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Abstract

We present a paradigm and toolkit for rapid prototyping of interac-
tive, animated 3D graphics programs. The paradigm has its roots in
declarative programming, emphasizing immutable values, first
class functions, and relations, applying these concepts to a broad
range of types, including points, vectors, planes, colors, trans-
forms, geometry, and sound. The narrow role of modifiable state in
this paradigm allows applications to be run in a collaborative set-
ting (multi-user and multi-computer) without modification.

CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism; I.3.6
[Computer Graphics]: Methodology and Techniques; D.1.1 [Pro-
gramming Techniques] Applicative (Functional) Programming;
D.2.m [Software Engineering] MiscellaneousRapid Prototyping;
G.1.7 [Mathematics of Computing] Ordinary Differential Equa-
tions.

Additional Keywords and Phrases: Local Propagation Con-
straints

1 Introduction

TBAG is a paradigm and toolkit for rapid prototyping of interac-
tive, animated 3D graphics programs, based on two broadly
applied design principles: graphical ADTs (abstract data types),
and explicit functions of time. TBAG attempts to make parameter-
ized geometric models as easy to express as mathematical formu-
las, by providing a set ofhigh level graphical ADTs and functions
and operators for constructing graphical values. These types
include points, vectors, planes, colors, transforms, geometry, and
sound. Values of these types are immutable, ensuring that different
uses of a value, even ones occurring in parallel, cannot interfere
with each other.

A single type of entity, theconstrainable, represents modeling ani-
mation parameters of all types, user interaction, and even entire
animations. Constrainables explicitly represent functions of time,

to be sampled automatically by TBAG, thus relieving application
programmers from involvement with frame generation and input
device “motion events”. Functions and operators that have been
defined to work on basic types, including TBAG’s high level
graphical types, are automatically overloaded to work on con-
strainables over those types, producing new constrainables. The
result is an almost invisible syntax for constructing interactive ani-
mations.

Other features of TBAG include lights, shadows, and even sound
integrated with geometry in conceptually consistent manner. Also,
velocity, gravitational and spring forces, etc., can be specified with
ADTs (ordinary differential equations), which are formulated as
equality expressions involving the constrainable derivatives.
Finally, TBAG supports networked distribution transparently.

While other computer graphics researchers have done much good
work to extend the might of numerical constraint solvers, our own
work is complementary. It shows how to take a simple and efficient
constraint solver, apply it uniformly to a multitude of types
(including very high level types), make it support a continuous
time model, and provide an almost invisible syntactic interface to
it. Future work could merge these two research paths.

In this paper, we present details of TBAG’s design, and how we
resolved the implementation challenges that resulted. We then dis-
cuss TBAG’s support for transparent and efficient distribution.
Next support for derivatives and ODEs are described. A collection
of sample applications is then presented. Finally, we make compar-
isons with related work.

2 The TBAG Programmer’s Model

In this section, we describe TBAG’s conceptual model and the
C++ interface that embodies it. We also discuss how TBAG appli-
cations are developed. Implementation issues are discussed in later
sections.

2.1  Graphical Data Types

TBAG programs perform geometry-specific operations by con-
structing and manipulating instances of high-level graphical data
types. In the design of these types, TBAG leaves generally useful
facilities to the host programming language wherever possible.
Thus, type-specific support is distilled into as simple a form as pos-
sible, while allowing great flexibility and ease of expression. For
instance, in TBAG,

• Definition of reusable geometry is handled by programming
language support for definition of constants of arbitrary types.
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• Parameterized reusable geometry is handled by definition and
invocation of functions that produce geometry. The resulting
customization power is not found in currently available graph-
ics packages. Moreover, parameters may be of any type,
including the geometry type itself.

• Attributes and their scoping are supported by functions that
take the involved geometry and attributes as parameters (using
a convenient infix notation), and yield a new geometry value.

To see how this approach works in practice, suppose one wants to
construct several “block with ball” geometry values, consisting of
a rectangular block of a specified color and a yellow sphere on top
of it, together transformed according to some specified modeling
transformation. In order to create several of these assemblies
instead of just one, the programmer would define a C++ function1:

Geometry
block_with_ball(Transform& xform, Color& color)
{ return

( unit_cube * scale(1,4,1) * color +
 unit_sphere * xlt(0,2,0) * yellow ) *

xform;
}

Comments:

• The types Geometry, Transform, and Color are predefined
abstract data types. TBAG supplies these types and others,
such as Point, Vector, and Axis, together with constants and
functions for constructing values of those types.2

• The constantsunit_cube  andunit_sphere , each of type
Geometry, are unit-dimensioned shapes, centered at the origin.
The constantyellow  is of type Color.

• The functionsscale  and xlt  take three real numbers and
construct a modeling transform, i.e., a value of the abstract type
Transform, to scale or translate, respectively, the specified
amounts along thex-, y-, andz-axes. There are also functions to
create rotation and uniform scaling transforms, compositions
of transforms, and transforms defined by matrices.

• The overloaded operator “* ”, when applied to a geometry
value and a transform value, yields a transformed geometry
value. In this example, the first application yields a non-uni-
formly scaled cube. The same operator is also overloaded to
take a geometry value and a color and produce a colored geom-
etry. In fact, both of these operations are special cases of a gen-
eral attribution operation, which is based on an abstract type
Attributer. (Other, less commonly used, attributers do not have
additional overloadings, and instead are constructed via func-
tions that indicate the specific attributes involved. For instance,
edge_color  is a function from colors to attributers, socube
* edge_color(red)  evaluates to a cube with red edges.)

• The overloaded operator “+”, when applied to two geometry
values, yields a geometry value that is the union of the two
given geometry values. (Hence any operation that can be
applied to geometry values can be applied to unions formed by
“+”.) The final use of “* ” transforms this geometric union.

1. C++ note: “T&” is the type of references to values of typeT.

2. Each of these types is defined by a C++ abstract class, and some built-in
subclasses, which makes TBAG conveniently extensible at this level of
“predefined” types, constants, and functions. For ease of extensibility, the
Geometry class’s main method is actually a multi-method, choosing the
actual code that is executed based upon the run-time types of more than one
argument. See [20] for more details.

It is important to keep in mind that, conceptually, every step
involved in this definition creates a new value rather than side-
effecting an existing one. Different uses of the same value, there-
fore, cannot interfere with each other, and so TBAG programmers
need not be concerned with the order or frequency of evaluation of
their definitions.

