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Abstract. Functional languages are particularly well-suited to the im-
plementation of interpreters for domain-specific embedded languages (DSELs).
We describe an implemented technique for producing optimizing compil-
ers for DSELs, based on Kamin’s idea of DSELs for program generation.
The technique uses a data type of syntax for basic types, a set of smart
constructors that perform rewriting over those types, some code motion
transformations, and a back-end code generator. Domain-specific opti-
mization results from chains of rewrites on basic types. New DSELs are
defined directly in terms of the basic syntactic types, plus host language
functions and tuples. This definition style makes compilers easy to write
and, in fact, almost identical to the simplest embedded interpreters. We
illustrate this technique with a language Pan for the computationally
intensive domain of image synthesis and manipulation. 1

1 Introduction

The “embedded” approach has proved an excellent technique for specifying and
prototyping domain-specific languages (DSLs) [8]. The essential idea is to aug-
ment a “host” programming language with a domain-specific library. Modern
functional host languages are flexible enough that the resulting combination has
more the feel of a new language than a library. Most of the work required to
design, implement and document a language is inherited from the host language.
Often, performance is either relatively unimportant, or is adequate because the
domain primitives encapsulate large blocks of work. When speed is of the essence,
however, the embedded approach is problematic. It tends to yield inefficient in-
terpretive implementations. Worse, these interpreters tend to perform redundant
computation.

We have implemented a language Pan for image synthesis and manipulation,
a computationally demanding problem domain. A straightforward embedded
implementation would not perform well enough, but we did not want to incur
1 This paper will appear at the Semantics, Applications and Implementation of Pro-

gram Generation (SAIG 2000) workshop as part of PLI 2000, and is c© Springer-
Verlag. See http://www.springer.de/comp/lncs/index.html.
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the expense of introducing an entirely new language. Our solution is to embed an
optimizing compiler rather than an interpreter. Embedding a compiler requires
some techniques not normally needed in embedded language implementations,
and we report on these techniques here. Pleasantly, we have been able to retain
a simple programming interface, almost unaffected by the compiled nature of
the implementation. The generated code runs very fast, and there is still much
room for improvement.

Our compiler consists of a relatively small set of domain definitions, on top
of a larger domain-independent framework. The framework may be adapted for
compiling other DSLs, and handles (a) optimization of expressions over numbers
and Booleans, (b) code motion, and (c) code generation. A new DSL is specified
and implemented by defining the key domain types and operations in terms of
the primitive types provided by the framework and host language. Moreover,
these definitions are almost identical to what one would write for a very simple
interpretive DSL implementation.

Although a user of our embedded language writes in Haskell, we do not
have to parse, type-check, or compile Haskell programs. Instead, the user runs
his/her Haskell program to produce an optimized program in a simple target
language that is first-order, call-by-value, and mostly functional. Generated tar-
get language programs are then given to a simple compiler (also implemented in
Haskell) for code motion and back-end code generation. In this way, the host lan-
guage (Haskell here) acts as a powerful macro (or program generator) language,
but is completely out of the picture at run-time. Unlike most macro languages,
however, Haskell is statically typed and higher order, and is more expressive and
convenient than the underlying target language.

Because of this embedded compiler approach, integration of the DSEL with
the host language (Haskell) is not quite as fluid and general as in convention-
ally implemented DSELs. Some host language features, like lists, recursion, and
higher-order functions are not available to the final executing program. These
features may be used in source programs, but disappear during the compilation
process. For some application areas, this strict separation of features between
a full-featured compilation language and a less rich runtime language may be
undesirable, but in our domain, at least, it appears to be perfectly acceptable.
In fact, we typically write programs without being conscious of the difference.

The contributions of this paper are as follows:

– We present a general technique for implementing embedded optimizing com-
pilers, extending Kamin’s approach [10] with algebraic manipulation.

– We identify a key problem with the approach, efficient handling of sharing,
and present techniques to solve it (bottom-up optimization and common
subexpression elimination).

– We illustrate the application of our technique to a demanding problem do-
main, namely image synthesis and manipulation.

