
219

Timely Computation

CONAL ELLIOTT
This paper addresses the question “what is a digital circuit?” in relation to the fundamentally analog nature
of actual (physical) circuits. A simple informal definition is given and then formalized in the proof assistant
Agda. At the heart of this definition is the timely embedding of discrete information in temporally continuous
signals. Once this embedding is defined (in constructive logic, i.e., type theory), it is extended in a generic
fashion from one signal to many and from simple boolean operations (logic gates) to arbitrarily sophisticated
sequential and parallel compositions, i.e., to computational circuits.

Rather than constructing circuits and then trying to prove their correctness, a compositionally correct
methodology maintains specification, implementation, timing, and correctness proofs at every step. Com-
positionality of each aspect and of their combination is supported by a single, shared algebraic vocabulary
and related by homomorphisms. After formally defining and proving these notions, a few key transforma-
tions are applied to reveal the linearity of circuit timing (over a suitable semiring), thus enabling practical,
modular, and fully verified timing analysis as linear maps over higher-dimensional time intervals.

An emphasis throughout the paper is simplicity and generality of specification, minimizing circuit-specific
definitions and proofs while highlighting a broadly applicable methodology of scalable, compositionally cor-
rect engineering through simple denotations and homomorphisms.

CCSConcepts: •Hardware→Timing analysis; Functional verification; • Software and its engineering
→ Automated static analysis; • Theory of computation→ Logic and verification; Type theory; Program
verification; Categorical semantics.

Additional Key Words and Phrases: compositional correctness; digital design; linear algebra

ACM Reference Format:
Conal Elliott. 2023. Timely Computation. Proc. ACMProgram. Lang. 7, ICFP, Article 219 (August 2023), 25 pages.
https://doi.org/10.1145/3607861

1 INTRODUCTION
If you use or program computers, you are probably comfortable with a phenomenon that—upon
closer inspection and reflection—appears rather odd and magical. The very nature of an electronic
computer differs profoundly from what we use it for. A computer is an analog electronic circuit,
and so consumes and produces collections of electrical signals, which are continuous in time and in
value (voltage). In contrast, the calculations we use computers to accomplish consume and produce
discrete information.1

Even more fundamentally, electronic circuits are concrete, while calculations are abstract. The
inner workings of a circuit (like a program text) can be inspected, analyzed, and rearranged. In
contrast, a calculation is a function (in the mathematical sense), so it can only be applied to inputs
to generate outputs. While we can examine two circuits (or programs) with the same input/output
1Even when this discrete information serves to approximate some other continuous, physical information, we don’t ask
our computational representations to be continuous.

Author’s address: conal@conal.net.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/8-ART219
https://doi.org/10.1145/3607861

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

https://doi.org/10.1145/3607861
https://doi.org/10.1145/3607861

219:2 Conal Elliott

Φ𝑜 �̃� Φ𝑜 �̃�

⟳

𝜑 𝑜 A 𝜑 𝑜 B

h

Φ𝑚 𝑓

k

𝜑𝑚 f

Fig. 1. Compositionally correct computing

behavior and notice differences in their implementations and resource use (e.g., time, area, and
power consumption), functions hide such differences.2

Given these profound differences, what do we mean when we say that a circuit implements a
function on discrete data? In other words, what is a digital circuit? Any definition must explain
the transition both from continuous to discrete and from concrete to abstract. Considering the
practical and philosophical importance of digital computing, it is worth taking care to formulate
a definition that satisfies a few important criteria:

• Precise, so that we will know when we have successfully satisfied the definition.
• Simple, since the definition itself is the one facet of investigation that cannot be objectively

verified.
• Useful, so that satisfying the definition helps us solve practical and challenging problems.
• Formal, so that proposed instances of the definition can be verified objectively, infallibly, and

automatically.
• Constructive, so that definition instances have computational interpretations, i.e., yield exe-
cutable insight.

• Compositional, so that correctness is integrated into constructions at every step—composing
smaller correct digital computations into larger ones ones—enabling scalability.

This paper proposes the definition pictured in Figure 1, formally expressed and verified in Agda
[Norell 2008; Bove et al. 2009] in later sections of this paper, and summarized as follows:3

A “digital circuit” is an analog circuit that respects discrete meanings.
A few remarks about Figure 1:

• �̃� and A concretely represent (multi-)signals and values, as interpreted by Φ𝑜 and 𝜑 𝑜 respec-
tively (“o” for “objects”); and likewise for �̃� and B.

• 𝑓 and f concretely represent functions over signals and values, as interpreted by Φ𝑚 and 𝜑𝑚

respectively (“m” for “morphisms”).
• h and k extract discrete meanings from continuous mathematical signals.
• ⟳ proves a commutativity condition saying that the two paths from Φ𝑜 �̃� to 𝜑 𝑜 B are exten-

sionally equal, i.e., 𝜑𝑚 f ◦ h ⊜ k ◦ Φ𝑚 𝑓 .
The sense in which the representation 𝑓 in Figure 1 (eventually a circuit) “respects discrete mean-
ings” is that Φ𝑚 𝑓 maps semantically equivalent inputs to semantically equivalent outputs, i.e., for
2Machine implementations of functions, on the other hand, can be profiled for time and space use. Optimization (manual
or automated) is about embracing both sides of this distinction: improve operational efficiency while leaving denotation
unchanged. Although the code and proofs below won’t manipulate the actual physical circuits they describe, they will
manipulate a representation sufficiently tangible to extract instructions for fabricating physical circuits.
3As captioned, Figure 1 describes compositional correctness muchmore generally.What makes it relevant to digital circuits
in particular is that the targets ofΦ𝑚 and𝜑𝑚 in this paper will be signal and value functions respectively.The compositional
aspect of Figure 1 will be explained in Section 9.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:3

any input signals ũ and ṽ, if h ũ ≡ h ṽ, then k (Φ𝑚 𝑓 ũ) ≡ k (Φ𝑚 𝑓 ṽ). This conclusion follows
directly from the premise and commutativity: k (Φ𝑚 𝑓 ũ) ≡ 𝜑𝑚 f (h ũ) ≡ 𝜑𝑚 f (h ṽ) ≡ k (Φ𝑚 𝑓 ṽ).

This paper explores the logical and practical implications of this definition of digital circuits. Fig-
ure 1 will accompany us throughout our journey as we clarify how to encode data in signals, how
to constrain analog computations so that those embeddings exist, and how to synthesize physical
circuits together with timing information sufficient to guarantee their correct execution. Because
compositionality is crucial for constructing sophisticated computational artifacts, and homomor-
phism is a powerful principle for defining and proving correctness, elementary category theory
provides a suitable and consistent language throughout.

This paper makes the following contributions:
• A specification and method for correct hardware design rooted in the temporally continuous

nature of actual hardware rather than the common assumption of a discrete, clocked model.
The shift to continuous time enables addressing subtleties of pin-to-pin delays within gates
and across sequential and parallel compositions, leading to elegantly specified and formally
verified automatic timing analysis for complex circuits. One such subtlety is computing cor-
rectly in the presence of the timing glitches that inevitably arise from unequal signal propa-
gation delays within circuits.

• Identification and definition of signal stability (temporary constancy of discrete interpreta-
tion) as the key logical ingredient in defining digital computation as a disciplined use of ana-
log computation. An important choice here is formulating stability in terms of time intervals.

• A compositional and constructively logical notion of functions over constrained values (sim-
ilar to refinement types) and their use to extend stability from individual signals and gates
to multi-signals and circuits. With stability, the constructive interpretation of this logical no-
tion performs timing analysis as functions on time multi-intervals and constructs correctness
proofs for the results.

• Illustration of a general methodology for compositionally correct engineering using a domain-
independent construction known as a “comma category”. Each comma morphism encapsu-
lates representations of the data and operations involved, their mathematical interpretations,
specification and implementation of a computation, the relationship between specification
and implementation data types, and correctness proofs. Crucially, this recipe forms a carte-
sian category and so is highly composable in the same language as each ingredient.

• Extraction of timing via small alterations to the mentioned interpretations (functors).
• Specialization to static (data-independent) timing to enable correctly clocked, globally syn-

chronous circuit implementations, via a simple shift to one of the functors that defines the
comma category.

• Observation and proof that timing analysis is linear in a space of multi-dimensional time
intervals, leading tomuchmore practical and flexible timing analysis thanwith unconstrained
timing functions.

This paper is a fully proved literate Agda program4, so all of the syntax-colored, indented code
you will see below is proof-checked before type-setting.

2 PURE ANALOG COMPUTATION
Since digital computation is a disciplined use and discrete interpretation of analog computation,
let’s start with analog computing. To simplify the exposition, we’ll use semi-analog signals: contin-
uous in time and discrete in value. Extending to fully analog signals appears not to raise significant
4There are no postulates in the category theory library [Elliott 2023] or in code specific to this paper, and all modules are
compiled with the --safe and --without-K pragmas.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:4 Conal Elliott

analog0 : T 0 → (B 0 → B)→ (S 0 → S)
analog0 tt h tt = 𝜆 t → h tt

analog1 : T→ (B→ B) → (S→ S)
analog1 𝛿 h 𝑥 = 𝜆 t → h (𝑥 (t - 𝛿))

analog2 : T 2 → (B 2 → B)→ (S 2 → S)
analog2 (𝛿 1 , 𝛿 2) h (x̃1 , x̃2) = 𝜆 t → h (x̃1 (t - 𝛿 1) , x̃2 (t - 𝛿 2))

Fig. 2. Analog logic gate templates

challenges, as described in Section 16. A signal (S) is thus a function from continuous time (T, mea-
sured in nanoseconds and represented as a rational number) to booleans (B):
T : Set
T = Q

S : Set
S = T→ B

A (semi-)analog computation is a transformation on “multi-signals”, i.e., aggregates (nested prod-
ucts) of signals.