Geometry values support several operations, including rendering,
picking, and bounding-box determination. Most TBAG program-
mers, however, need not even be aware of these operations, which
are invoked automatically byviewer objects, and automatically
supported by geometry values built up with the primitive geometry
values, functions and operators provided in TBAG.

2.2  Constrainables

The style of expressions used for creating the static, non-interac-
tive values described above may also be used to create dynamic,
interactive“constrainables”. A constrainable represents a concep-
tually continuous flow of values, out of which the application (or
the system) can retrieve a value corresponding to a specific time
using the type-parameterized functionvalue_at :3

template<class T>
T value_at(Constrainable<T> cbl, Real time)

A TBAG application creates constrainables that embody portions
of the desired animation and interaction. Animated, interactive
geometry is represented by a Geometry-valued constrainable, i.e.,
a value of typeConstrainable<Geometry&> . A TBAG
viewer object simply invokesvalue_at  repeatedly on a Geome-
try-valued constrainable with the current time, and renders the
result to a window on the screen, thus producing animation.

The remainder of this section describes how applications introduce
constrainables, how constrainables get their values, and how con-
strainables are put into relationships with other constrainables.

2.2.1  Primitive Constrainables

Constrainables are built up compositionally, out of a few types of
primitive constrainables, representing time and both physical and
virtual input devices. The Real-valued constrainableTime , when
asked for its value at a given time (supplied by a viewer), returns
that time.

As an example of an input device, consider a window-system
slider:

Valuator<Real>& hue_slider =
real_slider(“Hue”, 0, 2 * pi, 0);

The functionreal_slider  creates a labeled slider on the screen
with a minimum, maximum, and initial value. The resulting object
contains a public instance variable,value , which is a Real-valued
constrainable representing the setting of the on-screen slider at all
points in time. (Without infinite buffering, only part of the past of
an input device may be accurately queried.) The TBAG system
ensures that the position of the on-screen slider and thevalue
constrainable always remain consistent.

3. C++ note: this kind of declaration can be interpreted as an infinite family
of function declarations, withT ranging over all types.
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Similarly, a constrainable representing the time-varying position of
a 2D mouse relative to an on-screen window can be accessed as:

Valuator<Point2D&>& mouse_val =
mouse_constrainable_from_x_window(x_window_id);

Now, mouse_val.value  is a Point2D-valued constrainable
representing the position of the mouse relative to the specified win-
dow at all points in time. Primitive constrainables representing
input devices are used to drive interactive applications.

2.2.2  Compound Constrainables

The TBAG system includes a tool that processes C and C++ header
files and produces C++ overloaded functions that will accept con-
strainables as arguments and return properly typed constrainables.
Thus, any function that was defined to operate on a type of value
may be used to operate on constrainables over that type. For
instance, evaluating the expressionsin(Time)  produces a Real-
valued constrainablec such that, value_at( c, t) , returns
sin( t) . The standard filemath.h  was processed through the
overloading tool to provide the overloading for thesin  function.

These expressions may be nested to an arbitrary depth. For
instance:

xlt(sin(Time), cos(Time * 2.0), 1.0)

produces a Transform-valued constrainable that, at timet, evalu-
ates toxlt(sin( t), cos(2 t), 1.0) .

Time-varying, interactive geometry is created in a similar fashion.
Consider the block_with_ball  function defined in
Section 2.1. Once its header file has been processed through the
overloading tool, it may be used with constrainables as arguments:

block_with_ball(uniform_scale(fabs(sin(Time))),
hsv_color(hue_slider.value, 1, 1))

The result is a Geometry-valued constrainable representing a
block-with-ball that is scaling according to the sine of time, and
whose hue is determined by the setting of the slider built in
Section 2.2.1.

The importance of the overloading tool cannot be overemphasized.
With it, we have automatically turned hundreds of functions that
were written without regard to constrainables into functions that
can take constrainables as arguments and produce new constrain-
ables (including all of TBAG’s geometry-related functions).

Since TBAG allows time-varying and interactive values to be
expressed directly, the programmer need not be concerned with
many issues relating to flow of control. In most other systems, the
application programmer needs to take one of two approaches:

• Explicitly poll for changes on input devices and explicitly
update animation parameters.

• More commonly, use an event-driven system, and would regis-
ter interest in input and timer events, with the registered call-
back procedures taking responsibility for correctly updating the
relevant parameters.

In TBAG, neither approach is necessary, since the desired behavior
is explicitly encoded into the constrainables. (In Section 2.3 we
shall see that inherently discrete input events, such as a mouse but-
ton click, are treated differently.)

2.2.3  Establishing Relationships Among
Constrainables

A constrainable may be related to other constrainables by setting
up constraints among them (hence the name “constrainable”). The
following code sets up a geometry consisting of a red and a blue
block-with-ball, each positioned according to a Transform-valued
constrainable:

Constrainable<Transform&> xform1, xform2;
Constrainable<Geometry&> scene =

block_with_ball(xform1, red) +
block_with_ball(xform2, blue);

At this point, the two blocks inscene  have no connection with
each other, so they may be manipulated independently (via
xform1  andxform2 ). Next, we can make these two transforms
interdependent, with their composition being the identity trans-
form:

assert(xform1 * xform2 == identity_trans);

The== operator returns aconstraint, andassert  tells TBAG to
enforce the specified constraint. Theassert  function returns an
assertion, which may later be retracted.

Once this constraint is asserted, changes to one of the transform
constrainables result in changes to the other. For instance, moving
one causes the other to be moved in the opposite direction; shrink-
ing one causes the other to grow; and rotating one causes the other
to perform the opposite rotation.

In TBAG, constraints may be asserted on constrainables of any
type, and the system determines the appropriate values the con-
strainables should take on in order to satisfy the required con-
straints. From the programmer’s point of view, constraints are
continuously maintained among continuously time-varying values.