While this paper mainly discusses embedded language compilation, a com-
panion paper goes into more detail for the Pan language [4]. That paper contains
many more visual examples, as does [2].
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2 Language embedding

The embedding approach to DSL construction goes back at least to Landin’s
famous “next 700” paper [12]. The essential idea is to use a single existing “host”
programming language that provides useful generic infrastructure (grammar,
scoping, typing, function- and data-abstraction, etc), and augment it with a
domain-specific vocabulary consisting of one or more data types and functions
over those types. Thus the design, implementation, and documentation work
required for a new “language” is kept to a minimum, while the result has plenty
of room to grow. These merits and some drawbacks are discussed, e.g., in [3, 8].

One particularly elegant realization of the embedding idea is the use of a
modern functional programming language such as ML or Haskell as the host.
In this setting, the domain-specific portions can sometimes be implemented as
a simple denotational semantics, as suggested in [11, Section 3]. For example,
consider the problem domain of image synthesis and manipulation. A simple
semantics for images is function from continuous 2D space to colors. The repre-
sentation of colors includes blue, green, red, and opacity (“alpha”) components:

type Image = Point → Color
type Point = (Float ,Float)
type Color = (Float ,Float ,Float ,Float)

It is easy to implement operations like image overlay (with partial opacity),
assuming a corresponding function, cOver , on color values:

a ‘over ‘ b = λ p → a p ‘cOver ‘ b p

Another useful type is spatial transformation, which may be defined simply
as a mapping from 2D space to itself:

type Transform = Point → Point

This model makes it easy to define some familiar transformations:

translate (dx , dy) = λ (x , y) → (x + dx , y + dy)
scale (sx , sy) = λ (x , y) → (sx ∗ x , sy ∗ y)
rotate ang = λ (x , y) → (x ∗ c − y ∗ s, y ∗ c + x ∗ s)

where
c = cos ang
s = sin ang

While these definitions can be directly executed as Haskell programs, perfor-
mance is not good enough for practical use. Our first attempt to cope with this
problem was to use the Glasgow Haskell compiler’s facility for stating transfor-
mations as rewrite rules in source code [15]. Unfortunately, we found that the
interaction of such rewrite rules with the general optimizer is hard to predict:
in particular, we often wish to inline function definitions that would normally
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not have been inlined. Furthermore, there are a number of transformations (if-
floating, certain array optimizations) that are not easy to state as rewrite rules.
We therefore abandoned use of the Haskell compiler, and decided to build a
dedicated compiler instead. We will discuss this decision further in Section 10.

3 Embedding a compiler

In spite of our choice to implement a dedicated compiler, we would like to retain
most of the benefits of the embedded approach. We resolve this dilemma by
applying Kamin’s idea of DSELs for program generation [10]. That is, replace
the values in our representations by program fragments that represent these
values. While Kamin used strings to represent program fragments, algebraic
data types greatly facilitate our goal of compile-time optimization. For instance,
an expression type for Float would contain literals, arithmetic operators, and
other primitive functions that return Float .

data FloatE =
LitFloat Float
| AddF FloatE FloatE |MulF FloatE FloatE | . . .
| Sin FloatE | Sqrt FloatE | . . .

We can define expression types IntE and BoolE similarly.
What about tuples and functions? Following Kamin, we simply adopt the

host language’s tuple and functions, rather than creating new syntactic represen-
tations for them. Since optimization requires inspection, representing functions
as functions poses a problem. The solution we use is to extend the base types to
support “variables”. Then to inspect a function, apply it to a new variable (or
tuple of variables as needed), and look at the result.

data FloatE = . . . |VarFloat String — named variable

These observations lead to a hybrid representation. Our Image type will still
be represented as a function, but over syntactic points, rather than actual ones.
Moreover, these syntactic points are represented not as expressions over number
pairs, but rather as pairs of expressions over numbers. Similarly for colors. Thus:

type ImageE = PointE → ColorE
type TransformE = PointE → PointE
type PointE = (FloatE ,FloatE )
type ColorE = (FloatE ,FloatE ,FloatE ,FloatE )

The definitions of operations over these types can often be made identical
to the ones for the non-expression representation, thanks to overloading. For
instance translate, scale, and rotate have precisely the definitions given in Sec-
tion 2 above. The meaning of these definitions, however, is quite different. The
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arithmetic operators and the functions cos, sin as well as several others have
been overloaded. The over function is also defined exactly as before. Only the
types BoolE , IntE , and FloatE of expressions over the usual “scalar” value types
Bool , Int , and Float , are represented as expressions, using constructors for their
primitive operations. Assuming that these base types are adequate, a DSL is
just as easy to define and extend as with a simple, non-optimizing embedded
interpreter. Otherwise new syntactic types and/or primitive operators may be
added.