We will work with a handful of primitive signal functions (analog logic gates), each having one
output and either one or two inputs. Playing loose with terminology, we can also consider false
and true to be gates with no inputs (though they are really implemented as connections to ground
or high voltage). We can thus define all analog gates in terms of templates that describe zero-, one-,
or two-input gates, as shown in Figure 2.5,6 Each analog gate template takes a delay between each
input pin and the single output pin along with a function on booleans.The generated output signal
sampled at time t equals the function applied to the input signals sampled earlier than t by the
given delays. For exposition, assume the following roughly realistic delays (in nanoseconds) for
our logic gates:7

𝛿-false = tt
𝛿-true = tt
𝛿-not = 1 / 10

𝛿-nand = dup (1 / 5)
𝛿-nor = dup (1 / 5)
𝛿-xor = dup (1 / 4)

For instance, an analog nand (negated and) gate:

nandA : S 2 → S
nandA = analog2 𝛿-nand nand

3 TIME AND DIGITAL COMPUTATION
Continuous time is an intrinsic aspect of analog computing and has simple semantics as we’ve just
seen. In digital computation, however, time plays a subtle role that often leads to confusion and
costly mistakes.

5I’ve introduced two definitions to help readability: A 0 = ⊤, and A 2 = A × A.
6As a simplification, the definitions in Figure 2 deterministically assign a value to every point in time, while actual circuits
involve unstable and unpredictable periods.The logical analysis described in the rest of this paper (correctly) avoids making
any promises about these problematic periods.
7Here, tt is the sole element of the unit (nullary product) type ⊤, and dup : a → a × a (duplication).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:5

Because we compute via physical processes, we generally accept that results of a computation
become available strictly after the inputs do.8 For this reason, we mustn’t compute so eagerly that
we try consuming the output from a computation before the input to that computation is ready
and before the computation itself has had time to finish. Just as we shouldn’t consume information
prematurely (before it’s ripened), we also must avoid consuming it postmaturely (after it’s rotted).
To make matters even trickier, different paths through a circuit involve different delays, leading
inevitably into the hazardous territory of “timing glitches”. Much of the fun and cleverness of
computational engineering lies in navigating skillfully between too soon and too late, as well as
managing timing hazards.

Like hardware, imperative programming is tricky because programmers are exposed to the dif-
ficulty of staying in this Goldilocks zone—neither too eager nor too reluctant, but just right. Con-
currency makes matters much worse, inviting programmers to create bugs in the form of nonde-
terminism, deadlock, and timing glitches. These bugs are of the insidious form known as “Heisen-
bugs”, because they often change or even disappear when observed, only to return when one stops
observing.

In contrast, functional programming shifts the burden of managing temporal consequences of
computing’s physicality from the use of a language to its implementation. Nonstrict functional
programming makes this shift more thoroughly than strict functional programming by enabling
useful decomposition of operations that require infinite compute time into simpler operations of
the same nature [Hughes 1989].

An obvious conclusion is that we should always program in (nonstrict) purely functional lan-
guages. There’s a big fly in that ointment, however. Although correct functional programming is
much easier than correct hardware design, compiled software usually runs much less efficiently
than custom hardware. There is an enormous gulf between the language’s simple model of com-
putation as pure functions and the specific nature of the physical substrate (with billions of tran-
sistors operating and communicating in parallel), let alone the analog nature of electricity as used
to continuously charge and discharge capacitors.9,10

Hardware designers cope with timing glitches by requiring input signals to have enough of the
right sort of stability (temporary constancy of boolean interpretation) to guarantee that correct
results can always be found at predictable times. Even without glitches, any useful circuit must
produce correct values not just momentarily but throughout an interval of time, for a simple and
practical reason: physical measuring devices (including you and me) are incapable of paying atten-
tion at exactly the right moment and assimilating the information without at least a tiny amount
of persistence.

8This simple statement about computation has some important exceptions, including constant and other non-hyperstrict
functions. Moreover, sequential, digital computation is often described in general in terms of causal stream functions, with
the understanding that the transformed streams are (and must be) evaluated lazily rather than eagerly.
9Imperative programming makes efficient mapping from program to hardware much more difficult by denying two funda-
mental aspects of the physical substrate:

• Computation occurs in parallel—not just within and among silicon chips but in the universe as a whole. Performance
depends crucially on this physical parallelism, and the gap between sequential and parallel performance is expanding.

• Imperative programming is about discrete state change, so it has an ambient notion of “time” (usually chosen to model
time-varying quantities) that is discrete rather than continuous. In contrast, physical time is effectively continuous at
anywhere near the resolution we or our machines can inspect.

10The abstraction of discretely clocked computation can be implemented correctly only by considering what goes on dur-
ing the time intervals between clock pulses—specifically moving electrons through wires, capacitors, and transistors. For
instance, faster clocks generate faster results, but correctness can easily get lost in the rush due to unequal propagation
delays. Conversely, correctness imposes constraints on clock rate (for a given circuit design), so a precise understanding of
the semantics of timing can guide hardware engineers toward temporally optimal correct implementations.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:6 Conal Elliott

We might consider limiting all signals to have stable intervals, but stability is needed only by
the digital paradigm and so should not be imposed on the underlying analog notions. Instead, we
can limit our own attention to the stable subset of signals and the signal functions that preserve
stability.

This coping strategy of signal stability suggests a first definition of Φ: map from stable signals
and stability-preserving transformations to plain signals and their transformations—simply by for-
getting stability. We will formulate this choice in Section 7, after a few preliminaries.

4 THE COMMON VOCABULARY
A common vocabulary suffices to describe analog circuits, timing, discrete value computations,
and correctness conditions, all related succinctly by homomorphisms.That vocabulary comes from
cartesian categories together with a small collection of logic (boolean) operations. The reason for
this choice is that category theory has proved to be an extraordinarily versatile andmathematically
well-behaved foundation for composition in general and for computational notions in particular.
Like other algebraic abstractions, category theory has a simple and useful notion of homomor-
phism (precise analogy) that naturally serves to define correctness.11

Categories provide the identity transformation (“morphism”) and sequential composition:12,13

record Category {obj : Set o} (___ : obj → obj → Set ℓ) : Set (o ⊔ ℓ) where
infixr 9 _◦_
field
id : a _ a
◦ : (b _ c) → (a _ b) → (a _ c)

open Category {{ … }} public

This class has two primary parameters: the type of objects (obj), and the object-indexed type of
morphisms (___), with the objects to be inferred automatically, as signified by the curly braces.14

Each cartesian category needs nullary and binary product objects, specified through a class
parametrized by objects and not morphisms (to help automatic instance inference):

record Products (obj : Set o) : Set o where
infixr 2 _×_
field
⊤ : obj
× : obj → obj → obj

open Products {{ … }} public

11As John Baez put it, “Every sufficiently good analogy is yearning to become a functor.”
12The open line indicates that the record type acts as a type class with instances to be inferred automatically at their uses.
13You may be wondering why these classes omit laws. The category theory library used in this paper splits operations and
laws into separate classes, because it is often possible and convenient to prove laws automatically via a homomorphism
(functor) from the newly defined category to an existing lawful category, assuming that morphism equivalence in the new
category is defined as equivalence modulo the chosen functor. This functor is often the primary denotation of the source
category in terms of target category, in which case homomorphisms and denotational equivalence guarantee that we have
no abstraction leak. Although the notion of functor is more often defined as between two lawful categories, it needn’t be,
since the functor laws involve only the operations and not the laws of a category. (The same reasoning holds for other
algebraic abstractions and their associated notions of homomorphism.)
14The implicit parameters o and ℓ are universe levels, used in Agda to avoid logical inconsistencies.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:7

The cartesian morphisms produce the nullary product, combine two morphisms with the same
domain, and project pair components (plus several utility operations not shown here):15

record Cartesian {obj : Set o} {{ _ : Products obj }}
(__′_ : obj → obj → Set ℓ) {{ _ : Category __′_ }}

: Set (o ⊔ ℓ) where
private infix 0 ___; ___ = __′_
infixr 7 _△_
field
! : a _ ⊤
△ : (a _ c) → (a _ d) → (a _ c × d)
exl : a × b _ a
exr : a × b _ b

infixr 7 _⊗_
⊗ : (a _ c)→ (b _ d) → (a × b _ c × d)
f ⊗ g = (f ◦ exl) △ (g ◦ exr)

open Cartesian {{ … }} public

Finally, we have generalized booleans and a few hardware-oriented operations (“gates”):

record Boolean {o} (obj : Set o) : Set o where
field
B : obj

open Boolean {{ … }} public

record Logic {o} {obj : Set o} {{ _ : Products obj }} {{ _ : Boolean obj }}
{ℓ} (__′_ : obj → obj → Set ℓ) : Set (o ⊔ ℓ) where

private infix 0 ___; ___ = __′_
field
false true : ⊤ _ B
not : B_ B
nand nor xor : B × B_ B

and or : {{ _ : Category ___ }} → B × B_ B
and = not ◦ nand
or = not ◦ nor

open Logic {{ … }} public

5 CONSTRAINING TYPES
Since digital computation depends on signal function stability (to be defined precisely in Section 7),
let’s take a look at how to constrain types and the functions that operate on them. A natural

15An alternative formulation is to interpose symmetric monoidal categories [Baez and Stay 2010] between Category and
Cartesian. In that case the tensoring operation ⊗ becomes a method rather than a singly defined operation (along with
reassociating nested pairs and swapping pair elements). I’ve chosen to keep the categorical class hierarchy simpler in this
paper.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:8 Conal Elliott

definition of sets of values of some type A in type theory is as a type-level predicate on A, which is
a function from A to propositions (types).16

