functional reactive programming
Future values

Improving values
Unambiguous choice

Push-pull functional reactive programming

Conal Elliott

3 September, 2009

Haskell Symposium

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

1 Functional reactive programming
Semantics
Building blocks
Refactoring

2 Future values
Class instances
Future times

3 Improving values
Description and problems
Improving

4 Unambiguous choice

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

What is Functional Reactive Programming?

Composable dynamic values,

. . . with simple & precise semantics.

Continuous time (zoomable).

Fine-grain, deterministic concurrency.

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

Classic FRP – semantic model

Behaviors (signals) are flows of values, punctuated by event
occurrences.

[[Behaviorα]] = T → α

[[Eventα]] = [T̂ × α] -- monotonic

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

Behaviors compose

time :: BehaviorT
[[time]] = id

pure :: α→ Behaviorα

[[pure a]] = λt → a
= pure a

(<∗>) :: Behaviorα→β → Behaviorα → Behaviorβ

[[fs <∗> as]] = λt → (([[fs]] t) ([[as]] t))
= [[fs]]<∗> [[as]]

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

Events compose

∅ :: Eventα

[[∅]] = []

(⊕) :: Eventα → Eventα → Eventα

[[e ⊕ e ′]] = [[e]] ‘merge‘ [[e ′]]

fmap n :: (α→ β)→ Eventα → Eventβ

[[fmap f e]] = map (λ(t, a)→ (t, f a)) [[e]]
= fmap (fmap f) [[e]]

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

Events punctuate behaviors

stepper :: α→ Eventα → Behaviorα

More generally,

switcher :: Behaviorα → EventBehaviorα → Behaviorα

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

Main idea of the paper:
Behaviors are chains of simple phases

So represent as such:

Behaviora = (T → a)× (T̂ × Behaviora)

Catch: We need lazy expiration times.

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

Generalize/simplify – Reactive values

Behaviorα = (T → α)× (T̂ × Behaviorα)

Generalize:

Reactiveβ = β × (T̂ × Reactiveβ) -- discrete reactive

And specialize:

[[TFunα]] = T → α -- continuous non-reactive

Behavior = Reactive ◦ TFun

This representation provides Functor and Applicative instances.

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

TFun constant-folds

data Fun t a = K a | Fun (t → a)
[[Fun t a]] = t → a

data TFun = Fun T

[[K a]] = const a
[[Fun f]] = f

instance Functor (TFun t) where
fmap f (K a) = K (f a)
fmap f (Fun g) = Fun (f ◦ g)

etc
Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

Generalize/simplify – Future values

Reactiveβ = β × (T̂ × Reactiveβ)

becomes

Futureγ = T̂ × γ

Reactiveβ = β × FutureReactiveβ

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

Events are future reactives

Reactiveβ = β × FutureReactiveβ

becomes

Eventα = FutureReactiveα

Reactiveβ = β × Eventβ

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Semantics
Building blocks
Refactoring

Summarizing

Futureγ = T̂ × γ

Eventα = FutureReactiveα

Reactiveβ = β × Eventβ

Behavior = Reactive ◦ TFun

data Fun t a = K a | Fun (t → a)

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Class instances
Future times

Future values are mostly easy

newtype Future α = Fut (T̂ , α)

deriving (Functor ,Applicative,Monad)

For Applicative and Monad , the T̂ monoid uses max and −∞.

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Class instances
Future times

What about Monoid?
A first try:

(⊕) chooses the earlier of two futures:

instance Monoid (Future α) where

∅ = Fut (∞,⊥)

ua@(Fut (t̂a,))⊕ ub@(Fut (t̂b,)) =
if t̂a 6 t̂b then ua else ub

We’ll have to compare future times without knowing both fully.
Even so, there’s a problem ...

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Class instances
Future times

(⊕) must be even lazier.