As an example of how the hybrid technique works in practice, consider rotat-
ing by an angle of π/2. Using the definition of rotate plus a bit of simplification
on number expressions (FloatE ), the compiler simplifies rotate (π/2) (x , y) to
(−y , x ).

Admittedly, the picture might not always be this rosy. For instance, some
properties of high-level types require clever or inductive proofs. Formulating
these properties as high-level rules would eliminate the need for a generic com-
piler to rediscover them. So far this has not been a problem for our image manip-
ulation language, but we expect that for more substantial applications, it may
be necessary to layer the compilation into a number of distinct abstract levels. In
higher levels, domain types and operators like Image and over would be treated
as opaque and rewritten according to domain-specific rules, while in lower levels,
they would be seen as defined and expanded in terms of simpler types like Point
and Color . Those simpler types would themselves be expanded at lower levels
of abstraction.

4 Inlining and the sharing problem

The style of embedding described above has the effect of inlining all definitions,
and β-reducing resulting function applications, before simplification. This inlin-
ing is beneficial in that it creates many opportunities for rewriting. A resulting
problem, however, is that uncontrolled inlining often causes a great deal of code
replication. To appreciate this problem, consider the following example spatial
transform. It rotates each point about the origin, through an angle proportional
to the point’s distance from the origin. The parameter r is the distance at which
an entire revolution (2π radians) is made.

swirling :: FloatE → TransformE
swirling r = λ p → rotate (distO p ∗ (2 π / r)) p

distO :: PointE → FloatE
distO (x , y) = sqrt (x ∗ x + y ∗ y)

Evaluating swirling r (x , y) yields an expression with much redundancy.

( x ∗ cos (sqrt (x ∗ x + y ∗ y) ∗ 2 π / r)
− y ∗ sin (sqrt (x ∗ x + y ∗ y) ∗ 2 π / r)

, y ∗ cos (sqrt (x ∗ x + y ∗ y) ∗ 2 π / r)
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+ x ∗ sin (sqrt (x ∗ x + y ∗ y) ∗ 2 π / r) )

The problem here is that rotate uses its argument four times (twice via each of
cos and sin) in constructing its results. Thus expressions passed to rotate get
replicated in the output. In our experience with Pan, the trees resulting from
inlining and simplification tend to be enormous, compared to their underlying
representation as graphs. If swirling r were composed with scale (u, v) before
being applied to (x , y), the two multiplications due to scale would each be appear
twice in the argument to sqrt , and hence eight times in the final result.

In an interpretive implementation, we would have to take care not to evaluate
shared expressions redundantly. Memoization is a reasonable way to avoid such
redundance. For a compiler, memoization is not adequate, because it must pro-
duce an external representation that captures the sharing. What we really want
is to generate local definitions when helpful. To produce these local definitions,
our compiler performs common subexpression elimination (CSE), as described
briefly in Section 8 and in more detail in [5].

5 Static typing

Should there be one expression data type per value type (Int , Float , Bool , etc) as
suggested above, or one for all value types? Separate expression types make the
implementation more statically typed, and thus prevent many bugs in implemen-
tation and use. Unfortunately, they also lead to redundance for variables, bind-
ing, and polymorphically and overloaded expression operators (e.g., if-then-else
and addition, respectively), as well as polymorphic compiler-internal operations
on terms (e.g., substitution and CSE).

Instead, we use a single all-encompassing expression data type DExp of “dy-
namically typed expressions”:

data DExp =
LitInt Int | LitFloat Float | LitBool Bool
| Var Id Type | Let Id Type DExp | If DExp DExp DExp
| Add DExp DExp |Mul DExp DExp | . . .
| Sin DExp | Sqrt DExp | . . .
| Or DExp DExp |And DExp DExp |Not DExp | . . .