2.2.4  Multidirectionality

In the above example, we do not say thatxform1  is dependent
upon xform2 , or vice versa. Rather, we say thatxform1  and
xform2  are interdependent. This symmetry allows us to exploit
multidirectionality — a powerful feature of the constraint engine
that underlies TBAG. Thus,xform1  can be altered and we would
expectxform2  to vary accordingly in order to maintain the rela-
tionship, orxform2  can be altered andxform1  remains consis-
tent. One way to visualize this situation is to consider the code in
Section 2.2.3 as creating the undirected constraint graph in
Figure 1.1

When the application assigns a value toxform1 :

// assign time-varying rotation:
Assertion *ast = assert(xform1 == rot(y_axis, Time));

the constraint engine produces the directed constraint solution
graph shown in Figure 2, causingxform2  to be dependent upon
xform1 . Since the transform composition operation can run in
any of three directions (given any two inputs, calculate the third as
output), the application can retract the above assertion and assign a
value toxform2 :

1. “Constant constrainables” are shown as dashed circles.
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retract(ast);
// assign time-varying uniform scale
ast = assert(xform2 == uniform_scale(Time));

thus producing the new graph shown in Figure 2.

Note that ifast  had not been retracted prior to the second asser-
tion, the application would have been notified of a conflict
(because the composition operation would have three inputs and no
outputs).

2.2.5  Constraint Generality vs. Efficiency

When considering the use of constraints in an interactive context, it
is vital to find a good compromise between generality and effi-
ciency. Ideally, one would like extreme generality, but that choice
leads to computationally intractable (and even undecidable) prob-

block_
with_
ball

block_
with_
ball

+
*identity_

blue

red

xform2

xform1

scene

Figure 1. An Undirected Constraint Graph

trans

Figure 2. Figure 1 with xform1  determining xform2

block_
with_
ball

block_
with_
ball

+*

identity_

blue

red

xform2

xform1

scene

trans

rot

y_axis

time

Figure 3. Figure 1 with xform2  determining xform1

block_
with_
ball

block_
with_
ball

+

*

identity_

blue

red

xform2

xform1

scene

trans

uniform_

time

scale

lems. On the other hand, a constraint system that sacrifices too
much power for the sake of efficiency will not satisfy program-
mers’ needs for expressiveness.

One approach for dealing with this problem would be to extend the
constraint system to deal with new situations as they arise. In gen-
eral, this is not a satisfactory approach since: it may require in-
depth knowledge of the constraint system to solve new problems;
ad hoc extensions to the constraint system may result in decreased
efficiency for the system in general; and the designer of a system
cannot possibly predict all the situations an application program-
mer might encounter.

TBAG has adopted a pragmatic approach to dealing with this prob-
lem. Rather than forcing the constraint system to be extended for
each new situation encountered, TBAG makes it straightforward
and convenient for an application programmer to create and regis-
ter application-specific functions and constraint-solution methods
for those functions. These methods are invoked by the underlying
constraint system at the appropriate time.

2.3  General Approach for Interaction

As noted above, interaction that is conceptually continuous is
encoded directly into constrainables, and thus the application
doesn’t need to deal with tracking events from conceptually contin-
uous devices. Examples of conceptually continuous interaction
include window system slider motion, mouse motion, the turning
of a dial, and six degree-of-freedom head tracking.

There are, however, other interactions that are fundamentally dis-
crete (event based). Examples include button presses and menu
choices. TBAG applications generally deal with such discrete input
events by retracting some existing assertions and asserting new
constraints. For instance, in a slight variation of the “opposite
block-with-ball” example above, clicking on a block causes that
block’s position to be related to the mouse position (and, because
of the relationship between transforms, the other block moves in
the opposite direction). Releasing the mouse button removes the
relationship between the mouse and the block. As in this example,
discrete events tend to alter the topology of the constraint graph.

2.3.1  Manipulators

In the above scenario, the application does not need to watch for
“motion events”, but it does need to watch for discrete events, like
a mouse button press or release. To help applications respond to
discrete events, TBAG packages up common interaction para-
digms into “manipulators” that may be used to attribute Geometry
values, thus making the attributed Geometry obey a particular
interaction paradigm. For instance, while the geometry given by

block_with_ball(xform1, red)

does not know how to respond to the mouse, the result of

block_with_ball(xform1, red) *
xform_manipulator(xform1)

does. The functionxform_manipulator  takes a Transform-
valued constrainable and returns an Attributer that, when attached
to a geometry, causes the transform (value of the constrainable) to
become constrained to the mouse when the geometry is picked, and
releases the transform from the mouse when the geometry is
released.
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2.4  Constraint Classes

Some TBAG programs introduce hundreds or thousands of con-
strainables and similar numbers of constraints. To make TBAG
scalable, there needs to be a way to manage this complexity. Fortu-
nately, as pointed out in [3], there is an elegant idiom for dealing
with this complexity problem, combining the use of classes with
constraints. TBAG applications make frequent use of thesecon-
straint classes, which define, as instance data, constrainables repre-
senting the object’s constrainable properties. Thus, instantiating
such a class automatically creates a new set of constrainables.
Class initialization code (the C++ constructor method), assert con-
straints that relate properties of these constrainables. Other con-
straints relating the newly created object to the outside world are
added outside of the class initialization code. Furthermore, class
inheritance results in “constraint inheritance” for free. The reason
is that if a class B derives from a class A, then initialization of
objects of class B will include their initialization as A objects,
including the assertion of A’s constraints. As an example, Figure 4
shows a hierarchy of geometric constraint classes. Note how the
subclasses inherit the constraints of the parent classes.

2.5  Lights

In TBAG, lights are simply geometry values. Unlike PHIGS [17]
and immediate-mode graphics libraries [27,6], lights may be
embedded in scene geometry, subject to that geometry’s modeling

class GeometricObject {
public:

Constrainable<Geometry&> geometry;
// No constraints

};

class XformedGeometricObject: public
GeometricObject {

public:
Constrainable<Geometry&> base_geom;
Constrainable<Transform&> model_trans;
// Constraints:
XformedGeometricObject() {

assert(geometry == base_geom *
model_trans); }

};

class AffineGeometricObject : public
XformedGeometricObject

{
public:

Constrainable<Point&> position;
Constrainable<Quaternion&> orientation;
Constrainable<Vector&> scale_vector;
Constrainable<Vector&> shear_vector;
// Constraints:
AffineGeometricObject();{

assert(model_trans ==
scale_by_vector(scale_vector) *
shear_by_vector(shear_vector) *
orient_by_quat(orientation) *

 translate_to_position(position)); }
};

Figure 4. Some geometric object classes

transforms. This ability facilitates creation of richly articulated
geometric assemblies that contain light sources that move appro-
priately. Lights influence the appearance of all geometric objects in
the same scene. (In contrast, programmers of IRIS Inventor must
worry about order of traversal, since lights only affect objects
“later” than them in traversal order. On the other hand, in TBAG,
there is no way to limit the scope of influence of a light.) The
implementation price paid for this convenience is that two travers-
als of the geometry are made. In the first, lights are accumulated
and transformed to world coordinates (WC), and non-light geome-
try is ignored. In the second traversal, the previously ignored
geometry is rendered as lit by the accumulated WC lights.