Since we will want to aggregate constrained signals and compose constrained signal functions,
a cartesian category is in order. In this category, an object is a type and a predicate constraining it,
while a morphism is a function and a requirement that it map constrained inputs to constrained
outputs:17,18

record PRED : Set (suc (m ⊔ ℓm)) where
constructor pred
field
{ty} : Set m
P : ty→ Set ℓm

record _⇒_ (A B : PRED) : Set (m ⊔ ℓm) where
constructor mk⇒ ; open PRED
field
{f} : ty A → ty B
imp : ∀ {u}→ P A u → P B (f u)

If we think of predicates as type subsets, then nullary and binary cartesian products correspond,
respectively, to the universal set over the unit type and cartesian products of sets:19

products : Products PRED
products = record
{ ⊤ = pred {⊤} 𝜆 { tt→⊤ }
; _×_ = 𝜆 (pred {A} P) (pred {B} Q) → pred {A × B} 𝜆 (u , v)→ P u × Q v }

For each of the operations of a cartesian category, the (implicit) value functions and (explicit) pred-
icate functions are both defined by that same operation on proofs, giving the whole category a very
elegant definition:

category : Category _⇒_
category = record
{ id = mk⇒ id
; _◦_ = 𝜆 (mk⇒ g) (mk⇒ f)→

mk⇒ (g ◦ f) }

cartesian : Cartesian _⇒_
cartesian = record
{ ! = mk⇒ !
; _△_ = 𝜆 (mk⇒ f) (mk⇒ g)→ mk⇒ (f △ g)
; exl = mk⇒ exl ; exr = mk⇒ exr }

This category takes care to separate types from predicates and functions from proofs. A simple
functor recombines the parts, returning us to the usual category of functions:20

16Crucially, the choice of Set rather than Bool means that predicates needn’t be decidable, and indeed the predicates we
will define are mostly undecidable. Another example of the power of this choice is correct parsing of languages defined as
predicates on strings [Elliott 2021],
17This notion of constrained types and constraint-respecting functions closely resembles refinement types [Freeman and
Pfenning 1991]. This categorical formulation ensures that the input proof cannot influence the output values by keeping
the value function and proofs separate, rather than injecting proof irrelevance into a function between existential types
[Lovas and Pfenning 2009].
18In the definition of _⇒_, the “open PRED” enables conveniently accessing the ty and P fields of the domain and codomain
PRED objects A and B. Since P is function-valued, it takes an additional argument beyond a PRED object.
19The Agda standard library provides all of the fundamentals used here [Agda Team 2022, Relation.Unary]:

• In PRED, the type of P can be written “Pred A ℓm”.
• In _⇒_, the type of imp can be written “(P A ⟨→⟩ P B) f ”.
• In ⊤, the argument to pred can be written “U”.
• In _×_, the argument to the result pred can be written “P ⟨×⟩ Q”.

In order to make the explanation more self-contained here, I’ve not used these names.
20The _⇛_ here is the type of functors, i.e., morphisms in the category of categories. The constructor cat for the objects of
that category takes the type of category objects as an implicit first argument (inferred here) and category morphisms as
an explicit argument (here _⇒_ and _→_).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:9

exists : cat _⇒_⇛ cat _→_
exists = mk⇛ (𝜆 (pred P)→ ∃ P) (𝜆 (mk⇒ {f } imp) (x , Px) → f x , imp Px)

6 TIME INTERVALS
Time intervals are specified by lower and upper bounds, whichmay be finite or infinite. Rather than
defining intervals all at once, we can form them as the intersection of two semi-infinite intervals,
one given by a lower bound and another by an upper bound—having implicit upper and lower
bounds of +∞ and -∞, respectively. This factoring corresponds to the notions of “setup” and “hold”
timing analyses in hardware design, as well as coinciding with the useful “max-plus” and “min-
plus” (“tropical”) semirings [Golan 2005; Dolan 2013;Wilding 2015].The semiring structure is more
than just a pretty abstraction and proves crucial in extracting useful and flexible timing analyses,
as demonstrated in Section 12.

The max-plus semiring is represented as an infinite or finite lower bound:
infix 9 _↑
data I↑ : Set where
-∞ : I↑
_↑ : T→ I↑

infix 4 _∈_
∈ : T→ I↑ → Set
t ∈ -∞ = ⊤
t ∈ x ↑ = x ≤ t

The semiring operations are usually referred to as “max” and “plus”, but I’ll call them “∩” and “G”
instead:
infixl 6 _∩_
∩ : Op2 I↑
-∞ ∩ -∞ = -∞
-∞ ∩ y ↑ = y ↑
x ↑ ∩ -∞ = x ↑
x ↑ ∩ y ↑ = (x ⊔ y) ↑

infixl 7 _G_
G : Op2 I↑
-∞ G -∞ = -∞
-∞ G y ↑ = -∞
x ↑ G -∞ = -∞
x ↑ G y ↑ = (x + y) ↑

The reason for these names is that we can interpret a lower bound l as representing the set of all
times greater than or equal to l (via ∈). The max and plus operations then correctly implement
intersection and convolution of sets. The convolution of two sets A and B is the set of all values
𝑥 +𝑦 such that 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵.21 The max-plus semiring uses ∩ and G as “addition” and “multipli-
cation”, and their identities -∞ and 0 ↑ as “zero” and “one”. The semiring law proofs can be found
in the source code for this paper. Because convolution is commutative, we have a commutative
semiring, and we need this fact as well in Section 12.

The min-plus semiring is defined analogously:
infix 9 _↓
data I↓ : Set where
_↓ : T→ I↓
+∞ : I↓

infix 4 _∈_
∈ : T→ I↓ → Set
t ∈ x ↓ = t ≤ x
t ∈ +∞ = ⊤

21This operation (also called “Minkowski sum”), the usual notion of convolution over time and space, and language con-
catenation are all special cases of generalized convolution [Elliott 2019, 2021].

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:10 Conal Elliott

infixl 6 _∩_
∩ : Op2 I↓
x ↓ ∩ y ↓ = (x ⊓ y) ↓
x ↓ ∩ +∞ = x ↓
+∞ ∩ y ↓ = y ↓
+∞ ∩ +∞ = +∞

infixl 7 _G_
G : Op2 I↓
x ↓ G y ↓ = (x + y) ↓
x ↓ G +∞ = +∞
+∞ G y ↓ = +∞
+∞ G +∞ = +∞

A doubly bounded interval is represented simply as a pair of singly bounded intervals, with the
set denotation being the intersection of the two set interpretations. Importing the max-plus and
min-plus modules as “↑” and “↓”, respectively, we have

I : Set
I = I↑ × I↓

infix 4 _∈_
∈ : T→ I→ Set
t ∈ (l , u) = t ↑.∈ l × t ↓.∈ u

Since I↑ and I↓ are semirings, so is I, thanks to the general direct product construction. The semir-
ing operations are thus equivalent to the following:

U : I
U = -∞ , +∞

infixl 6 _∩_
∩ : Op2 I

(l1 , u1) ∩ (l2 , u2) = l1 ↑.∩ l2 , u1 ↓.∩ u2

{_} : T→ I
{ x } = x ↑ , x ↓

infixl 7 _G_
G : Op2 I

(l1 , u1) G (l2 , u2) = l1 ↑.G l2 , u1 ↓.G u2

7 TIME, SIGNALS, AND STABILITY
Stability is a predicate on signals saying that the signal is constant throughout some interval:22

stable : Pred S 0ℓ
stable 𝑥 = ∃2 𝜆 (𝑥 : I) (x : B) →∀ {t : T} → t ∈ 𝑥 → 𝑥 t ≡ x

Reading this definition from left to right as a predicate on signals 𝑥 : there exist an interval 𝑥 and
a value x such that for all times t in 𝑥 , the signal 𝑥 at time t equals x.23

Booleans in our category of stable multi-signals are then stable uni-signals:

boolean : Boolean PRED
boolean = record { B = pred stable }

There’s a subtlety here. With the definition of stable above, every signal is stable, because we can
choose the interval 𝑥 to be empty, thereby satisfying the property vacuously. What’s the point,
then? Because Agda’s logic is constructive, proofs have useful computational content. A stable

22For a fully analog signal, we would say that the continuous signal has a constant discrete interpretation throughout the
interval. In moving between low and high voltages, continuous signals pass through voltages that have no discrete inter-
pretation. Digital computations must avoid paying attention to those non-semantic values in order to achieve correctness.
The details are simple and shown in Section 16.
23Alternatively, we could eliminate x and say that �̃� t1 ≡ �̃� t2 whenever t1 ∈ 𝑥 and t2 ∈ 𝑥 . Using the definition of stable
above, however, leads to simpler compositionality and proofs.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:11

stable⇒0 : T 0 → (B 0 → B)→ (B 0 ⇒ B)
stable⇒0 𝛿 h = mk⇒ {f = analog0 𝛿 h} 𝜆 { tt → 𝛿 §̂0 tt , h tt , 𝜆 _ → refl }

stable⇒1 : T→ (B→ B) → (B⇒ B)
stable⇒1 𝛿 h = mk⇒ {f = analog1 𝛿 h} 𝜆 (𝑥 , x , P)→ 𝛿 §̂ 𝑥 , h x , cong h ◦ P ◦ ∈G

stable⇒2 : T 2 → (B 2 → B)→ (B 2 ⇒ B)
stable⇒2 𝛿 h = mk⇒ {f = analog2 𝛿 h} 𝜆 ((x̂1 , x1 , P1) , (x̂2 , x2 , P2))→
𝛿 §̂2 (x̂1 , x̂2) , h (x1 , x2) , cong2

′ h ◦ (P1 ◦ ∈G ⊗ P2 ◦ ∈G) ◦ ∈∩𝑒

Fig. 3. Stable logic templates

signal is more than a signal and an unsubstantiated claim of stability; it includes a constructed
(computed) proof of that claim.