It is unfortunate that the choice of a single DExp type means that one cannot
simply add another module containing a new primitive type and its constructors
and rewrite rules. For now we are willing to accept this limitation, but future
work may suggest improvements.

The DExp representation removes redundance from representation and sup-
porting code, but loses type safety. To combine advantages of both approaches,
we augment the dynamically typed representation with the technique of “phan-
tom types” [13]. The idea is to define a type constructor (Exp below) whose
parameter is not used, and then to restrict types of some functions to applica-
tions of the type constructor. For convenience, define abbreviations for the three
supported types as well:
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data Exp α = E DExp

type BoolE = Exp Bool
type IntE = Exp Int
type FloatE = Exp Float

For static typing, it is vital that Exp α be a new type, rather than just a type
synonym of DExp.

Statically typed functions are conveniently defined via the following func-
tionals, where typn turns an n-ary DExp function into an n-ary Exp function.

typ1 :: (DExp → DExp) → (Exp a → Exp b)
typ2 :: (DExp → DExp → DExp) → (Exp a → Exp b → Exp c)

typ1 f (E e1) = E (f e1)
typ2 f (E e1) (E e2) = E (f e1 e2)

and so on for typ3, typ4, etc. The type-safe friendly names +, ∗, etc., come from
applications of these static typing functionals in type class instances:

instance Num IntE
where

(+) = typ2 Add
(∗) = typ2 Mul
negate = typ1 Negate
fromInteger = E . LitInt . fromInteger

Type constraints inherited from the Num class ensure that the newly defined
functions be applied only to Int expressions and result in Int expressions. For
instance, here

(+) :: IntE → IntE → IntE

The important point here is that we do not rely on type inference, which would
deduce too general a type for functions like “+” on Exp values. Instead we state
restricted type signatures.

Other definitions provide a convenient and type-safe primitive vocabulary for
FloatE . Unfortunately, the Bool type is wired into the signatures of operations
like ≥ and ||. Pan therefore provides alternative names ending in a distinguished
character, which is “E” for alphanumeric names (e.g., “notE”) and “∗” for non-
alphanumeric names (e.g., “<∗”).

6 Algebraic optimization and smart constructors

An early Pan implementation was based on the Mag program transformation
system [1]. Generation in this implementation was much too slow, mainly be-
cause Mag redundantly rewrote shared subterms. To avoid this problem, we
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— Type-safe smart constructor
(&&∗) :: BoolE → BoolE → BoolE
(&&∗) =typ2 andD

— Non-type-safe smart constructor
andD :: DExp → DExp → DExp
— Constant folding
andD (LitBool a) (LitBool b) = LitBool (a && b)
— If-floating
andD (If c a b) e2 = ifD c (andD a e2) (andD b e2)
andD e1 (If c a b) = ifD c (andD e1 a) (andD e1 b)
— Cancellation rules
andD e (LitBool False) = false
andD (LitBool False) e = false
andD e (LitBool True) = e
andD (LitBool True) e = e
— Others
andD (Not e) (Not e ′) = notE (e || ∗ e ′)
andD e e ′ | e == e ′ = e
andD e e ′ | e == notE e ′ = false
— Finally, the data type constructor
andD e e ′ = And e e ′

Fig. 1. Simplification rules for conjunction

now do all optimization bottom-up, as part of the construction of expressions.
Then the host language’s evaluate-once operational semantics prevents redun-
dant optimization. Non-optimized expressions are never constructed. The main
drawback is that optimization is context-free. (An optimization can, however,
delve arbitrarily far into an argument term.)

Optimization is packaged up in “smart constructors”, each of which accom-
plishes the following:

– constant-folding;
– if-floating;
– constructor-specific rewrites such as identities and cancellation rules;
– data type constructor application when no optimizations apply; and
– providing a statically typed interface.

As an example, Figure 1 shows a smart constructor for conjunction over
expressions. In fact, because all smart constructors perform constant folding
and if-floating, the real definition is more factored, but it does the same work.