There are four geometry-creating functions corresponding to light
types (ambient, directional, positional, and spot lights). Each has
useful defaults for all arguments.

As an example, consider the following C++ function:

Geometry&
directional_light_shaped_as_cone(

Color& col, Vector& light_direction)
{ return

(cone * col + directional_light(col)) *
align_vectors(light_direction, z_vector);

}

This function takes a color and a direction and produces a cone of
the specified color emitting a light of that color, all aligned with the
specified direction. (The utility functionalign_vectors  takes
two Vector values and produces a transform that maps the first vec-
tor to the second.)

TBAG is not the only system that treats lights as first-class objects
(e.g., Mirage [24] and DIVER [10] also do), but it is the only sys-
tem that we know of that allows such succinct integration of lights
with scene geometry.

2.6  Shadows

The interface for shadows is based on the notion of ashadow
plane, which is an invisible, oriented plane that catches shadows. If
a scene contains shadow planes, then by default, every pair of non-
ambient light and visible geometry casts a shadow onto every
shadow plane. With the current renderer, shadows are simply
black, semi-transparent, singular transformations of the visible
geometry.

The programming interface for shadows consists of a new Geome-
try constant,shadow_plane , and a few new constant attributers.

• The constantshadow_plane  is a shadow plane situated in
theXZ plane, oriented so that shadows are cast on the positive
Y side. To create shadow planes with other locations and orien-
tations, one applies transforms to this canonical shadow plane.

• The geometric attributeslight_creates_shadow  and
light_creates_no_shadow  control whether lights in
their scope create shadows, with the former being the default.

• The geometric attributescast_shadow  and cast_-
no_shadow  control whether visible geometry in their scope
cast shadows onto shadow planes.

Figures 7, 8, and 13 show examples of shadow planes in use.
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2.7  Sound

TBAG makes it easy to add synchronized sound to geometric ani-
mations. Sound support is based on the following principles:

• Sound is an abstract data type, like Geometry, with primitives,
attributes, and combination.

• Interactive, animated sounds (sounds that are changing based
on time and other parameters) are supported as Sound-valued
constrainables.

• Synchronization between geometry and sound works simply by
relating geometry constrainables and sound constrainables to
some of the same parameter constrainables.

To illustrate this last point, the following code fragment constructs
a rotatable cube whose rotation angle is determined by a slider. The
rotating cube emits the sound of a flute with the pitch modified by
the angle’s rate of change.

Constrainable<Real> angle =
real_slider(“Rotate cube:”, 0, 2*pi, 0).value;

Constrainable<Geometry&> scene =
cube * rot(y_axis,angle) +
sound_at_origin(flute*frequency(derivative(angle)));

Some comments:

• flute  is a constant Sound of a flute playing with a canonical
pitch and volume.

• The functionfrequency  takes a real number and produces a
sound attributer that when applied to a sound value multiplica-
tively modifies the frequency of that sound. Other sound
attributers include phase and amplitude.

• The functionsound_at_origin  takes a sound value and
produces a geometry value, which is the sound argument
embedded into geometric space at the origin. As such it has no
visual appearance but may be heard. Such geometries may then
be transformed elsewhere in 3D, and renderers may choose to
perform audio spatialization on the sound to impart a sense of
position to the sound. The current TBAG renderer performs
very basic audio spatialization.

3 Implementation

The programmer’s model presented above has an efficient imple-
mentation that makes a number of non-obvious design choices.
This section presents that implementation and discusses some of
the design choices.

3.1  Behaviors

TBAG was designed to provide a fundamentallycontinuous, rather
than discrete, treatment of naturally continuous phenomena such as
time and motion. The basis for implementing TBAG’s continuous
approach efficiently is thebehavior, a type-parameterized family of
immutable data types that represent first-class functions of time.
The notion of behaviors applies pervasively, for all types and at all
levels, from individual parameters to entire animations. For
instance, a time-varying angle is represented as a Real-valued
behavior, the position and orientation of a geometric component as
a transform behavior, and an entire animated scene, as well as each
of its geometric components, as geometry behaviors. Behaviors are

purely an implementation device, being constructed invisibly dur-
ing constraint solution, as will be described below in Section 3.2.

Behaviors support asampling operation, which produces a value
for a given timet. For instance, consider an animation, which is
represented via a geometry behavior. An application or user creates
any number of viewer objects, connected to the same geometry
behavior. Each of these viewers iteratively samples the geometry
behavior according to some criterion, such as maintaining a desired
frame rate. In addition, each viewer also has a (viewing) transform
behavior, which it samples for the same sequence of times. Each
geometry and viewing transform sample pair is rendered to pro-
duce a frame of animation. Various viewers of a single geometry
behavior may sample it completely independently, e.g., with differ-
ent frame rates. No interference among these viewers is possible,
due to the immutability of TBAG values.

In addition to sampling, behaviors also support differentiation,
integration, and fairly general systems of first-order and higher-
order ODEs, all over an extensible collection of types. For
instance, the derivative of a point behavior is a vector behavior.
(See Section 5.) Differentiation is done analytically when possible,
and numerically otherwise (when differentiating input devices or
functions whose analytic derivatives are not known). Integration
and ODE solution is done analytically when of a very simple form,
and otherwise using a standard efficient and accurate numerical
technique (fourth order Runge-Kutta with adaptive step-size deter-
mination).

3.2  Continuous Constraints

Our goal with respect to constraints has been to explore easy
expression and application to high level (non-numeric) types,
rather than powerful numerical constraint solution techniques.
TBAG currently uses the SkyBlue constraint satisfaction algorithm
[19], which is a descendent of DeltaBlue [14]. Constraints may be
specified on arbitrary types of (immutable) values, and may be
given different strengths. This efficient, incremental algorithm
ensures that a globally optimal subset of specified constraints are
satisfied. As explained below, efficiency of TBAG’s constraint
maintenance is also significantly enhanced by an unconventional
use of the underlying constraint satisfaction algorithm, which
allows it to be invoked relatively infrequently.

