
1190 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 12, DECEMBER 1985

this message is thus, for every j , 0 < j < k - 1, the sum of the
η yth bits. The originator of the message now computes a number JC
such that bit j in JC is 1 if and only if the corresponding yth sum is
greater than Vm. If there exists a majority M, then, in particular,
each bit in Μ appears more than Vm times; hence, Μ must be equal
to x. We only need to verify that a majority exists. This can be done
by sending another active message with the basic command of
counting the number of times JC appears.

C. Emulating Tree Computation
Consider a computation which is performed on a (logical) tree

such that the operands are in the leaves and each internal node
represents an arithmetic or logical operation. For example, the tree
can be a parse tree of an arbitrary expression. Assume, for sim
plicity, that the tree is balanced, that it contains η leaves (n is a
power of 2), each of them resides at a different node in the network,
and that the tree is fixed. Assume, furthermore, that all the opera
tions can individually be performed by shift arithmetic with 1 bit
delay. The computation can be performed with only one active
message in a similar way to the sorting algorithm. Conceptually, all
even nodes perform the operations at height 1, all the nodes with
indexes divided by 4 perform the operations at height 2, and so on.
The last node performs log2 η operations ending with the root. The
computation above is pipelined, and hence all operations at the same
level of the tree can be performed concurrently. The maximal num
ber of times that an operand is "buffered" is equal to the height of
the tree. This is optimal since operations on a path from leaf to root
must be carried out sequentially (unless the tree can be reduced). We
omit the details of the algorithm.

VII. CONCLUSIONS

We studied in this paper the feasibility t of designing network
protocols that allow efficient implementations of active messages.
Active messages are simple commands that are performed on oper
ands which are located at the network interfaces. The new protocols
make the communication channel together with the interfaces an
environment in which simple computation can be carried out very
efficiently. We have shown that these protocols can be implemented
without a significant overhead and with little additional hardware,
and that they enhance the performance of distributed algorithms on
ring networks.

REFERENCES

[1] D. W. Andrews and G. D. Schultz, "A token ring architecture for local
area networks—An update," in Proc. COMPCOM Fall 1982, Washing
ton DC, Sept. 1982, pp. 615-624.

[2] A. Barak and A. Shiloh, "A distributed load balancing policy for a mul
ticomputer," Dep. Comput. Sci., Hebrew Univ., Jerusalem, Israel, 1984.

[3] J.A. Bush, G.J. Lipovski, S.Y. W. Su, J. K. Watson, and S.J.
Ackerman, "Some implementations of segment sequential functions," in
Proc. 3rd Symp. Comput. Architecture, Jan. 1976, pp. 178-185.

[4] D. L. Eager, E. D. Lazowska, and J. Zahorjan "Dynamic load sharing in
homogeneous distributed systems," Dep. Comput. Sci., Univ. Washing
ton, Seattle, Tech. Rep. 84-10-01, Oct. 1981.

[5] — - , "A comparison of receiver-initiated and sender-initiated dynamic
load sharing," Dep. Comput. Sci., Univ. Washington, Seattle, Tech.
Rep. 85-04-01, Apr. 1985.

[6] R.A. Finkel and U. Manber, "DIB — A distributed implementation of
backtracking," in Proc. 5th Int. Conf. Distributed Comput. Syst., Den
ver, CO, May 1985, pp. 446-452.

[7] M.J. Fischer and S.L. Salzberg, "Finding majority among η votes,"
Dep. Comput. Sci., Yale Univ., New Haven, CT, Res. Rep. 252 Oct.
1982.

[8] D. Jefferson and H. Sowizral, "Fast concurrent simulation using the time
warp mechanism," in Distributed Simulation 1985, Simulation Series,
vol. 15, no. 2, Jan. 1985.

[9] L. Kleinrock Queueing Systems, Volume 1: Theory. New York: Wiley,
1975.

[10] R Krueger and R. A. Finkel, "An adaptive load balancing algorithm for

a multicomputer," Dep. Comput. Sci., Univ. Wisconsin, Madison, Tech.
Rep. 539, Apr. 1984.

[11] H.T. Kung, "Let's design algorithms for VLSI systems," in Proc. Cal-
tech Conf. VLSI: Architecture, Design, Fabrication, 1979, pp. 65-90.

[12] G.J. Lipovski, A. Goyal, and M. Malek, "Lookahead networks," in
Proc. 1982 NCC, June 1982, pp. 153-165.