Because if-then-else is not overloadable, Pan uses ifE for syntactic condition-
als, based on an underlying dynamically typed ifD .

ifD :: DExp → DExp → DExp → DExp
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ifD (LitBool True ) a b = a
ifD (LitBool False) a b = b
ifD (Not c) a b = ifD c b a
ifD (If c d e) a b = ifD c (ifD d a b) (ifD e a b)
ifD c a b = ifZ c a b

The function ifZ simplifies redundant or impossible conditions.
The statically typed ifE function is overloaded.

class Syntactic a where ifE :: BoolE → a → a → a

instance Syntactic (Exp a) where ifE = typ3 ifD

Other overloadings include functions and tuples. In the latter case, conditions are
pushed downward. Later when the resulting tuple is consumed to form a single
(scalar-valued) expression, if-floating typically causes the redundant conditions
to float, to form a cascade of redundant conditionals, which are coalesced by ifZ .

As an example of if-floating, consider the following example (given in familiar
concrete syntax, for clarity):

sin ((if x < 0 then 0 else x ) / 2)

If-floating without simplification would yield

if x < 0 then sin(0/2) else sin(a/2)

Replacement followed by two constant foldings (0/2 and sin 0) results in

if x < 0 then 0 else sin(a/2)

If-floating causes code replication, sometimes a great deal of it. CSE factors
out the “first-order” replication, i.e., multiple occurrences of expressions, as with
e2 for the first if-floating clause in Figure 1. There is also a second-order replica-
tion going on, as seen above before simplification. The context sin (•/ 2) appears
twice. Fortunately for this example, one instance of this context simplifies to 0.
In other cases, there may be little or no simplification. We will return to this
issue in Section 10.

We should stress at this point that we intend the algebraic optimizations to be
refinements: upon evaluation, the optimized version of an expression e should
yield the same value as e whenever evaluation of e terminates. It is possible,
however, for simplified version to yield a well-defined result when e does not.
This could happen for example when a boolean expression e && ∗ false would
raise a division-by-zero exception, while the simplified version would instead
evaluate to false.

7 Adding context

More optimization becomes possible when the usage context of a DSL compu-
tation becomes visible to the compiler. For instance, after composing an image,
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type TimeE = FloatE
type Anim = TimeE → ImageE
type DisplayFun = TimeE → VTrans → VSize → IntE → ActionE
type VSize = (IntE , IntE) — view size: width & height in pixels
type VTrans = (FloatE , FloatE , FloatE) — view transform: pan XY, zoom

display :: Anim → DisplayFun
display anim = λ t (panX , panY , zoom) (w , h) output →

loop h (λ j →
loop w (λ i →

setInt (output + 4 ∗ (j ∗ w + i)) (
toBGR24 (

anim t (
zoom ∗ i2f (i − w ‘div ‘ 2) + panX ,
zoom ∗ i2f (j − h ‘div ‘ 2) + panY )))))

Fig. 2. Animation display function

a user generally wants to display it in a window. The representation of images
as PointE → ColorE suggests iteratively sampling at a finite grid of pixel lo-
cations, converting each pixel color to an integer for the display device. (For a
faithful presentation, images need to be antialiased, but that topic is beyond
the scope of the present paper and not yet addressed in our implementation.)
Our first Pan compiler implementation took this approach, that is it generated
machine code for a function that maps a pixel location to a 32-bit color encod-
ing. While this version was much faster than an interpretive implementation,
its efficiency was not satisfactory. For one thing, it requires a function call per
pixel. More seriously, it prevent any optimization across several pixels or rows
of pixels.

To address the shortcomings of the first compiler, we made visible to the
optimizer the two-dimensional iteration that samples and stores pixel values. In
fact, to get more use out of compilation, we decided to compile the display of
not simply static images, but animations, represented as functions from time
to image. (We go even further, generating code for nearly arbitrarily param-
eterized images, with automatic generation of user interfaces for the run-time
parameters.)

The main function display , defined in Figure 2, converts an animation into a
“display function” that is to be invoked just once per frame. A display function
consumes a time, window size, viewing transform (zoom factor and XY pan),
and a pointer to an output pixel array. It is the job of the viewer to come up
with all these parameters and pass them into the display function code.