Existentially quantified types are dependent products, and universally quantified properties are
dependent function types [Wadler 2015]. The quantifier ∃2 is defined as nested existential quan-
tification. Proofs (inhabitants) of stable 𝑥 are thus triples (x , 𝑥 , p), where p is a curried function
taking a time t (to be inferred) and a proof of t ∈ 𝑥 , and yielding a proof of 𝑥 t ≡ x. (When an
output interval is too small to be useful (including empty), then one can either supply a larger
input interval or redesign the computation.)

Stability proofs thus contain the timing information needed for digital computation and proofs
of its correctness. This definition of stable enables extracting a single bit (x). These extractions are
combined with others by the generic Products PRED instance defined in Section 5. These multi-bit
extractions contribute to the semantic functions h and k in Figure 1 via a broadly useful construc-
tion to be described in Section 9.

8 ANALOG GATES
Each stable analog logic primitive is a regular analog logic primitive whose use is constrained by
stability (via PRED from Section 5). Templates for zero-, one-, and two-input stable gates are de-
fined in Figure 3, where

§̂0 : T 0 → I 0 → I
tt §̂0 tt = U

§̂ : T→ I→ I
𝛿 §̂ 𝑥 = { 𝛿 } G 𝑥

§̂2 : T 2 → I 2 → I
(𝛿 1 , 𝛿 2) §̂2 (x̂1 , x̂2) = 𝛿 1 §̂ x̂1 ∩ 𝛿 2 §̂ x̂2

and we’ve used two interval lemmas:
∈G : t ∈ { 𝛿 } G p → t - 𝛿 ∈ p ∈∩𝑒 : ∀ {t} → t ∈ p ∩ q → t ∈ p × t ∈ q

Some remarks:
• Each stable⇒𝑖 constructs a morphism in the PRED category (Section 5), using interval oper-

ations (Section 6) and the stable-signal definition of booleans (Section 7).
• Zero-input gates yield constant signals, which are perpetually stable (valid over the universal

interval U).
• One-input gates apply their given function f to their discrete input values x, with output

validity corresponding to the input validity but delayed by 𝛿 (expressed as convolution with
a singleton interval).

• Two-input gates produce a signal that is valid over the intersection of delayed versions of
the input valid intervals. This intersection is necessary for correctness (and thus for proof),
because validity of the output depends on simultaneous validity of the delayed inputs.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:12 Conal Elliott

• In each stable⇒𝑖 definition, the analog signal function could be inferred correctly and auto-
matically from correctness proofs but is given explicitly for clarity.

Our stable analog gates simply instantiate the templates in Figure 3:

logic : Logic _⇒_
logic = record { false = stable⇒0 𝛿-false false

; true = stable⇒0 𝛿-false true
; not = stable⇒1 𝛿-not not
; nand = stable⇒2 𝛿-nand nand
; nor = stable⇒2 𝛿-nor nor
; xor = stable⇒2 𝛿-xor xor }

In this section, we have defined gates that transform stable analog signals. Next, we will want
to incorporate those stabilized analog gates into digital computations as shown in Figure 1 and
compose the resulting digital gates into digital circuits of arbitrary sophistication, maintaining
correctness at every step. We’ll address composition next and then return to digital gates in Sec-
tion 10.

9 COMPOSITIONALLY CORRECT ENGINEERING
Sophisticated engineering artifacts are not usually built monolithically but rather by composing
simpler artifacts. The necessity for this practice stems from our limited ability to manage complex-
ity [Dijkstra 1972]. Quality of the results depends crucially on the sort of composition being done.
To ensure reliability, composition must satisfy the following criteria:

• Every component (primitive and composite) must clearly specify the goal it promises to fulfill.
• The complexity of each specification must remain within human ability to understand de-

pendably and accurately, regardless of the amount of composition happening. Since the op-
erational complexity (detailed steps of execution) of composite computations is the sum of
the operational complexities of its components, specifications must have a fundamentally
different nature from the operational recipes that promise to satisfy them. In particular, for
specifications (clarity of goal) to be scalably beneficial, they must be elegant.24

• Composition must preserve reliability, i.e., compositions are as reliable as each component.
Otherwise, likelihood of error grows at every composition step. Consequently, even if we are
aiming at various approximations of correctness—such as nearly, probably, or usually correct—
we can only scale up if we have perfect reliability at each stage. Otherwise, repeated compo-
sition drives such approximations to their opposites: grossly, probably, and usually incorrect.
Formal, machine-checked proof is the only way I know of to preserve reliability in the face
of repeated composition.25

Compositionally correct computing as pictured in in Figure 1 is a standard construction in cat-
egory theory, namely a comma category [Mac Lane 1998; Riehl 2016]. The two functors (Φ and 𝜑)
are parameters of this category and so will be held fixed across all parts of a composition (though
we will evolve variations of Φ and 𝜑 for increasingly powerful analysis and circuit synthesis).

24Note that the motivation for elegance here is practical, not aesthetic. While somewhat subjective, elegance can be for-
mulated as simplicity of specification, but we must define what concepts are allowed to be assumed in such a specification.
As Murray Gell-Mann [2009] expressed this criterion, “A theory appears beautiful or elegant […] when it’s simple; in other
words when it can be expressed very concisely in terms of mathematics that we’ve already learned for some other reasons”.
25This level of reliability does not come for free. Rather, the formal proof requirement forces engineers to discover and fix
mistakes before composing (when it’s relatively easy to do so) rather than after (when it’s more difficult).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:13

These functors map from each of two categories C1 and C2 to another category C0 in which the
commutative diagram lives.

If we divide up the constellation pictured in Figure 1 in just the right way, we can see that it
forms a cartesian category. This fact enables us to construct correct artifacts from smaller cor-
rect artifacts in a flexible, familiar, and well-behaved way. The domain and codomain objects for
a comma morphism are the C0 morphisms h and k, each bundled with the C1 and C2 objects that
map to the domain and codomain of those morphisms via functors Φ and 𝜑 (renamed to “Φ1” and
“Φ2” for the general construction below). The morphisms in the constructed category comprise the
rest of the constellation: the morphisms 𝑓 and f (from C1 and C2, respectively) and the commu-
tativity proof⟳ (in C0). These objects and morphisms are tidily expressed in an elegant, modern
dependently typed language like Agda:26

record COM : Set (ℓ 𝑜 ⊔ ℓ𝑚) where
constructor com
field
{ 𝜏 1 } : obj1
{ 𝜏 2 } : obj2
h : Φ𝑜

1 𝜏 1 _0 Φ
𝑜
2 𝜏 2

record _↬_ (a b : COM) : Set (ℓ𝑚 ⊔ q0) where
constructor mk↬ ; open COM
field
f1 : 𝜏 1 a _1 𝜏 1 b
f2 : 𝜏 2 a _2 𝜏 2 b
⟳ : h b ◦ Φ𝑚

1 f1 ≈ Φ𝑚
2 f2 ◦ h a

The compositional machinery of correct engineering lives in the definitions of the operations for
constructing and combining morphisms in a comma category. To see how this general machinery
works, consider the following two diagrams:

Φ𝑜
1 𝜌1 Φ𝑜

1 𝜎 1

⟳ 𝑓

Φ𝑜
2 𝜌2 Φ𝑜

2 𝜎 2

h

Φ𝑚
1 f1

k

Φ𝑚
2 f2

Φ𝑜
1 𝜎 1 Φ𝑜

1 𝜏 1

⟳𝑔

Φ𝑜
2 𝜎 2 Φ𝑜

2 𝜏 2

k

Φ𝑚
1 g1

i

Φ𝑚
2 g2

Combine sequentially, erase the common edge, and apply functoriality:27

Φ𝑜
1 𝜌1 Φ𝑜

1 𝜎 1 Φ𝑜
1 𝜏 1

⟳ 𝑓 ⟳𝑔

Φ𝑜
2 𝜌2 Φ𝑜

2 𝜎 2 Φ𝑜
2 𝜏 2

h

Φ𝑚
1 f1

k

Φ𝑚
1 g1

i

Φ𝑚
2 f2 Φ𝑚

2 g2

Φ𝑜
1 𝜌1 Φ𝑜

1 𝜏 1

⟳

Φ𝑜
2 𝜌2 Φ𝑜

2 𝜏 2

h

Φ𝑚
1 (g1 ◦ f1)

i

Φ𝑚
2 (g2 ◦ f2)

Commutativity of the composite diagram follows from commutativity of the component diagrams
and functoriality.

26I don’t expect you to digest the details here, but rather get a sense of how simple the definitions are. In case you are
interested, here are a few details:

• obj𝑖 is the type of objects in category C𝑖 .
• _𝑖 is the type of morphisms in C𝑖 .
• Φ𝑜𝑖 and Φ𝑚𝑖 are the object and morphism aspects of the functor Φ𝑖 .
• ≈ is morphism equivalence in the category C0.

27Functoriality gives us Φ𝑚𝑖 g𝑖 ◦ Φ𝑚𝑖 f𝑖 ≈ Φ𝑚𝑖 (g𝑖 ◦ f𝑖).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:14 Conal Elliott

Likewise, consider the following digital computations:

Φ𝑜
1 𝜌1 Φ𝑜

1 𝜎 1

⟳ 𝑓

Φ𝑜
2 𝜌2 Φ𝑜

2 𝜎 2

h

Φ𝑚
1 f1

k

Φ𝑚
2 f2

Φ𝑜
1 𝜏 1 Φ𝑜

1 𝜐1

⟳𝑔

Φ𝑜
2 𝜏 2 Φ𝑜

2 𝜐2

i

Φ𝑚
1 g1

j

Φ𝑚
2 g2

Combine in parallel (“tensoring”), and apply monoidal functoriality:

Φ𝑜
1 (𝜌1 × 𝜏 1) Φ𝑜

1 (𝜎 1 × 𝜐1)

⟳

Φ𝑜
2 (𝜌2 × 𝜏 2) Φ𝑜

2 (𝜎 2 × 𝜐2)

h ⊗ i

Φ𝑚
1 (f1 ⊗ g1)

k ⊗ j

Φ𝑚
2 (f2 ⊗ g2)

Again, commutativity of the composite diagram follows from commutativity of the component
diagrams and monoidal functoriality.