TBAG’s design imposes unusual requirements for the constraint
system.

• In order to support a fundamentally continuous model of time
and interaction, TBAG’s constraint system must ensure that the
constraints involving continuously changing values are contin-
uously maintained.

• Efficient prediction of constrained values must be possible (and
is in fact the typical case).1

• The instantaneous rate of change of a constrained value must
be available, in order to support derivative constraints. As will
be described in Section 5, derivative constraints allow natural
expression of behaviors governed by derivatives, integrals, and
differential equations.

None of these requirements hold in typical constraint-based sys-
tems, because such systems are usually data-driven, i.e., input val-
ues are allowed to change discretely, after which the system makes
other discrete value changes to resatisfy the constraints. One could
satisfy the first requirement by changing the constraint system
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from data-driven to demand-driven, propagating value demands
backwards, rather than propagating value changes forwards. This
change would be based on the observation that while, conceptually,
values (such as the geometry of a scene) are continuously chang-
ing, these values will be sampled discretely (e.g., by viewers dur-
ing automatic frame generation). The second and third
requirement, however, would still not hold in this hypothetical con-
straint system.

TBAG’s answer to the three requirements above is to make the val-
ues contained in constrainables and manipulated by the discrete
constraint system bebehaviors instead of base-level values. The
constraint engine responds to assertions and retractions by con-
structing new behaviors for constrainables (typically correspond-
ing to user interactions and other significant events), and
propagates such (discrete) changes forward to cause related con-
strainables to take on new behaviors. (Interestingly, the underlying
data-driven constraint system’s type-genericity allowed it to be
used in this unusual way without modification.) The first require-
ment is satisfied because the desired constraints hold among the
related behaviors, and hence among all corresponding samples.
The second requirement follows from the fact that behaviors sup-
port arbitrary time-sampling. (Actually, the prediction is only cor-
rect as long as the constrainable has its current behavior, which is a
useful approximation of prediction of constrained values.) The
third requirement follows because derivative is a well-defined con-
cept on behaviors.

A significant performance benefit of this approach is that it allows
the constraint engine to run infrequently. The constraint system is
only invoked when an application changes underlying relation-
ships in the system. Because the constraint system relates behav-
iors, its results tend to be valid for a significant amount of time.
Section 2.3 illustrated how this characteristic is exploited during
user interaction.

Keep in mind that the TBAG programmer is unaware of the fact
that constrainables actually contain behaviors and are modified dis-
cretely, and instead think of constrainables informally as contain-
ing basic values and being modified continuously.

3.3  Efficiency Techniques

Any high level paradigm naturally raises concerns about perfor-
mance. Although TBAG is quite high level, it is nonetheless satis-
factorily efficient. The following subsections describe our
efficiency techniques. Note that all of these optimizations are pos-
sible precisely because of the immutable nature of graphical data
and behaviors.

1. To appreciate the motivation for prediction, consider that a frame of ani-
mation is computed starting at some earlier timetC, but will be rendered at
some later timetR, so the system should compute what the geometry and
viewing transform will be at timetR, rather than what they are at timetC.
This discrepancy is especially noticeable with user interaction, because
both the geometry and the viewing transform may be dependent on contin-
uous input devices (such as a 2D or 6D mouse). In particular, when the
viewing transform is derived from a head tracker, users are extremely sen-
sitive to any lag in response to head motion. This “interaction lag” is
avoided by the fact that all behaviors, including input device behaviors, are
capable of doing prediction. Of course neither input values nor the timetR
can be predicted with certainty. However, the alternative of not doing pre-
diction is equivalent to predicting that the input values will remain constant
betweentC andtR.

3.3.1  Efficient Memory Allocation

Conceptually, for any given viewer object, a scene’s geometry and
viewing transform are computed from scratch at each frame.
(Much per-frame construction can often be avoided, as described
in Section 3.3.2 below.) Because the nature and size of the geome-
try representations are not knowna priori and because they outlive
the function calls that construct them, they must be allocated
dynamically (not on the stack) each frame. In order to reduce pro-
gram complexity and error, TBAG frees the programmer from the
need to explicitly free up the allocated storage for abstract values.

At first glance, this approach would seem to require prohibitively
expensive use of garbage collection. Fortunately, this is not the
case. Due to the side-effect-free nature of behavior execution, any
memory allocated during the computation and rendering of a single
frame becomes unreferenced after the frame’s rendering is com-
plete. Thus, TBAG viewers use a very efficient form of allocation,
which we refer to astransient allocation. While in “transient
mode” (e.g., during frame generation), abstract TBAG values are
allocated sequentially from a small number of large chunks of
memory. Leaving transient mode (e.g., at the end of a frame)
causes these chunks to be made available for future reuse, at the
cost of resetting a few pointers.

3.3.2  Dynamic Constant Folding

Geometric objects tend to contain many more potential degrees of
freedom (represented as constrainables) than are being varied at
any one time. Thus, most behaviors are potentially varying but cur-
rently constant. A naive implementation of a continuous, demand-
driven constraint system, however, would result in repeated evalu-
ation of all behaviors, even the constant ones. Such an implementa-
tion would preclude scalability. The TBAG approach of immutable
behaviors contained in mutable constrainables allows for a simple
solution to this problem. When a compound behavior is con-
structed, the argument behaviors are checked. If they are all con-
stant behaviors, a new constant behavior is created (for which the
result value is computed lazily). Since compound behaviors may
be arbitrarily nested, this constant behavior creation may trickle up
to larger and larger portions of the constructed behavior. We call
this process “dynamic constant folding.” Note that explicit invali-
dation is never necessary, since it happens automatically when the
constraint engine recomputes behaviors.

3.3.3  Explicit Geometry Optimization

The TBAG functionoptimize_geometry  takes a geometry
valueg and returns a geometry valueg’ that responds to geometry
operations indistinguishably fromg but more efficiently. As usual,
there is a trade-off to consider: more time is needed to construct the
optimized geometry valueg’ than to simply useg instead, so the
optimization is only worthwhile if the result will be used repeat-
edly.