The critical point here is that (a) the display function is expressed in the
embedded language, and (b) display is applied to its anim parameter (of type
TimeE → Image) at compile time. This compile-time application allows the
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code for display and anim to be combined and optimized, and lets some compu-
tations be moved outside of the inner or outer loop. (In fact, our compiler goes
further, allowing focused recomputations when only some display parameters
change, thanks to a simple dependency analysis.)

The ActionE type represents an action that yields no value, much like Has-
kell’s type IO (). It is supported by a small number of DExp constructors and
corresponding statically typed, optimizing wrapper functions. The first takes an
address (represented as an integer) and an integer value, and it performs the cor-
responding assignment. The second is like a for-loop. It takes an upper bound,
and a loop body that is a function from the loop variable to an action. The loop
body is executed for every value from zero up to (but not including) the upper
bound.

setInt :: IntE → IntE → ActionE
loop :: IntE → (IntE → ActionE ) → ActionE

According to display , a generated display function will loop over Y and X,
and set the appropriate member of its output array to a 32-bit (thus multi-
plication by four) color value. Aside from calculating the destination memory
address, the inner loop body samples the animation at the given time and po-
sition. The spatial sampling point is computed from the loop indices by placing
the image’s origin in the center of the window (thus the subtraction of half the
window width or height) and then applying the user-specified dynamic zoom and
pan (using i2f for int-to-float conversion). In fact, the optimized code is much
more efficient, thanks to code motion techniques described briefly in Section 8
and illustrated in Appendix A.

8 Code motion and code generation

Once context is added and all of the above optimizations have been applied, the
result is an expression tree (of type DExp). As explained in Section 4, this tree
contains a great deal of sharing, mostly because of the inlining and rewriting
process. The next step in compilation is to make the sharing structure explicit
using let-bindings, i.e., performing a common subexpression elimination (CSE).
Another very important form of code motion is hoisting evaluation out of loops
when independent of the loop variable. Finally, we also sometimes synthesize
arrays of values that depend on an inner loop variable but not an outer one. For
details see [5], where some subtle strictness issues are also discussed.

Having performed code motion and loop hoisting, we are in good shape to
start generating some code. The output of the code motion pass could either
be interpreted or compiled, but we choose to compile. The resulting DExp is
converted into a C function. This translation is reasonably straightforward, but
requires a little bit of care in places, to account for the fact that C does not have
expression level variable binding support or array initialization. The generated C
code is then compiled and linked into a viewer that displays the specified image
effect.
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9 Related work

There are many other examples of embedded DSLs, for music, two- and three-
dimensional geometry, animation, hardware design, document manipulation, and
many other domains. See [8] for an overview and references. In almost all cases,
the implementations were interpretive. Several characteristics of functional pro-
gramming languages that lend themselves toward the role of host language are
enumerated in [3].

Kamin’s work on embedded languages for program generation is in the same
spirit as our own [10]. As in our approach, Kamin uses host language functions
and tuples to represent the embedded language’s functions and tuples, and he
uses overloading so that the generators look like the code they are generating.
His applications use a functional host language (ML) and generate imperative
programs. The main difference is that Kamin did not perform optimization or
CSE. Both would be difficult, given his choice of strings to represent programs.

Leijen and Meijer’s HaskellDB [13] provides an embedded language for database
queries and an implementation that compiles search specifications into optimized
SQL query strings for further processing. After trying several unsuccessful de-
signs, we imitated their use of an untyped algebraic data type and a phantom
type wrapper for type-safety.

Our approach to compiling embedded languages can be regarded as an in-
stance of partial evaluation, which has a considerable literature (see, e.g., [7, 9]).
In this light, our compiler is a handwritten cogen (as opposed to one generated
automatically through self-application). The main contrasting characteristic of
our work is the embedding in a strongly typed meta-language (Haskell). This em-
bedding makes particular use of Haskell type-class-based overloading so that the
concrete syntax of meta-programs is almost identical to that of object-programs,
and it achieves inlining for free (perhaps too much of it). It also exploits meta-
language type inference to perform object-language type inference (except on the
optimization rules, which are expressed at the type-unsafe level). Another closely
related methodology is multi-stage programming with explicit annotations, as
supported by MetaML [14], a polymorphic statically typed meta-language for
ML-style programs.