First try:

ua@(Fut (t̂a,))⊕ ub@(Fut (t̂b,)) =
if t̂a 6 t̂b then ua else ub

Produces no information until resolving t̂a 6 t̂b.

Consider (ua ⊕ ub)⊕ uc , where uc is earliest. Oops.

Solution:

Fut (t̂a, a)⊕ Fut (t̂b, b) =
Fut (t̂a ‘min‘ t̂b, if t̂a 6 t̂b then a else b)

Can be optimized.

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Class instances
Future times

What are future times?

type T̂ = Max (AddBounds (Improving T))

Max monoid for derived Applicative Future (and Monad)

AddBounds for the Future and Max monoids

Improving for partiality

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Description and problems
Improving

What are improving values?

Lazy values, as a monotonic sequence of lower bounds

Invented by Warren Burton in the 1980s

Operations for min and max

Purely functional implementation

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Description and problems
Improving

Improving values have some problems.

Expensive to step through accumulated lower bounds

Redundant traversal

Needs a generator of lower bounds

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Description and problems
Improving

Can we improve on improving values?

What operations do we use on T̂ ?

exact :: Improvinga → a
compare I :: Improvinga → a→ Ordering
min :: Improvinga → Improvinga → Improvinga

(6) :: Improvinga → Improvinga → Bool

Puzzle: Can exact and compare I implement min and (6)?
If so,

data Improving a =
Imp {exact :: a, compare I :: a→ Ordering }

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Description and problems
Improving

Comparing improving values – dilemma

How to compare future times: t̂a 6 t̂b? Two ideas:

ab = compare I t̂a (exact t̂b) 6≡ GT

ba = compare I t̂b (exact t̂a) 6≡ LT

Which to try first? We can’t know beforehand.

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Try both

Same answer when defined, so try in parallel and take first answer

ab ‘unamb‘ ba

Referentially transparent? Yes:

ab ‘unamb‘ ba ≡ ab t ba

Crucial: ab and ba agree when defined.

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

unamb is handy

parCommute op x y = (x ‘op‘ y) ‘unamb‘ (y ‘op‘ x)

por = parCommute (∨)
pand = parCommute (∧)

-- handy with unamb
assuming :: Bool → a→ a
assuming True a = a
assuming False = ⊥

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Symmetric short-circuiting

parAnnihilator op a x y =
assuming (x ≡ a) a ‘unamb‘
assuming (y ≡ a) a ‘unamb‘
(x ‘op‘ y)

por = parAnnihilator (∨) True
pand = parAnnihilator (∧) False

pmul = parAnnihilator (×) 0

pmin = parAnnihilator min minBound
pmax = parAnnihilator max maxBound

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

min is simple – almost

data Ordering = LT | EQ | GT deriving (Eq,Ord ,Bounded , ...)

compare (a ‘min‘ b) x = compare a x ‘min‘ compare b x

Similarly,

compare I (t̂a ‘min‘ t̂b) t = compare I t̂a t ‘min‘ compare I t̂b t

Too strict. Consider exact t̂a < t < exact t̂b. Easy fix, via unamb:

compare I (t̂a ‘min‘ t̂b) t = compare I t̂a t ‘pmin‘ compare I t̂b t

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Summary

Refactored FRP suggests hybrid data/function representation

Data-driven but still pull-based, due to blocking threads

Semantic determinacy saved, thanks to unambiguous choice

Conal Elliott Push-pull functional reactive programming

Functional reactive programming
Future values

Improving values
Unambiguous choice

Future work

Subtle RTS and/or laziness.

Measure and tune, esp improving values & unamb.

Useful for arrow-based FRP?

More fun with unamb

Event is fishy. No semantic TCM, monad assoc can fail.

Extend caching to TFun.

Conal Elliott Push-pull functional reactive programming

	Functional reactive programming
	Semantics
	Building blocks
	Refactoring

	Future values
	Class instances
	Future times

	Improving values
	Description and problems
	Improving

	Unambiguous choice