Different optimizations are done for different operations. For
instance, to support rendering, flattening of geometric hierarchy is
done to (a) reduce run-time stacking and composition of trans-
forms, and (b) present large graphics primitives (e.g., triangle strips
and quadrilateral meshes) to the rendering engine. The actual opti-
mization for each operation is postponed until the operation is first
used.
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Although not done currently, geometry optimization could apply
automatically, e.g., in conjunction with dynamic constant folding.

4 Distribution and Collaboration

TBAG provides a simple way to create distributed, collaborative
applications. Examples of such applications include:

• Collaborative design: three designers are all viewing the same
geometry on computers around the country. Modifications that
any of the three make are witnessed by all, as they are happen-
ing.

• Remote tutoring: a professor is teaching a undergraduate phys-
ics course and presents an electronic illustration of spring
forces in action. Students are watching this experiment live
from their homes, in the classroom, or distributed throughout
the state, and may interact with the experiment on their com-
puters, to get a better understanding of the physics of springs.

Not only are the distribution and collaboration aspects of these
types of applications simple to construct in TBAG, but they also
execute quite efficiently, using very little network bandwidth.

4.1  Writing Collaborative Applications in
TBAG

Distribution and collaboration are facilitated by the addition of a
few functions to the TBAG programming interface. One group of
functions allow constrainables and assertions to be mapped into
machine-independent identifiers that can be passed to different pro-
cesses on different machines. These are known as “externalization”
functions. The other group of functions “internalizes” the external-
ized identifiers back into C++ constrainables and assertions. The
programmer thinks of the externalize/internalize sequence of calls
as providing access to an existing constrainable or assertion in a
separate process, thus allowing constraints to be asserted on and
values to be retrieved from those remote constrainables.

These functions tend to be used as follows. A TBAG application
has created a constrainable that produces an interesting animated,
interactive geometry. To publish its existence, the application
externalizes the constrainable, and communicates the machine-
independent identifier to other TBAG applications (perhaps via
electronic mail, RPC, ToolTalk™, CORBA™, etc). After receiving
the externalized version of the constrainable, these other TBAG
applications internalize the identifier and are left with what appears
to be a standard C++ constrainable. The application may then do
what it pleases with that constrainable. Any changes made to the
constrainable are reflected in all processes that are accessing that
constrainable.

4.2  An Efficient Implementation of
Distribution

The above description can be implemented in a number of ways.
An obvious approach would be to have process B’s internalized
constrainable identifier simply contain a reference to the original
constrainable on process A. While this approach could work, it
would suffer considerable performance penalties. Specifically,
each time process B does avalue_at  on the constrainable, a net-

work round trip will need to be made to A to retrieve the value,
incurring an unacceptable amount of latency and network usage.

Our approach to implementing distribution avoids these inefficien-
cies by using replication and local execution where possible.
Whenever a process creates a constrainable, all other involved
TBAG processes create “clones” of that constrainable. Then,
whenever a constraint is asserted in any process, all related TBAG
processes are informed of that assertion and perform it themselves
locally. Similarly, when a constraint is retracted, related processes
perform the retraction locally. Thus, each process has a semanti-
cally identical copy of the entire constraint network. As explained
in Section 3.2, because interaction and animation are encoded
directly in constrainables, applications tend to make assertions and
retractions relatively infrequently. Therefore, the expense of keep-
ing the constraint graphs consistent is small.

Not all constraint graphs can be entirely replicated via cloning on
all machines involved in a collaboration. Consider the collabora-
tive scenario in Figure 5. This figure represents the programmer’s

view of a collaborative application, with the nebulous blob in the
center representing a single constraint graph that, from the two
mice and time, is determining a geometry to display on both John
and Mary’s computers. The naive implementation discussed earlier
would produce each “frame” of geometry and send it to each dis-
play, thus using considerable bandwidth.

However, what our implementation actually does is reflected in
Figure 6, where the constraint graph inside the nebulous blob has
been replicated onto both machines, and the only information that
needs to flow from one machine to the other are mouse positions.

This approach to efficient distribution via replication depends on
the ability to distribute constraint assertions and retractions
between processes. Such a requirement forces the “values” that
constrainables hold to be able to produce a machine-independent
representation of themselves. Thus, if an application executes
assert(geom == unit_cube * red) , the implementation
needs to be able to communicate a machine-independent represen-
tation of unit_cube * red  to other processes. Our system
achieves this by requiring every implementation subclass of an
abstract data type to know how to “print” its instances. This
“printed” representation can later be evaluated on another machine
to produce a new value that behaves identically to the original one.

Figure 5. Programmer’s view of collaborative application
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There is one troublesome aspect to the implementation approach
for distribution described above. Every constrainable gets repli-
cated on every participating process, and every assertion and
retraction is performed on every participating process, whether or
not the process is interested in the constrainables involved. For
larger-scale distributed applications with many participants enter-
ing and leaving at will, there needs to be a better way, such a “lazy
cloning” of constraint graphs.

5 Derivatives, Integrals, and ODEs

The combination of derivatives and constraints is a very powerful
specification tool for animation and interaction. In fact, our desire
to support derivative constraints originally motivated TBAG’s
behavior-centered internal design. As a simple example, the fol-
lowing lines create two Real-valued slider widgets and constrain
the value property of one to be equal to the derivative of the value
property of the other.

Valuator<Real>& val_slider =
real_slider(“Value”, -10, 10, 0);

Valuator<Real>& rate_slider =
real_slider(“Rate”, -10, 10, 0);

assert( derivative(val_slider.value) ==
rate_slider.value )

The derivative of a constrainablev is another constrainablev’ with
the constraint that the derivative ofv (considered as a function of
time) is equal tov’. Consequently, after this constraint is asserted,
when a user grabs and moves the value slider, the rate slider con-
tinuously moves to reflect the instantaneous rate of change of the
value. When the value slider is not moving, the rate slider stays at
zero. Also, however, the user may grab and move the rate slider
and see the value slider gradually increase and decrease its value at
a rate controlled by the rate slider. The constraint system automati-
cally chooses between differentiation (in the first case) and integra-
tion (in the second).

To illustrate how derivatives can be used in interaction, one can
relate the value slider to a modeling transform of a geometric
object being viewed, as follows.

Figure 6. Implementation’s view of collaborative application
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assert(my_xform == rot(y_axis, val_slider.value));

The result is that a user may control the model’s rotation angle via
the value slider, or its rotational velocity via the rate slider.

Higher-order derivatives are easy to express, simply as repeated
applications ofderivative , or as a chain of derivative con-
straints, as follows.