[13] Μ. T. Liu "Distributed loop computer networks," in Advances in Comput
ers, M.C. Yovits, Ed. New York: Academic, 1978, pp. 163-221.

[14] M. Livny, "The study of load balancing algorithms for decentralized
distributed processing systems," Ph.D. dissertation, Weizmann Inst.
Sci., Rehovot, Israel, Aug. 1983; also Dep. Comput. Sci., Univ.
Wisconsin, Madison, Tech. Rep. 570, Dec. 1984.

[15] M. Livny and M. Melman, "Load balancing in homogeneous broadcast
distributed systems," in Proc. ACM Comput. Network Perform. Symp.,
Apr. 1982, pp. 47-55.

[16] M. Melman and M. Livny, "The DISS methodology of distributed system
simulation," Simulation, pp. 163-176, Apr. 1984.

[17] Operation and Maintenance Manual of PRONET UNIBUS HSB, Proteon
Associates, Inc., Natick, MA, Aug. 1982.

[18] A.S . Tanenbaum, Computer Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[19] R. H. Thomas, "A Majority consensus approach to concurrency control
for multiple copy database," ACM Trans. Database Syst., vol. 4,
pp. 180-209, June 1979.

Speculative Computation, Parallelism, and Functional
Programming

F. WARREN BURTON

Abstract—Many problems can be solved more quickly on parallel ma
chines if some work can be started before it is known to be necessary. If
work which is known to be necessary (mandatory work) is given priority
over other work (speculative work), then performing speculative work can
only speed computation. A simple functional language feature to control
speculative work is proposed.

Index Terms — Backtracking, combinatorial searching, functional pro
gramming, parallelism, priorities, speculation computation.

I. INTRODUCTION

There are many algorithms which have a much higher potential
for parallelism if some wasted work will be tolerated. For example,
all NP-complete problems can be solved in polynomial time with
unbounded parallelism, but cannot be solved sequentially in poly
nomial time in the worst case, unless Ρ = NP. Therefore, these
problems have a high potential for parallelism. On the other hand,
all NP-complete problems have solutions with a best case poly
nomial time performance. Therefore, the extra work performed with
a high degree of parallelism may be wasted.

Nondeterminism [7] , [9], [12] may be used to facilitate specu
lative evaluation in functional programming languages. With this
approach, a problem may be solved in several ways at once, Once
a solution is found, other attempts at solving the problem may be
terminated. OR-parallelism in Prolog [5], [6] supports speculative
evaluation in the case of backtracking. We propose a deterministic
feature which has simple semantics and gives the programmer a
higher degree of control over speculative work.

II. SPECULATIVE EVALUΑΉΟΝ

As a foundation, let us take a functional language in which pa
rameters can be passed by name or value, with value as the default
[2]. The language will support two forms of parallelism. Arguments

Manuscript received April 18, 1985; revised July 29, 1985. This work was
supported by the National Science Foundation under Grant ECS-8312748.

The author is with the Department of Electrical Engineering and Computer
Science, University of Colorado at Denver, Denver, CO 80202.

0018-9340/85/1200-1190$01.00 © 1985 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 12, DECEMBER 1985 1191

to a function may be evaluated in parallel. In addition, streams
provide for consumer/producer parallelism. The stream constructor
cons and selectors/im and rest satisfy the usual stream (list) axiom
that cons(first(x), rest(x)) = χ whenever* is a stream and* Φ nil.
However, cons may return a result while its second argument is still
being evaluated.

We propose the addition of a single primitive function:
priority: real x any type —> any type.

Informally, priority(r, e) will set up a process to evaluate the expres
sion e with priority r and immediately return the location where the
value of e will be placed, once its evaluation has been completed.
The result returned by priority{r, e) may be used as a substitute for
the value of e until the actual value is required. For example, it may
be placed in a stream or other data structure, or passed as a param
eter, before the evaluation of e has been completed.

When a computation needs the value of e, for example, to add it
to something else, the computation must be suspended until the
value has been computed. If it is found that the value of e is not
needed, for example, because there are no remaining references to
the location where the value is to be placed, then the evaluation may
be aborted. This gives the system the ability to terminate unneeded
speculative computation.

Semantically, priority(r, e) is equivalent to e, except that a pro
gram may terminate even if the evaluation of e does not, provided
the value of e is never needed.

We will use the term speculative computation for any com
putation initiated by priority, and mandatory computation for
other computation, except that once the result of a speculative
computation is found to be needed, it will become a mandatory
computation. Mandatory computation should always be run in
preference to speculative computation, so that the use of specu
lative computation will never slow down a program (except for
additional overheads).