FFTW is a successful, portable C library for computing discrete Fourier
transforms of varying dimensions and sizes [6]. Its numerical procedures are
generated by a special purpose compiler, fftgen, written in Objective Caml and
are better in almost all cases than previously existing libraries. The compiler has
some of the same features as our own, performing some algebraic simplification
and CSE. One small technical difference is that, while fftgen does memoized
simplification, our compiler does bottom-up simplifying construction. It appears
that the results are the same. Because the application domain is so specialized,
fftgen is more focused than our compiler.

Veldhuizen and others have been using advanced C++ programming tech-
niques to embed a simple functional language into C++ types [16, 17]. Functional
evaluation is done by the C++ compiler during type-checking and template in-
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stantiation. Code fragments specified in inlined static methods are chosen and
combined at compile-time to produce specialized, optimized low-level code.

10 Future work

More efficient and powerful rewriting. Our optimizer uses a simple syntactic
approach to rewriting. To obtain better results, rewriting and CSE should make
use of associative-commutative (AC) matching and comparison, respectively,
while still exploiting representation sharing, which is critical for compile-time
efficiency.

CSE cleans up after inlining, recapturing what sharing still remains after
rewriting. However, where inlining does higher-order substitution (in the case
of functions), CSE is only first-order, so higher-order redundance remains. Ide-
ally, inlining, if-floating, and CSE would all work cooperatively and efficiently
with rewriting. Inlining and if-floating would happen only where rewarded with
additional rewrites. Fundamentally, this cooperation seems precluded by the em-
bedded nature of the language implementation, which forces full inlining as the
first step, before the DSEL compiler gets to look at the representation.

Invisible compilation. The techniques described in this paper turn compositional
specifications into efficient implementations. Image editing applications also al-
low non-programmers to manipulate images by composing operations. Imagine
that such an application were to use abstract syntax trees as its internal ed-
itable representation and invisibly invoke an incremental optimizing compiler in
response to the user’s actions. Then a conventional point-and-click user interface
would serve as a “gestural concrete syntax”. The display representation would
then be one or more bitmaps augmented by custom-generated machine code.

Embeddable compilation. By embedding our language in Haskell, we were able
to save some of the work of compiler implementation, namely lexing, parsing,
type checking, supporting generic scalar types, functions and tuples. However,
it should be possible to eliminate still more of the work. Suppose that the host
language’s compiler were extended with optimization rules so that it could work
much like the one described in this paper. We tried precisely this approach with
GHC [15], with partial success. The main obstacle was that the compiler was
too conservative about inlining and rewriting. It takes care never to slow down
a program, whereas we have found that it is worth taking some backward steps
in order to end up with a fast program in the end. Because we do not (yet)
work with recursively defined images, laziness in a host language appears not
to be vital in this case. It might be worthwhile to try the exercise with an ML
compiler.

11 Conclusions

Embedding is an easy way to design and implement DSLs, inheriting many
benefits from a suitable host language. Most such implementations tend to be
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interpretive, and so are too slow for computationally intensive domains like in-
teractive image processing. Building on ideas from Kamin and from Leijen and
Meijer, we have shown how to replace embedded interpreters with optimizing
compilers, by using a set of syntax-manipulating base types. The result is much
better performance with a very small impact on the languages. Moreover, given
a reusable DSL compiler framework such as we have implemented, an embedded
DSL interpreter can be turned into a compiler with very small changes (thanks
to overloading). In our Pan compiler, the rewriting-based optimizations helped
speed considerably, as of course does eliminating the considerable overhead im-
posed by interpretative implementation.

We have produced many examples with our compiler, as may be seen in [2,
4], but more work is needed to make the compiler itself fast and producing even
better code. We hope that the compiler’s speed can be improved to the point of
invisibility so that it can be used by non-programmers in image editors.
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A Optimization example

To illustrate the compilation techniques described in this paper, Figure 3 shows
snapshots of a sample animation whose specification and supporting definitions
are given in Figure 4. Note that ImageE is really a type constructor, parameter-
ized over the “pixel” type. Visual images have type ImageE ColorE , while what
one might call “regions” have type ImageE BoolE .