We now have the primary operations of a monoidal category. To complete the operations of
a cartesian category, we need the identity, the terminal morphism (discarding), pair projections,
and duplication.28 The comma version of each operation follows the pattern illustrated above for
sequential and parallel composition: apply that same operation to the C1 and C2 morphisms, com-
bine the comma objects (vertical edges) in simple and inevitable ways, and prove commutativity
via (cartesian) functoriality and commutativity of the component diagrams. The only vocabulary
and machinery we need that is specific to digital computation is our handful of Logic operations
(Section 4), to which we turn our attention next.

10 DIGITAL GATES
Let’s now briefly review where we are and where we’re going. Section 7 defined signal stability
and embedded that property in the PRED category of Section 5 to yield a cartesian category of
stable multi-signals and their stability-preserving transformations. Section 2 defined a standard
collection of analog logic primitives, later used in Section 8 to define stable versions of those prim-
itives, tracking the relationship between input and output timing needed for correct digital use.
Section 9 presented a general framework for compositionally correct engineering as a standard
construction from category theory that neatly and compositionally embodies our guiding specifi-
cation (pictured in Figure 1) and. We will now fill in the missing piece in this story, which is how
to wrap the stable analog logic primitives from Section 8 so that the resulting “digital gates” can
be composed as in Section 9 to form correct, sophisticated digital computations.

So far I have hinted at the nature of the mappings Φ and 𝜑 in Figure 1 without nailing them
down. The general compositionally correct machinery of Section 9 only requires Φ and 𝜑 to be
cartesian functors. To address digital composition, we’ll need to define these functors. For now
let’s take Φ to be exists from Section 5 and 𝜑 to be the identity functor:

open Comma exists id

28For reversible computation, add reassociation and swap instead.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:15

Recall from Section 9 that the domain and codomain objects of a comma morphism are the
morphisms h and k from Figure 1 together with the objects that the functors Φ and 𝜑 map to the
domain and codomain of h and k. Comma categories come equipped with a notion of categorical
products that takes care of combining smaller value extractors into larger ones. The last remaining
piece is the definition of boolean comma objects, which simply extract a single boolean value from
a stable signal:

boolean : Boolean COM
boolean = record { B = com {𝜏 1 = B} {𝜏 2 = B} 𝜆 (𝑥 , 𝑥 , x , P)→ x }

The parameter choice of 𝜏 1 = B is resolved to come from the Boolean PRED instance defined in
Section 7, i.e., pred stable, while 𝜏 2 =B comes from the category of types and functions and so refers
to boolean values. This pattern of object choice is typical for comma constructions and plays out
with nullary and binary products as well.

Finally, the digital logic primitives for our comma category are defined quite simply. For each
primitive logic operation, the digital (comma) version is defined via the same operation in the
source categories C1 (stable signal functions) and C2 (functions) and a trivial correctness (commu-
tativity) proof (reflexivity):

logic : Logic _↬_
logic = record { false = mk↬ false false 𝜆 _ → refl

; true = mk↬ true true 𝜆 _ → refl
; not = mk↬ not not 𝜆 _ → refl
; nand = mk↬ nand nand 𝜆 _ → refl
; nor = mk↬ nor nor 𝜆 _ → refl
; xor = mk↬ xor xor 𝜆 _ → refl }

11 EXTRACTING TIMING INFORMATION
We’ve now accomplished our goal of formulating digital computation as in Figure 1. Anything we
can express via logic gates and the language of cartesian categories (including sequential and par-
allel composition, projection, duplication, and forgetting) yields a digital computation, including
the underlying analog computation, the corresponding discrete value function being implemented,
correctness (commutativity) proof, and suitable value extractors. Although hardware designers
don’t typically use this vocabulary, they could. Alternatively, one could automatically translate
from a typed lambda-calculus to categorical language [Elliott 2017].

There is more information that we can mine from our constructions, besides knowing what
analog computation to run and what discrete function it implements correctly. We’ll also want to
know exactly how output timing depends on input timing and value. Fortunately, we can do so
easily. Use the same functors and alter the Boolean COM instance in Section 10 to keep timing as
well as values:

open Comma exists id

boolean : Boolean COM
boolean = record { B = com {𝜏 1 = B} {𝜏 2 = I × B} 𝜆 (𝑥 , 𝑥 , x , P)→ 𝑥 , x }

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:16 Conal Elliott

Here, we’ve changed 𝜏 2 from B to I × B, and changed the extractor to yield the timing 𝑥 in addition
to value x. The Logic instance adapts without much fuss:29

logic : Logic _↬_
logic = record { false = mk↬ false (𝛿-false §̂0_ △ false) 𝜆 _→ refl

; true = mk↬ true (𝛿-true §̂0_ △ true) 𝜆 _→ refl
; not = mk↬ not (𝛿-not §̂_ ⊗ not) 𝜆 _→ refl
; nand = mk↬ nand ((𝛿-nand §̂2_ ⊗ nand) ◦ transpose) 𝜆 _→ refl
; nor = mk↬ nor ((𝛿-nor §̂2_ ⊗ nor) ◦ transpose) 𝜆 _→ refl
; xor = mk↬ xor ((𝛿-xor §̂2_ ⊗ xor) ◦ transpose) 𝜆 _→ refl }

With these changes, the extractors h and k and the bottom morphism 𝜑 f in Figure 1 now produce
and transform values and timing together.

Although we have made timing and its transformation available in the data of the comma ob-
jects and morphisms, we have lost the important fact that the output value depends only on the
input value and not on its timing. Computation timing often depends on input value, especially
for software (e.g., the number of loop iterations or depth of recursion is often input-dependent).
Hardware designers, however, are highly motivated to design most aspects of a computation to
take a fixed amount of time, independent of input values. When they’re able to do so, they can
use simple and efficient synchronization mechanisms, particularly a shared clock running at a
constant frequency.

As a further refinement, therefore, let’s consider how we might extract both values and timing
while guaranteeing that each is independent of each other. For an arbitrary function f : A1 × A2 →
B1 × B2, there is a simple, general, and precise way say that the first output (B1) depends only the
first input (A1) and the second output (B2) depends only the second input (A2), namely that there
are functions f1 : A1 → B1 and f2 : A2 → B2 such that f ⊜ f1 ⊗ f2. In other words, f results from ⊗.
Since Figure 1 already involves generating our value or value-and-timing function via a functor
𝜑 , perhaps there’s a way to get 𝜑 (currently the identity) to apply ⊗ for us. A tricky point is that
⊗ takes a pair of functions while functors take just one morphism. Luckily, we can again appeal
to a simple standard construction from category theory. The product of two categories A and B
is a category in which an object comprises a pair of objects (one from A and one from B), and a
morphism comprises a pair of morphisms (again one from A and one from B). Every categorical
operation treats these object and morphism pairs with exactly the independence that we want for
values and timing.

To apply this idea to digital circuit construction, we can make minor changes to the Boolean
and Logic instances above. The most important change is to 𝜑 , which now maps from a product
category:

open Comma exists unsquare

The functor unsquare maps the pair of objects (types) A1 and A2 to the single object A1 × A2 and
the pair of morphisms (functions) f1 and f2 to the single morphism f1 ⊗ f2:

29Product transposition in cartesian (or monoidal) categories has the following signature:

transpose : (a × b) × (c × d) _ (a × c) × (b × d)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:17

unsquare : cat __2_⇛ cat ___
unsquare = mk⇛ (𝜆 (A , B)→ A × B) (𝜆 (f , g)→ f ⊗ g)

The other changes are subtler and follow inevitably from the functor change. Thanks to unsquare,
the resulting definitions are tidier than before we disentangled values and timings:

boolean : Boolean COM
boolean = record { B = com {𝜏 1 = B} {𝜏 2 = I , B} 𝜆 (𝑥 , 𝑥 , x , P)→ 𝑥 , x }

logic : Logic _↬_
logic = record { false = mk↬ false (𝛿-false §̂0_ , false) 𝜆 _ → refl

; true = mk↬ true (𝛿-true §̂0_ , true) 𝜆 _ → refl
; not = mk↬ not (𝛿-not §̂_ , not) 𝜆 _ → refl
; nand = mk↬ nand (𝛿-nand §̂2_ , nand) 𝜆 _ → refl
; nor = mk↬ nor (𝛿-nor §̂2_ , nor) 𝜆 _ → refl
; xor = mk↬ xor (𝛿-xor §̂2_ , xor) 𝜆 _ → refl }

The commutative diagram itself is exactly the same as the previous version30, but now the data
in the comma objects and morphisms manifest the independence of value and timing, leaving the
functor unsquare to forget that independence. What makes this change useful is that the construc-
tion guarantees independence and gives us access to the independent value and timing functions.
We can now verify (often automatically) that the function coincides with our intentions, and we
can start exploring how to represent the data-independent timing function in a form that allows
us to choose a static clock frequency at which the analog circuit provably calculates the desired
function.

12 PRACTICAL (AND CORRECT) TIMING ANALYSIS
Now that we have separated timing computation from value and signal computation, we can run
these computations independently. Doing so is not as useful as we might like, however, for a few
reasons:

• Timing calculations are functions over “timings”, i.e., aggregates (nested pairs) of intervals. If
we feed input timing û into a timing function to yield output timing v̂ , then the correctness
(commutativity) property guarantees that if we hold input steady during the interval û, then
the output will be held steady and correct during the interval v̂ . If we want to operate the
circuit again with different input timing, we will have to recalculate output timing.