The problem of aborting unneeded processes in a tree of processes
is considered by [8] and [11]. The same approach can be used to
upgrade speculative computation to mandatory computation. A
functional program can be run on a network of processors [3]. In this
case the priorities should be used for guidance by the scheduler.
However, a low-priority process may run on one processor while a
high-priority process is inactive on another, busier processor.

III. EXAMPLES

In this section we will consider several examples where specu
lative computation may be used in solving combinatorial problems.

In each example we will search a tree of problem states for an
answer node. We will assume that all answer nodes are leaves, but
a leaf may not be an answer node. Each node that is not a leaf will
have two children.

For example, consider the sum of subsets problem, which is
NP-complete. The problem is: given a set of η integers,
A = {a\,a2, - - - ,an}, and an integer m, determine if there is a
subset of A which sums to exactly m. A subset of A will be associ
ated with each node. The root will be the empty set. If the subset of
a node sums to at least m or the node is at depth n, then the node is
a leaf. Otherwise the node will have two children. If subset Β is
associated with a node at depth k, then the subsets associated with
the children of the node will be Β (again) and Β U {ak+l}. Hence,
the nodes at level k will correspond to the subsets of {au a2, · · •, ak}
which have not been pruned. A node is an answer node if its subset
sums to exactly m.

In each example we will assume that we have the following
functions:

leaf: node —> Boolean
answer: node —» Boolean
left: node —» node
right: node —» node.

The function leaf tells whether a node is a leaf. If it is a leaf, then

solre(tiode) =

if leaf(node) then

if answcr(node) then node else FAIL

else

orfsolvcfleftfttode)), solve! right (node)))

where orfn. name b) = if a = FAIL then 6 else a

Fig. 1. A sequential backtracking algorithm.

answer tells whether it is a solution to the problem. If a node is not
a leaf, the left and right will generate its children.

Backtracking
Fig. 1 contains a sequential backtracking algorithm which will

search a tree rooted at the node passed to it and return the leftmost
answer node, if the tree contains an answer node, or the special
value FAIL otherwise. Notice that the second parameter of or is
passed by name, so the right subtree is searched only if the search
of the left subtree returns the value FAIL.

There is an obvious opportunity for speculative computation in
this problem. The left and right subtrees can be searched in parallel.
This can be repeated recursively, with the left and right subtrees of
each subtree being searched in parallel. The number of searchable
subtrees will grow exponentially with the depth of the search. On
any realistic system, the degree of parallelism will be bounded, so
the potential for parallelism in a large problem will far exceed that
attainable in the system. It is important that computing resources be
concentrated on those subproblems where they will do the most
good.

We will require the speculative algorithm to be deterministic and
to return the leftmost answer node, just as the sequential algorithm
did. (Nondeterminism complicates the logic of a functional pro
gram. While priority may be used to control nondeterministic com
putations, we will restrict our attention to deterministic algorithms
in this paper. In fact, one of the primary advantages of our approach
is that, in many situations, it allows speculative evaluation without
introducing the problems normally associated with nondetermin
ism. However, we admit that there appear to be problems where
nondeterminism offers a real advantage.)

Since we require the leftmost answer node, the solution to the
search of a right subtree is of interest only if no answer can be found
in the left subtree. Therefore, whenever we initiate a search of a pair
of subtrees, we want all searching in the left subtree to have priority
over searching in the right subtree. We can achieve this by assigning
a range of priorities to each subtree so that each lower level recursive
search of a subtree is assigned a value in the range. Whenever we
split a search into two lower level searches, we divide the range into
half, assigning the higher half to the left subtree. Fig. 2 gives the
complete search function. All work associated with searching the
subtree passed to solve will have priorities in the range {low, high].
When we initiate a search of a subtree, we give the processing of
the root node the highest priority in the range. Notice that the or
function has been modified so both parameters are passed by value.
This is necessary to initiate the speculative processing of the right
subtree.

In the case of a single processor, the algorithm in Fig. 2 will
expand the same nodes as the algorithm in Fig. 1. With unbounded
parallelism, all paths to leaves will be examined in parallel. With
bounded parallelism, the nodes to the left will tend to be expanded
first.