As a building block, checker is a Boolean image checker that alternates be-
tween true and false on a one-pixel checkerboard. The trick is to convert the
pixel coordinates from floating point to integer (using the floor function) and
test whether the sum is even or odd.

The checkerBoard image function takes a square size s and two colors c1 and
c2. It chooses between the given colors, depending on whether the input point,
scaled down by s falls into a true or false square of checker .

To finish the example, swirlBoard swirls a black and white checker board,
using the swirling function defined in Section 4.
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Fig. 3. snapshots of swirlBoard, defined in Figure 4

As a relatively simple example of compilation, Figure 5 shows the result of
display swirlBoard after inlining definitions and performing CSE, but without
optimization.

Simplification involves application of a few dozen rewrite rules, together with
constant folding, if-floating, and code motion. The result for our example is
shown in Figure 6.

Note how the CSE, scalar hoisting, and array promotion have produced three
phases of computation. The first block is calculated once per frame of the dis-
played animation, the second once per line, and the third once per pixel. As an
example of the potential benefit of AC-based code motion, note that in the def-
inition of n in Figure 6, the compiler failed to hoist the expression e ∗ 6.28319.
The reason is simply that the products are left-associated, so this hoisting can-
didate is not recognized as a sub-expression.
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swirlBoard :: TimeE → ImageE ColorE
swirlBoard t = swirl (100 ∗ tan t) (checkerBoard 10 black white)

swirl :: Syntactic c ⇒ FloatE → ImageE c → ImageE c
swirl r im = im . swirling r — Image swirling function

checker :: ImageE BoolE — Unit square boolean checker board
checker = λ (x , y) → evenE (bxc + byc)

checkerBoard :: FloatE → α → α → ImageE α
checkerBoard sqSize c1 c2 =

ustretch sqSize (cond checker (const c1) (const c2))

— Some useful Pan functions:

cond :: Syntactic a ⇒ BoolE → Exp a → Exp a → Exp a
cond = lift3 ifE — pointwise conditional
— uniform image stretch
ustretch :: Syntactic c ⇒ FloatE → ImageE c → ImageE c
ustretch s im = im . scale (1/s, 1/s)

Fig. 4. Definitions for Figure 3
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λ t (panX , panY , zoom) (width, height) output →
loop height (λ j →

loop width (λ i →
let

a = 2 π / (100 ∗ sin t / cos t)
b = −(height ‘div ‘ 2)
c = zoom ∗ i2f (j + b) + panY
d = c ∗ c
e = −(width ‘div ‘ 2)
f = zoom ∗ i2f (i + e) + panX
g = sqrt (f ∗ f + d) ∗ a
h = sin g
k = cos g
m = 1 / 10
n = m ∗ (c ∗ k + f ∗ h)
p = m ∗ (f ∗ k − c ∗ h)
q = if (bpc + bnc) .&. 1 == 0 then

0
else

1
r = bq ∗ 255c
s = 0 <<< 8
u = output + 4 ∗ j ∗ width

in
setInt (u + 4 ∗ i)

(((s .|. r) <<< 8 .|. r) <<< 8 .|. r)))

Fig. 5. Inlined, unoptimized code for Figure 4
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λ t (panX , panY , zoom) (width, height) output →
let

a = −(width ‘div ‘ 2)
b = mkArr width (λ c → zoom ∗ i2f (c + a) + panX )
d = −(height ‘div ‘ 2)
e = recip (sin t / cos t ∗ 100.0)

in
loop height (λ j →

let
f = j ∗ width
g = zoom ∗ i2f (j + d) + panY
h = g ∗ g

in
loop width (λ i →

let
k = (f + i) ∗ 4 + output
m = readArr b i
n = sqrt (m ∗ m + h) ∗ e ∗ 6.28319
p = sin n
q = cos n
r = g ∗ q + m ∗ p
s = m ∗ q + g ∗ −p

in
if (bs ∗ 0.1c + br ∗ 0.1c) .&. 1 == 0 then

setInt k 0
else

setInt k 16777215))

Fig. 6. Optimized version of code from Figure 5