• If any component interval of an output (multi-)timing is empty, we can try again with larger
input timing intervals, but we’re hunting in the dark—guessing what combination of changes
to the input timing might help.

• We can only calculate timings forward, i.e., from input to output. It is also useful to compute
minimal requirements on input timing required to ensure meeting output timing goals.

Each of these practical limitations results from using functions to relate input and output timings,
in that functions are by nature black boxes and so cannot be analyzed, optimized, inverted, etc. We
are thus motivated to investigate whether the particular timing functions generated by our comma
construction have properties enabling the sort of analysis wewant to perform.The only operations
we are using to construct those functions are from the following interfaces:

30Since the commutative diagram involves only the target categories of Φ and 𝜑 , it remains unchanged whenever we
change only the source category of Φ or 𝜑 .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:18 Conal Elliott

• Logic:
– Zero-input: the constant function yielding the universal interval U (from -∞ to +∞).
– One-input: convolution with a constant interval.
– Two-input: convolutions with constant intervals, followed by intersection.

• Category:
– The identity function.
– Sequential composition.

• Cartesian:
– Discarding information, yielding the zero-dimensional multi-interval (tt).
– Parallel composition with input duplication.
– Left and right projections.

There is one more important source of algebraic regularity we can exploit: intervals form a
commutative semiring (Section 6). By combining intervals into higher-dimensional aggregates, we
are forming a (left) semimodule, which is like a vector space but with the requirement on scalars
relaxed from a field to a semiring (not requiringmultiplicative or additive inverses, which intervals
do not have). Couldwe be so lucky that timings are always semimodule homomorphisms, i.e., linear
maps in our semimodule of higher-dimensional intervals? Let’s see:

• Zero in this semiring is U, so a zero-input gate timing is a constant-zero function—the only
kind of constant linear function.

• Multiplication is convolution, so a one-input gate timing is multiplying by a constant—exactly
the linear scalar-to-scalar functions.

• Addition is intersection, so a two-input gate timing is 𝜆 (x , y)→ f1 x + f2 y for linear functions
f1 and f2—exactly characterizing linear functions from products.

• Linear functions form a cartesian category, i.e., linearity is closed under the Category and
Cartesian operations.

Yes, we are lucky indeed. Timing is linear.
Linear functions form not just a cartesian category but a biproduct category, meaning that they

have categorical coproducts as well as products and that the two coincide. Biproducts give linear
algebra its essential nature, including the ability to decompose morphisms (linear functions) along
the codomain as well as domain [Macedo and Oliveira 2013]. This double-sided decomposition to-
gether with the fact that linear functions between scalars are exactly multiplications by a constant
give rise to the representation we call “matrices”, though in a more compositional manner [Santos
and Oliveira 2020]. In particular, the form of two-input gate timing (𝜆 (x , y) → f1 x + f2 y) is the
cocartesian operation sometimes called “join” and written “[f1 , f2]” or “f1 ▽ f2”, being dual to
“fork”, which is sometime written “⟨ f1 , f2 ⟩” or “f1 △ f2” (as in this paper, following Gibbons [2002]).
Likewise, zero-input gates are the initial morphism, often written “ !”—being dual to the terminal
morphism, written “!”. These compositional “matrices” provide the static (input-independent) tim-
ing analysis we want. Each matrix entry is an interval that expresses precisely how the timing of
one output bit depends on the timing of one input bit.

We can formally prove and then exploit linearity of timing in the same way we proved and used
separability of timing and value computations in Section 11, by augmenting the lower functor
𝜑 in Figure 1. Just as separability is expressed through a functor that combines two independent
functions into one function—forgetting its separability—we can express linearity through a functor
that consumes linear functions and forgets their linearity.

This new functor maps from the biproduct category of linear maps over some semiring to the
category of functions. The source objects are semimodules over a fixed semiring (the parameter

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:19

of the category), and the morphisms are linear functions. The forgetful functor maps each semi-
module to its carrier type (forgetting the operations and corresponding proofs of the semimodule
laws) and each linear function to a function (forgetting the linearity proof).

The linear category is a subcategory of regular functions built on a broadly useful notion of com-
positional properties of morphisms. Here, the property is linearity, and compositionality is with re-
spect to the operations ofCategory,Cartesian, andCocartesian. To give the flavor of this category,
linearity is defined as follows:31

record linear (f 𝑀 : M →M N) : Set (ℓr ⊔ r) where
private f = f 𝑀 •_
field
cong : u ≈ v → f u ≈ f v
0-H : f 0 ≈ 0
+-H : f (u + v) ≈ f u + f v
· -H : f (s · u) ≈ s · f u

These four properties of a semimodule function f 𝑀 are (a) mapping equivalent arguments to
equivalent results (“congruence”), (b) mapping the zero vector to the zero vector, (c) distributing
over vector addition, and (d) distributing over vector scaling. Here “vector” refers to (bi)product-
aggregated scalars. Each law relates an operation interpreted in one semimodule to the same oper-
ation in the other. The compositionality proofs needed to form this sort of subcategory work out
rather simply, e.g.,32

cat P : Category P linear
cat P = record
{ id P = 𝜆 {M}→ let instance _ = M in

record { cong = id ; 0-H = refl ; +-H = refl ; · -H = refl }
; _◦ P_ = 𝜆 {M N P} g° f° → let instance _ = P ; _ = f° ; _ = g° in

record { cong = cong ◦ cong
; 0-H = cong 0-H # 0-H
; +-H = cong +-H # +-H
; · -H = cong · -H # · -H }

}

cart P : Cartesian P linear
cart P = record
{ ! P = _ -- inferred

; _△ P_ = 𝜆 f° g° → let instance _ = f° ; _ = g° in
record { cong = cong △ cong

; 0-H = 0-H , 0-H

31There are really two subcategories here. In the first subcategory, called “→M” here, the objects are semimodules, and
the morphisms are arbitrary functions over semimodules. The linear predicate is defined over these morphisms, and so
can assume the existence of semimodule operations ≈, 0, +, and · for each semimodule (M and N here). The application
operator used in the definition of linear is defined by dropping a constructor and applying the underlying function:mkM f
• u = f u. In the second category—defined via the compositionality of linearity—the objects are still semimodules, but the
morphisms are restricted to linear functions.
32The infix operator “#” refers to transitivity of morphism equivalence.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:20 Conal Elliott

; +-H = +-H , +-H
; · -H = · -H , · -H }

; exl P = 𝜆 {M N }→ let instance _ = M in
record { cong = exl ; 0-H = refl ; +-H = refl ; · -H = refl }

; exr P = 𝜆 {M N }→ let instance _ = N in
record { cong = exr ; 0-H = refl ; +-H = refl ; · -H = refl }

}

The other proofs (in the paper’s source code) are for Cocartesian and for scaling. Only the last of
these operations needs commutativity of multiplication (convolution in the case of intervals). The
category of linear functions over semimodules is defined via a standard recipe in terms of com-
positional properties (here, linearity). This recipe also provides the forgetful functor from linear
functions to regular functions as needed to adjust 𝜑 .

13 EXAMPLES
Let’s now see how correct, linear timing analysis plays out in practice. As a trivial example, con-
sider a solitary exclusive-or gate, yielding a timing matrix with one row (for one output) and two
columns (for two inputs):

_ : matrix 2 1 (timing xor) ≡ (1 // 4 , 1 // 4)
_ = refl

Some explanation:

• The utility function timing extracts (linear) timing functions from the second (separated) rep-
resentation in Section 11:

timing : ∀ {a b : COM}→ (a↬ b)→ (_→ _)
timing (mk𝑚 _ (f , _) _) = f

• The matrix function exploits the linearity of the timing function to extract a matrix of inter-
vals, given domain and codomain dimensions and a timing function.

• The utility operator _//_ generates a singleton interval for a given fraction:

infix 7 _//_
// : (n : ℤ) (d : N) {{ _ : NonZero d }} → I
n // d = { n / d }

• The right-hand side of the equality was filled in by the Agda type-checker (as needed to make
the trivial reflexivity proof valid) and then tidied manually.

As a somewhat more interesting example, consider an and “gate”, defined as not ◦ nand (Sec-
tion 4):

_ : matrix 2 1 (timing and) ≡ (3 // 10 , 3 // 10)
_ = refl

The delay of 3/10 comes from adding the gate delays of 1/5 for nand and 1/10 for not (Section 2).
Timing for or gates works out the same as for and gates.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:21

Next, let’s define a half adder, which adds two bits to yield a two-bit binary number.33 The
standard recipe is to combine exclusive or to compute the less significant bit together with and to
compute the more significant bit:

ha : B × B↬ B × B
ha = xor △ and

The corresponding 2-by-2 timing matrix corresponds to vertically stacking the timings for xor and
and shown above:

_ : matrix 2 2 (timing ha) ≡ ((1 // 4 , 1 // 4)
, (3 // 10 , 3 // 10))

_ = refl

As a final example, consider a full adder, taking two addend bits and a “carry-in” and yielding a
two-bit binary sum. The construction uses two half adders and an or gate:

fa : (B × B) × B↬ B × B
fa = (id ⊗ or) ◦ assocʳ ◦ (ha ⊗ id) ◦ assocˡ ◦ (id ⊗ ha) ◦ assocʳ

This cryptic, point-free definition can be visualized graphically as follows (generated from the
same formula in another category, as in Elliott [2017]), with boxes for primitive gates and circles
for inputs and outputs:

O₁

O₀

I₀

xor

₀

nand
₀

I₁

xor

₀

nand₀

I₂
₁

₁

₁

₁

not

nor
₁

not

₀ not

Timing analysis:

_ : matrix (2 + 1) 2 (timing fa) ≡ (((1 // 4 , 1 // 2) , 1 // 2)
, ((3 // 5 , ((17 / 20) ↑ , (3 / 5) ↓)) , ((17 / 20) ↑ , (3 / 5) ↓)))

_ = refl

Note that each of the input bits I1 and I2 has two distinct paths of influence on the output bit
O1. Consequently, the corresponding timing matrix entries involve non-singleton intervals. Inter-
estingly, the “lower” bound (from the MinPlus semiring) exceeds the “upper” bound (from the
MaxPlus semiring), i.e., the interval’s width is negative (3/5 − 17/20 = −1/4) as a result of inter-
secting the intervals 3 // 5 and 17 // 20.This information tells us that the second and third input bits
must be stable for at least 1/4 ns in order for the second output bit to be stable for any (positive)
amount of time. Recall that the linear timing function forms linear combinations, i.e., intersections
of Minkowski sums of intervals (corresponding abstractly to dot products in the interval semiring
defined in Section 6).