Breadth-First Search
In the sum of subsets problem, the tree we search is of finite

depth. This is not the case with all problems of this general type. For
example, suppose we are trying to solve a puzzle where a "move"
takes us from one problem state to another. If a sequence of moves
can lead to a problem state identical to a previous problem state,
then we have a tree with at least some infinitely long paths. The

1192 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 12, DECEMBER 1985

xolrefnode. hujli. loir) —

IF leaf/node) THEN

IF answer (no dr.) THEN node ELSE FAIL

ELSE

orfpriorityfhiyh, solve(left(nodc) . hiyh, tntdj),

priorityfmtd. solre(riglitfnode). mtd, low)))

WHERE mid — (high -F low) / 2

AND or (a. b) - IF a = FAIL THEN b ELSE a

Fig. 2. A speculative backtracking algorithm.

backtracking algorithm will fail to find an answer node if it comes
across an infinite path prior to the leftmost answer mode. We can
overcome this disadvantage by using a breadth-first search. We will
search for the leftmost minimal depth mode.

With our previous example, in Fig. 2, we were only interested in
the result of the search of the right tree in cases where no node was
found in the left tree. In this example, we will search both trees in
parallel and look at part of the result of each search. When solve is
applied to a node, a stream of values will be returned. For each level
on which no answer node is found, a FAIL element will be placed
in the stream. When an answer node is found, the leftmost answer
node at its level will be placed in the stream as the final element.

The breadth first solve function is shown in Fig. 3. Notice that the
priority of the search decreases with the depth, encouraging a
breadth-first expansion. The function combine merges the solutions
of two subproblems, reporting a single FAIL for each level on which
both fail. Once an answer node has been found, neither stream is
inspected further, so the expansion of deeper nodes may be aborted.
This algorithm involves more communication than a sequential
breadth search algorithm. However, in [4] it is shown that the total
amount of communication is proportional to the number of nodes
expanded.

Least-Cost Search
With many problem, all leaf nodes are answer nodes and the best

answer node it desired. For example, with various formulations of
the traveling salesman problem, the answer nodes represent com
plete tours of η cities. A least-cost answer node is a tour of minimal
length. With problems of this type, it is often possible to establish
a lower bound on the cost of any answer node in the subtree rooted
at a given node. We will assume that the function cost will return
this lower bound for any node, and will give the true cost of a leaf
node.

In a sequential least-cost search, the root node is the only live
node at the start of the search. The algorithm repeatedly selects
the least-cost live node, removes it from the set of live nodes, gen
erates its children, and adds the children to the set of live nodes. The
first answer node selected is the least-cost answer node. The
reader is referred to [10] for a more detailed discussion of least-cost
searching.

A speculative least-cost search algorithm can now be defined. As
before, we will have a process for each node, and each process will
return a stream of results.

Let us consider the information we need from solve. Suppose that
we find that the least-cost answer node in one subtree has cost c. In
order to ensure that this is the least-cost answer node overall, we
must expand every node in the other subtree that has a cost bound
less than c. At the same time, we would like to be able to avoid
expanding nodes with a cost greater than c. To achieve this, solve
will return a stream of increasing cost lower bounds. The cost of
each node expanded by solve will be placed in the stream before the
node is expanded. Once a least-cost answer node is found, its cost
will be the final item in the stream. (If the answer node is desired as
well as its cost, this should also be returned.)

A speculative least-cost search algorithm is given in Fig. 4. No-

solrcfnodc. depth) ~

IF lcnf(i)ode) THEN

IF atixircrfnodc) THEN consfnode. nil) ELSE conaiF All., nil)

ELSE

r on.-if I' \ II.. r ombinefdo (left (node)). do(riyhlfvode))))

WHERE do(nodr) — prion!y(I / depth, soleefnode. depth + 1))

AND combine (a. b) —

IF a - nil THEN b

ELSE IF 6 = tiii THEN a

ELSE IF Jir.tt(a) * FAIL THEN η

ELSE IF jimlfbl * /·.!//. THEN b

ELSE rotisfFAIL. combinc(rent(a). rest(b)))

Fig. 3. A speculative breadth-first search algorithm.

solvcfnodc) =

IF lcaf(node) THEN nil

ELSE short_jneryc(yenerate(leftfnode I), ye.ner at e(right (node)))

WHERE short_jnerye(a, b) —

IF a = nil OR b = nil THEN nil

ELSE IF jirxt(a) < j\rst(b) THEN consl'firstfa), short_jnerge(Test(a). b)j

ELSE consfjirst(b). ,ihnrt_jnerge.(a. rrst(b)))

AND generatefnodel — cons/bound, prtontyfbound. solve(node)l)

WHERE bound = coal(node)

Fig. 4. A speculative least-cost search algorithm.

tice how short jmerge drops all items in one stream which cost more
than the optimal solution (final item) in the other stream. This
allows the system to kill the tasks which would expand the unneeded
nodes.