Valuator<Real> accel_slider =
real_slider(“Acceleration”, -10, 10, 0);

assert(derivative(rate_slider.value) ==
accel_slider.value));

After performing this assertion, all three sliders affect each other
and the model’s rotation appropriately.

As illustrated above, two techniques to solve derivative constraints
are differentiation and integration. Another technique that turns
out to be very powerful is the extraction and solution of systems of
ordinary differential equations (ODEs). The need to solve ODE
systems arises when there arecyclic sets of derivative constraints
— a situation that occurs quite frequently in practice.

As an example of derivative constraints requiring ODE solution,
consider Newton’s law of linear motion,f = m a. This physical law
could be encapsulated as a class that introduces the notions of force
and mass:

class ParticleObject : public AffineGeometricObject {
  public:
    Constrainable<Real> mass;
    Constrainable<Vector&> velocity;
    Constrainable<Vector&> force;
};

ParticleObject::ParticleObject ()
{

assert( velocity == derivative(position)
&& force == mass * derivative(velocity) );

}

Two comments here: (a) recall that theposition  property is
inherited fromAffineGeometricObject , and (b) the&& opera-
tor takes two constraints and forms a single conjunction constraint
with the obvious semantics.

For convenience, TBAG uses a slightly different formulation of
ParticleObject  that contains a set of component force con-
strainables and automatically maintains the constraint that the net
force equals the sum of the component forces. These component
forces may come from a variety of physical sources. For instance,
there is a utility functionspring_force  that computes the force
generated at one end of a spring given that end’s position, the
spring’s stiffness, rest length, and the position of the spring’s oppo-
site end.

Vector&
spring_force(Point& pos, Real stiffness,

Real rest_length, Point& opp_end)
{

Vector& sep = opp_end - pos;
Real length = vector_magnitude(sep);
return stiffness * sep * (rest_length - length) /

length;
}

Another simple component force generator is drag, which is based
on a particle’s velocity and a drag coefficient.

Vector&
drag_force(Real drag_coeff, Vector& vel)
{ return -drag_coeff * vel; }
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Once the header files for these force-producing functions are pro-
cessed by the overloading tool described in Section 2.2.2, the gen-
erated overloadings may be applied to constrainable arguments. In
particular, for thespring_force  function, the particle’s posi-
tion and the position of the spring’s opposite end are usually con-
strainables.

Figure 7 shows a spring toy that was constructed out of a few sim-
ple geometrically realized particles and springs. Any of the balls
may be grabbed, moved, and even thrown. They then bounce
around in a physically realistic looking manner. The posts may also
be moved, and are constrained so that their bases remain in the
ground plane. The forces acting on each ball are gravity, drag, and
two spring forces. Figure 8 shows a construction set that allows
the user to add balls and anchors and place springs to connect balls
to each other or to anchors.

In these examples, the user may grab and pull on a ball. Rather
than overriding the Newtonian constraint, we chose to implement
such manipulation of physical objects by means of a transient
anchor-and-spring pair. When a physical object is grabbed, an
anchor and spring are created and added to the physical object’s
geometry and the resulting spring force is added to the set of com-
ponent forces.

In order to handle systems of ODEs, the basic constraint engine
[19] was extended with a facility for detecting cyclic constraint
subgraphs and then attempting to apply constraint-specific resolu-
tion techniques. Extraction of ODE systems is the only such reso-
lution technique we have added. Systems of linear or non-linear
equations could be handled in the same way. Briefly, ODE resolu-
tion works as follows: each cycle in the identified constraint sub-
graph is checked to make sure it has at least one derivative
constraint for which the integration function has been chosen to
satisfy it (i.e., the derivative constraint is being “executed back-
wards”). If not, cycle resolution fails. Otherwise, a system of
simultaneous ODEs is constructed and the identified constraint
subgraph is replaced by one that executes the ODE solver and
extracts the results for each involved constrainable.

5.1  Multi-type Differentiation

TBAG’s notion of derivative, and hence integration and ODE solu-
tion, are not limited to Real-valued constrainables. Rather, deriva-
tives are defined on many types, includingReal , Point ,
Vector , Quaternion , andTransform . These types are sup-
ported, and more may be added, via an extension mechanism in
which the basic operations underlying differentiation and integra-
tion are defined. For each such typeT (e.g.,Point ), a “delta type”
T’ (e.g.,Vector ) is identified, together with functions including
subtraction (mapping twoT values to aT’ value), addition (map-
ping aT value and aT’ value to aT value), and scalar multiplica-
tion (mapping a real number and aT’ value to aT’ value). The
definition of these operations for theQuaternion  is particularly
interesting. Rather than using subtraction, addition and scaling on
quadruples, we use quaternion division, multiplication, and expo-
nentiation, respectively. We find these definitions to yield much
more useful results. For instance, the virtual trackball algorithm
used by TBAG’s geometry viewer is expressed in terms of a
quaternion derivative constraint and solved by the ODE engine via
quaternion integration. Finally, the operations on affine transforms
are based on corresponding operations on scale, shear, rotation and
translation components.

The sets of functions needed to support differentiation also suffice
to support multi-type interpolation. Thus, TBAG supports a very

general form of linear interpolation: given two values of typeT, say
v0 andv1, and a real numbert, compute a new value corresponding
to v0 + (v1 - v0) * t. The +, -, and * operations refer to the corre-
sponding operations on typesT andT’. Interpolation on the above
mentioned types is thus supported. System extenders interested in
adding operations such as 3D “morphing” would simply need to
provide the appropriate +, -, and * functions on the Geometry type.

5.2  Incremental Evaluation

Sampling of constrainables that are driven by integration or ODE
solution is side-effect-free, like all sampling in TBAG. A simplistic
implementation would be to perform numerical iteration from the
initial time and value for each sample, but of course such an
approach would be too expensive. Instead, in our implementation,
integral and ODE behaviors transparently cache the time and value
of the latest sample. Because behaviors are almost always succes-
sively sampled at times that differ by a small amount, the iterative
numerical algorithm typically requires only a few iterations per
behavior sample. Of course, the use of state is far from unusual in
uses of differential equation solvers. The difference in TBAG is
that the use of state is automatic and transparent.

6 A Collection of TBAG Applications

A variety of applications have been written using the TBAG sys-
tem. This section briefly describes some of them.