33The output can be thought of as one sum bit and one carry-out bit. Likewise, the input can be thought of as a single
addend bit (thus “half”) and a carry-in bit.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:22 Conal Elliott

14 CIRCUITS
The bulk of our exploration has been about the continuous-to-discrete transition posed in Sec-
tion 1. Let’s now consider an aspect of the concrete-to-abstract transition. While we won’t be able
to bring the full physicality of circuits into the formal specification, we can bring some of their tan-
gibility, i.e., susceptibility to analysis andmanipulation, including the ability to synthesize physical
artifacts. One tangible form is an inductive representation that directly captures the compositional
vocabulary used to describe computations, namely the Category, Cartesian, and Logic operations.
This vocabulary can then be interpreted into any type of morphisms↠ that supports those three
interfaces:34

data _‘→_ : obj → obj → Set o where
‘id : a ‘→ a
‘◦ : (b ‘→ c) → (a ‘→ b) → (a ‘→ c)
‘! : a ‘→⊤
‘△ : (a ‘→ c) → (a ‘→ d) → (a ‘→ c × d)
‘exl : a × b ‘→ a
‘exr : a × b ‘→ b
‘false ‘true : ⊤ ‘→ B
‘not : B ‘→ B
‘nand ‘nor ‘xor : B × B ‘→ B

⟦_⟧ : (a ‘→ b)→ (a↠ b)
⟦ ‘id ⟧ = id
⟦ g ‘◦ f ⟧ = ⟦ g ⟧ ◦ ⟦ f ⟧
⟦ ‘! ⟧ = !
⟦ f ‘△ g ⟧ = ⟦ f ⟧ △ ⟦ g ⟧
⟦ ‘exl ⟧ = exl
⟦ ‘exr ⟧ = exr
⟦ ‘false ⟧ = false ; ⟦ ‘true ⟧ = true
⟦ ‘not ⟧ = not
⟦ ‘nand ⟧ = nand ; ⟦ ‘nor ⟧ = nor ; ⟦ ‘xor ⟧ = xor

The semantic function ⟦_⟧ is homomorphic (over Category, Cartesian, and Logic) by construction,
so the homomorphism proofs are all trivial. This ⟦_⟧ functor can then be pre-composed into Φ so
that the comma construction contains the tangible representation, while the commutative diagram
continues to relate the denotations.35

15 RELATEDWORK
There has been a tremendous amount of fruitful research done in functional and relational model-
ing of hardware computation, including formal specification and verification [Sheeran 2005]. Some
work has applied dependent types to describe hardware more precisely and to address correctness
[Hanna and Daeche 1992; Flor et al. 2018]. I do not know of such work, however, that uses contin-
uous time as a starting point and computes circuit timing with correctness proofs. Beginning with
a temporally discrete model, either in terms of streams [Sheeran 1984; O’Donnell 1987; Matthews
et al. 1998; Townsend et al. 2015; Zhai et al. 2015] or state and sequencing [Procter et al. 2015;
Harrison et al. 2021], prevents us from even asking the essential question of when values can be
correctly extracted from the underlying temporally continuous signals.

Ghica and Jung [2016]; Ghica et al. [2017] have also structured circuit descriptions in categorical
terms, though in a discrete, syntactic, and operational style, using algebraic properties as specifi-
cation rather than as lemmas that follow from a denotational specification (the stream or signal
functions being computed). I used categories as well for specifying hardware (and other tasks),
via a compiler plugin, automatically translating from Haskell into categorical combinators [Elliott
2017], but did not address timing or prove correctness.

34The module in which this “syntactic” (inductive) category is defined is parametrized by exactly such objects and
morphisms.
35Unfortunately, this functor encounters a technical difficulty. In the underlying category theory library,CAT (the category
of categories) is parametrized by a universe level for objects and another for morphisms, and all functors (CATmorphisms)
stay within those levels. The semantic function ⟦_⟧, however, moves between levels. More thought is needed either to
loosen the library’s restriction or to work more creatively within it.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

Timely Computation 219:23

The pioneering circuit retiming work of Leiserson and Saxe [1991] addressed “timely computa-
tion” head on, performing calculations similar to those suggested by the development above, but
phrased as a graph (rather than semantic) problem that appears to be non-compositional and thus
awkward to formalize and use. Sheeran [1988] systematized retiming compositionally in terms of
relations in Ruby, though with discrete rather than continuous time.

16 CONCLUSIONS AND FUTUREWORK
Fundamentally, computational science and engineering—in their purer and more applied forms—
are about instructive analogy. We have some organized physics (a “machine”) in our hands and a
question in our minds. By stimulating the physics (“inputs”) and observing its reaction (“outputs”),
we somehow learn about something other than the physics. Computation is thus the clever craft
of reliably putting doing into the service of knowing. To apply this paradigm, we need an analogy
between the two. When the analogy is valid (a homomorphism), so are its logical consequences.
Our primary tool in computational science and engineering is thus defining valid analogies and
reasoning from them correctly.

This paper has explored a precise analogy (functor) that relates analog circuits (computational
hardware) to the abstraction we know as digital computation, expressed formally in the depen-
dently typed proof assistant Agda, pictured in Figure 1 and summarized as follows: A “digital
circuit” is an analog circuit that respects discrete meanings. The comma construction from category
theory provides a compositionally correct methodology for designing and engineering correct cir-
cuits, i.e., ones in which correctness is specified and proved at every step of construction. A single
vocabulary is used to describe analog circuits, timing, discrete value computations, and correctness
conditions, all related succinctly by homomorphisms (functors).

At the heart of the relationship between the analog nature of hardware and the digital abstrac-
tion that disciplines its use is timing calculation, specified as a function betweenmulti-dimensional
intervals of time.When input signals are held steady throughout any (suitably shaped/typed)multi-
interval, the outputs are proved to hold steady throughout the computed outputmulti-interval, and
not only steady, but correct in the sense of agreeing with the result of applying a specified math-
ematical function to the held multi-bit value. While functions make for a simple specification of
timing, they do not allow the sort of analysis that leads to efficiently clocked circuits. Fortunately
(and the primary, specific technical result of this paper), these timing functions turn out to be linear
over a semiring of intervals and hence can be represented as a (generalized, compositional) matrix
and thus richly analyzed. Again, timing matrices speak the same (and an even somewhat richer)
categorical language and are related to timing functions homomorphically. This pleasant and use-
ful fact gives a new, compositional account of the “setup” and “hold” timing analyses commonly
employed in circuit design, while formally proving correctness of those analyses and relating them
intimately to the “tropical” (max-plus and min-plus) semirings.

This work suggests several useful extensions:
• Realistic circuits extract many bits per signal rather than just the single bit implied by stable
(as defined in Section 7). The simple one-bit definition of stable can be easily extended to
many, allocated sequentially in time. In this way cyclic sequential circuits and their semantics,
timing analysis, and correctness can be accounted for. (Even without the multi-bit extension,
the analysis given in this paper suffices to determine correct clocking of the inner loop of
a typical cyclic sequential circuit, i.e., a state machine’s combinational transition function.)
Preliminary work suggests that a suitable semantic basis can be extrapolated from stream
fixed points [Hutton and Jaskelioff 2011; Capretta et al. 2016], using the categorical vocabulary
of a traced monoidal category.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

219:24 Conal Elliott

• Richer examples of correct digital circuits, including sophisticated, efficient systolic designs,
should help evaluate the linear timing analysis and correct design methodology in realistic
use.

• Use full-analog signals, i.e., continuous in value (voltage) as well as in time:

S′ = T→ Q

Interpret especially low voltages as false and especially high voltages as true, with in-between
voltages having no boolean interpretation, e.g.,

∼ : Q→ B→ Set
x ∼ f = x ≤ 1 / 5
x ∼ t = x ≥ 4 / 5

Then alter the definition of stable from Section 7 very slightly to use ∼ in place of ≡:

stable′ : Pred S′ 0ℓ
stable′ 𝑥 = ∃2 𝜆 (𝑥 : I) (x : B)→∀ {t : T}→ t ∈ 𝑥 → 𝑥 t ∼ x

• Although Section 11 specialized the specification to static (data-independent) timing, the gen-
eral specification is essentially friendly to dynamic (data-dependent) timing, thus potentially
supporting compositionally correct design of “asynchronous” (dynamically, locally synchro-
nized) circuits, aswell as hybrids of the two styles such as circuits withmultiple clock domains.
Such designs are notoriously difficult to get correct, and their analysis relies on continuous
time.

• The specific way in which values and timings are computed in the static setting is exactly how
derivatives are computed for affine (constant-derivative) functions. I expect that themore gen-
eral setting of dynamic timing corresponds to generalized automatic differentiation, particu-
larly in the setting of Fréchet derivatives, which are linear maps (often, but not necessarily,
represented as Jacobian matrices) [Elliott 2018].