The communication costs in the speculative least-cost algorithm
are high. The sum of the lengths of the streams produced by solve
is approximately equal to the sum of the depths of the expanded
nodes rather than the number of expanded nodes. (In addition, some
information about those unexpanded nodes immediately below ex
panded nodes must filter up to the level where such nodes are
pruned.) If the tree is relatively well balanced, then the communica
tion costs for η nodes is 0(n log ή). However, the worst cost time
for unbalanced trees is 0(n2).

The communication costs appear to be an inherent characteristic
of parallel least-cost search algorithms, and are found in non
functional parallel versions [1]. The problem is that the least-cost
answer node may occur anywhere in the tree. Once it is found, or
is thought to be found, this information must be communicated to
the rest of the tree. We note that even the sequential algorithm may
require 0(n log n) time (excluding the time required to test and
expand nodes). This is because heap (priority queue) operations
require 0(log k) time for a heap of size k. If the expanded piart of the
tree is well balanced, then k may be 0(n).

It is interesting to note that well-balanced trees, where both the
sequential and speculative algorithms require 0(n log n) work, are
the trees with the greatest potential for parallelism. On the other
hand, it is possible for a sequential algorithm to go directly to the
optimal answer node without expanding any node not on the path to
the optimal solution. In this case we have a highly unbalanced tree,
which is the worst case for communication costs in the speculative
algorithm. Furthermore, any speculative work will have been
wasted in this case.

Our primary concern is with functional programming, and more
specifically with demonstrating what can be done with speculative

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 12, DECEMBER 1985 1193

evaluation. We leave to the reader the problem of finding better
parallel search algorithms.

REFERENCES

[1] F.W. Burton, M.M. Huntbach, G.P. McKeown, and V.J. Rayward-
Smith, "Parallelism in branch-and-bound algorithms," Sch. Comput.
Studies and Accountancy, Univ. East Anglia, Norwich, England, Rep.
CSA3/1983, 1983.

[2] F. W. Burton, "Annotations to control parallelism and reduction order in
the distributed evaluation of functional programs," ACM Trans. Progr.
Lang. Syst., vol. 6, pp. 159-174, Apr. 1984.

[3] F. W. Burton and M.M. Huntbach, "Virtual tree machines," IEEE Trans.
Comput., vol. C-33, pp. 278-280, Mar. 1984.

[4] F. W. Burton, "Controlling speculative computation in a parallel func
tional programming language," in Proc. 5th Int. Conf. Distributed Com
put. Syst., Denver, CO, May 1985, pp. 453-458.

[5] J. S. Conery and D. F. Kibler, "Parallel interpretation of logic programs,"
in Proc. Conf. Functional Progr. Lang. Comput. Architecture,
Portsmouth, NH, Oct. 1981, pp. 163-170.

[6] J. S. Conery, "The AND/OR process model for parallel interpretation of
logic programs," Ph.D. dissertation, Dep. Comput. Sci., Univ. Califor
nia, Irvine, Tech. Rep. 204, June 1983.

[7] D. P. Friedman and D. S. Wise, "An indeterminate constructor for appli
cative programming," in Conf. Rec, 7th ACM Symp. Principles Progr.
Lang., 1980, pp. 245-250.

[8] D. H. Grit and R. L. Page, "Deleting irrelevant tasks in an expression-
oriented multiprocessor system," ACM Trans. Progr. Lang. Syst.,
vol. 3, pp. 49-59, Jan. 1981.

[9] P. Henderson, Functional Programming: Application and Imple
mentation. Englewood Cliffs, NJ: Prentice-Hall, 1980.

[10] E. Horowitz and S. Sahni, Fundamentals of Computer Algo
rithms. Woodland Hills, CA: Comput. Sci. Press, 1978.

[11] P. Hudak and R.M. Keller, "Garbage collection and task deletion in
distributed applicative processing systems," in Proc. ACM Symp. USP
and Functional Progr., Pittsburgh, PA, Aug. 1982, pp. 168-178.

[12] J. McCarthy, "A basic mathematical theory of computation," in Com
puter Programming and Formal Systems, P. Braffort and D. Hirsch-
berg, Eds. Amsterdam, The Netherlands: North-Holland, 1963,
pp. 33-70.