The SoundScape application in Figure 9 presents a three dimen-
sional landscape of 3D icons, each of which represents a sound
being emitted from that point in space. The user may manipulate
two microphones (representing the user’s left and right ears) and
any of the 3D icons, resulting in the user perceiving the sounds in
the vicinity of the left and right microphones. In a distributed set-
ting, two separate users can each grab one microphone, thus effect-
ing what they and the other user are hearing in one of their two
ears.

TheEagleWatcher application in Figure 10 (inspired by an inter-
active animation done at Brown University) presents four “watch-
ers” whose eyes continually track the position of the eagle. The
gaze is maintained as the eagle and watchers move. This applica-
tion was constructed by establishing a constraint relationship
between the watcher’s head and eye angle, the position of the
watcher and the position of the eagle. Additionally, each watcher is
emitting a voice, and the user of the application hears the voices
that the eagle might hear through its ears, based upon the distance
of each watcher to the eagle.

The ColorView application shown in Figure 11 (also inspired by
an example done at Brown University) presents three interactive
views of a color based on its RGB representation: a color cube,
three 3D sliders, and three 2D GUI sliders (not shown). Any view
may be controlled with the mouse, causing the other two change
accordingly. In the color cube case, the RGB components are con-
strained to therelative position of the ball within the cube. As a
pleasantly surprising consequence of multi-directionality, the color
will change continuously if the cube frame is spun and the ball
grabbed and held still..

The MortgageTool application in Figure 12 uses multidirectional
constraints to allow flexible analysis of the variables that go into a
mortgage. The user may vary any subset of the Principal, Interest
Rate, Number of Periods, and Payment per Period variables, result-
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ing in changes to the remaining variables. (Contrast this with a tra-
ditional spreadsheet based approach, where the designer of the
spreadsheet is forced, in designing the spreadsheet, to specify
which variables are to be input variables, and which are to be out-
put variables.) MortgageTool provides a direct manipulation inter-
face in which the bars of the chart may be directly grabbed and
moved. The third dimension is exploited to provide a side-by-side
visual comparison of independent scenarios.

The application shown in Figure 13 provides an animated view of
various sorting algorithms. Shown here is a MergeSort. Compari-
sons and swaps are animated and have sound effects.

Finally, Figure 14 shows an implementation of a Xerox PARC-
style ConeTree [4]. This fully animated version (with slow-in/
slow-out animation) was implemented in less than one day by a
summer intern.

Figure 7. A Spring Toy

Figure 8. Spring and Ball Construction Kit

7 Related Work

3D Programming Systems. Also aimed at simplifying con-
struction of interactive 3D programs, Inventor [22] provides a gal-
lery of standardized interaction techniques. Following PHIGS
PLUS, Doré, and others, Inventor adopts a procedural, state-based,
and discrete approach. Unlike TBAG, these systems are heavily
order-dependent and reliant on side-effects (similar to PHIGS
structure editing), to achieve application goals.

Mirage [24] is a high level 3D object-oriented graphics system that
supports a hierarchical temporal coordinate system, but, unlike
TBAG, does not treat time-varying values as a first-class notion.

The UGA [29] work appears to be the first 3D programming
framework that supports direct expression of time-varying values
as functions of time and input. While both UGA and TBAG are

Figure 9. SoundScape

Figure 10. EagleWatcher
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fundamentally continuous, TBAG has focused more on the integra-
tion of high-level data types while UGA has focused more on lan-
guage mechanisms such as delegation hierarchies.

Animation Systems.Traditional animation systems support
mostly key-frame animation. This discrete frame-based approach
is also reflected in many existing animation languages. Descrip-
tions of systems that embed animation capability within a general-
purpose programming language can be found in Reynolds’ [18]
and Thalmann’s [25] work. Some interesting variations include S-
Dynamics [21], which allows time dependent parametric descrip-
tions of actions, and Arya’s lazy functional approach to animation,
based on infinite sequences [1]. TBAG, on the other hand, supports
a fundamentally continuous model of animation, and does so in the
context of a production programming language (C++).

Figure 11. ColorView

Figure 12. MortgageTool

Applications of Constraints to Graphics. Constraint
technology has long been applied in 2D drawing systems, such as
Sketchpad [23] and Juno [16], and in 2D user interfaces, such as
ThingLab II [14] and Garnet [15]. In 3D graphics systems, the use
of data-flow or unidirectional dependency networks is common;
examples can be found in UGA [29], CONDOR [13], AVS [26],
and ConMan [11]. In contrast to these systems, TBAG combines
the use of multi-directional constraints with the ability to involve
high level types in continuous constraint relationships, and does so
via a simple syntax.

Developed independently, VB2 [9] also applies the SkyBlue incre-
mental constraint resolution algorithm to 3D graphics. In contrast
to TBAG, however, VB2 does not support a continuous time
model, high level data types, or a succinct syntax for building up
constraint networks.

Figure 13. Sorting Algorithm Animation

Figure 14. Xerox ConeTree
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QOCA [12] independently used overloading to simplify expression
of constraints. Unlike TBAG, QOCA supported only Real-valued
constraints and supports overloading of the four basic arithmetic
operators.

Much good work has gone into extending the might of numerical
constraint solvers and applying them to interactive graphics (e.g.
[28,2,7,8]). Our own work is complementary, exploring the appli-
cation of constraints to a multitude of types (including very high
level types), and providing an almost invisible programming inter-
face to it.

The Animus system [5] embodies some of the earliest research
done on considering time in constraint programming. Its notion of
temporal constraints is based on a discrete history mechanism, as
opposed to TBAG’s fundamentally continuous approach. Conse-
quently, ODE-based applications must express the numerical inte-
gration algorithm used (Euler’s in the examples given) rather than
simply the differential equations themselves.

8 Conclusions

This paper has presented TBAG, a paradigm and toolkit for rapid
prototyping of interactive, animated 3D graphics programs. The
fundamental aspects of TBAG, high level graphical abstract data
types, and explicit functions of time, are applied broadly, treating,
e.g., points, planes, colors, transforms, geometry, lights, shadows,
and sound, in a consistent manner. The immutability of these types
and functions allows for efficient automatic memory management
and distributed execution. Automatically generated overloading of
existing functions and operators give rise to succinctly expressed
interactive animations.

Our current direction is in applying these same concepts uniformly
to other media types, in pursuit of a coherent framework for dis-
tributed integrated media.
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