• Although logic gates implement signal functions, the gates themselves are implemented via
assemblies of transistors, the semantics of which is relational rather than functional. Refor-
mulating analog and digital computing to explain the construction of logic gates from their
component transistor relations may enable more aggressively optimized design of correct
computational hardware.

REFERENCES
Agda Team. 2022. The Agda standard Library (Version 2.0).
John Baez and Mike Stay. 2010. Physics, Topology, Logic and Computation: A Rosetta Stone. In New Structures for Physics.

95–172.
Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agda — A functional language with dependent types. In

Theorem Proving in Higher Order Logics.
Venanzio Capretta, Graham Hutton, and Mauro Jaskelioff. 2016. Contractive functions on infinite data structures. In Pro-

ceedings of the 28th Symposium on the Implementation and Application of Functional Programming Languages.
Edsger W. Dijkstra. 1972. The humble programmer. Communications of the ACM 15, 10 (1972). Turing award lecture.
Stephen Dolan. 2013. Fun with semirings: A functional pearl on the abuse of linear algebra. In Proceedings of the 18th ACM

SIGPLAN International Conference on Functional Programming (ICFP ’13). 101–110.
Conal Elliott. 2017. Compiling to categories. Proceedings of the ACM on Programming Languages 1, ICFP (Sept. 2017).
Conal Elliott. 2018. The simple essence of automatic differentiation. Proceedings of the ACM on Programming Languages 2,

ICFP, Article 4 (Sept. 2018), 29 pages.
Conal Elliott. 2019. Generalized convolution and efficient language recognition. CoRR abs/1903.10677 (2019).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

https://github.com/agda/agda-stdlib
https://arxiv.org/abs/0903.0340
http://www.cse.chalmers.se/~ulfn/papers/tphols09/tutorial.pdf
https://www.fceia.unr.edu.ar/~mauro/pubs/contractions.pdf
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
http://stedolan.net/research/semirings.pdf
http://conal.net/papers/compiling-to-categories
http://conal.net/papers/essence-of-ad/
https://arxiv.org/abs/1903.10677

Timely Computation 219:25

Conal Elliott. 2021. Symbolic and automatic differentiation of languages. In Proceedings of the ACM on Programming Lan-
guages (ICFP).

Conal Elliott. 2023. Felix: An Agda category theory library for denotational design.
João Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. 2018. Pi-Ware: Hardware description and verification in

Agda. In 21st International Conference on Types for Proofs and Programs (TYPES 2015) (Leibniz International Proceedings
in Informatics).

Tim Freeman and Frank Pfenning. 1991. Refinement types for ML. In Proceedings of the SIGPLAN ’91 Symposium on Lan-
guage Design and Implementation.

Murray Gell-Mann. 2009. Beauty and Elegance in Physics. (2009). Talk given at University of Scranton.
Dan R Ghica, Achim Jung, and Aliaume Lopez. 2017. Diagrammatic semantics for digital circuits. In 26th EACSL Annual

Conference on Computer Science Logic (CSL 2017).
Dan R. Ghica and Achim Jung. 2016. Categorical semantics of digital circuits. In 2016 Formal Methods in Computer-Aided

Design (FMCAD).
Jeremy Gibbons. 2002. Calculating functional programs. In Algebraic and Coalgebraic Methods in the Mathematics of

Program Construction. Lecture Notes in Computer Science, Vol. 2297. Springer-Verlag.
Jonathan S. Golan. 2005. Some recent applications of semiring theory. In International Conference on Algebra in Memory of

Kostia Beidar.
F. K. Hanna and Neil Daeche. 1992. Dependent types and formal synthesis. Philosophical Transactions of the Royal Society

of London. Series A: Physical and Engineering Sciences 339 (1992).
William L. Harrison, Chris Hathhorn, and Gerard Allwein. 2021. A mechanized semantic metalanguage for high level

synthesis. In 23rd International Symposium on Principles and Practice of Declarative Programming.
John Hughes. 1989. Why functional programming matters. Computer Journal 32, 2 (1989).
Graham Hutton and Mauro Jaskelioff. 2011. Representing contractive functions on streams. Submitted to the Journal of

Functional Programming (2011).
Charles E. Leiserson and James B. Saxe. 1991. Retiming synchronous circuitry. Algorithmica 6, 1–6 (June 1991).
William Lovas and Frank Pfenning. 2009. Refinement types as proof irrelevance. In Proceedings of the 9th International

Conference on Typed Lambda Calculi and Applications (TLCA 2009).
Saunders Mac Lane. 1998. Categories for the working mathematician, second edition. Springer.
Hugo Daniel Macedo and José Nuno Oliveira. 2013. Typing linear algebra: A biproduct-oriented approach. Science of

Computer Programming 78, 11 (2013).
John Matthews, Byron Cook, and John Launchbury. 1998. Microprocessor specification in Hawk. In Proceedings of the 1998

International Conference on Computer Languages. IEEE Computer Society.
Ulf Norell. 2008. Dependently typed programming in Agda. In Revised Lectures of the Sixth International Spring School on

Advanced Functional Programming (Lecture Notes in Computer Science).
John T. O’Donnell. 1987. Hardware description with recursion equations. In IFIP 8th International Symposium on Hardware

Description Languages and their Applications.
Adam M. Procter, William L. Harrison, Ian Graves, Michela Becchi, and Gerard Allwein. 2015. Semantics driven hardware

design, implementation, and verification with ReWire. Proceedings of the 16th ACM SIGPLAN/SIGBED Conference on
Languages, Compilers and Tools for Embedded Systems 2015 CD-ROM (2015).

Emily Riehl. 2016. Category Theory in Context.
Armando Santos and José N. Oliveira. 2020. Type your matrices for great good: A Haskell library of typed matrices and

applications (functional pearl). In Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell.
Mary Sheeran. 1984. MuFP, a Language for VLSI Design. In Proceedings of the 1984 ACM Symposium on LISP and Functional

Programming.
Mary Sheeran. 1988. Slowdown and retiming in Ruby. In IFIP Workshop on The Fusion of Hardware Design and Verification.
Mary Sheeran. 2005. Hardware design and functional programming: A perfect match. JUCS - Journal of Universal Computer

Science 11, 7 (2005).
Richard Townsend, Martha A. Kim, and Stephen A. Edwards. 2015. Hardware in Haskell: Implementing memories in a

stream-based world. Technical Report CUCS-017-15. Columbia University, Department of Computer Science.
Philip Wadler. 2015. Propositions as types. Commun. ACM 58, 12 (2015).
David Wilding. 2015. Linear Algebra Over Semirings. Ph. D. Dissertation. University of Manchester.
Kuangya Zhai, Richard Townsend, Lianne Lairmore, Martha A. Kim, and Stephen A. Edwards. 2015. Hardware synthe-

sis from a recursive functional language. In 2015 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS).

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 219. Publication date: August 2023.

http://conal.net/papers/language-derivatives/
https://github.com/conal/felix
https://drops.dagstuhl.de/opus/volltexte/2018/8479/pdf/LIPIcs-TYPES-2015-9.pdf
https://drops.dagstuhl.de/opus/volltexte/2018/8479/pdf/LIPIcs-TYPES-2015-9.pdf
http://www.cs.cmu.edu/~fp/papers/pldi91.pdf
https://www.youtube.com/watch?v=anHgZru8acg&t=379s
https://arxiv.org/abs/1703.10247
https://www.cs.bham.ac.uk/~axj/pub/papers/Ghica-Jung-2016-Categorical-semantics-of-digital-circuits.pdf
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/acmmpc-calcfp.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.318.6696
https://royalsocietypublishing.org/doi/10.1098/rsta.1992.0029
(https://harrisonwl.github.io/assets/papers/ppdp21.pdf)
(https://harrisonwl.github.io/assets/papers/ppdp21.pdf)
https://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
https://www.cs.nott.ac.uk/~pszgmh/contractive.pdf
https://citeseerx.ist.psu.edu/doc/10.1.1.368.3222
http://www.cs.cmu.edu/~fp/papers/tlca09.pdf
http://www.sciencedirect.com/science/article/pii/S0167642312001402
https://launchbury.files.wordpress.com/2019/01/microporocessor-specification-in-hawk.pdf
http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.3418
http://mu-chaco.github.io/ReWire/assets/papers/lctes15.pdf
http://mu-chaco.github.io/ReWire/assets/papers/lctes15.pdf
http://www.math.jhu.edu/~eriehl/context.pdf
http://davinci.di.uminho.pt/publications/type-your-matrices.pdf
http://davinci.di.uminho.pt/publications/type-your-matrices.pdf
https://dl.acm.org/doi/10.1145/800055.802026
https://lib.jucs.org/article/28436/list/9/
http://www1.cs.columbia.edu/~sedwards/papers/townsend2015hardware.pdf
http://www1.cs.columbia.edu/~sedwards/papers/townsend2015hardware.pdf
https://homepages.inf.ed.ac.uk/wadler/topics/history.html#propositions-as-types
https://www.escholar.manchester.ac.uk/uk-ac-man-scw:246131
http://arcade.cs.columbia.edu/hardware-codes15.pdf
http://arcade.cs.columbia.edu/hardware-codes15.pdf

	Abstract
	1 Introduction
	2 Pure Analog Computation
	3 Time and Digital Computation
	4 The Common Vocabulary
	5 Constraining Types
	6 Time Intervals
	7 Time, Signals, and Stability
	8 Analog Gates
	9 Compositionally Correct Engineering
	10 Digital Gates
	11 Extracting Timing Information
	12 Practical (and Correct) Timing Analysis
	13 Examples
	14 Circuits
	15 Related Work
	16 Conclusions and Future Work
	References

