
Stretching the storage manager: weak pointersand stable names in HaskellSimon Peyton Jones1, Simon Marlow2, and Conal Elliott31 Microsoft Research Ltd., Cambridge, simonpj@microsoft.com2 Microsoft Research Ltd., Cambridge, simonmar@microsoft.com3 Microsoft Research Ltd., Redmond, conal@microsoft.comAbstract. Every now and then, a user of the Glasgow Haskell Com-piler asks for a feature that requires specialised support from the storagemanager. Memo functions, pointer equality, external pointers, �nalizers,and weak pointers, are all examples.We take memo functions as our exemplar because they turn out to bethe trickiest to support. We present no fewer than four distinct mech-anisms that are needed to support memo tables, and that (in variouscombinations) satisfy a variety of other needs.The resulting set of primitives is undoubtedly powerful and useful.Whether they are too powerful is not yet clear. While the focus of ourdiscussion is on Haskell, there is nothing Haskell-speci�c about most ofthe primitives, which could readily be used in other settings.1 Introduction\Given an arbitrary function f, construct a memoised version of f; that is,construct a new function with the property that it returns exactly the same resultsas f, but if it is applied a second time to a particular argument it returns theresult it computed the �rst time, rather than recomputing it."Surely this task should be simple in a functional language! After all, thereare no side e�ects to muddy the waters. However, it is well known that thissimple problem raises a whole raft of tricky questions. A memo table inherentlyinvolves a sort of \benign side e�ect", since the memo table is changed as aresult of an application of the function; how should we accommodate this sidee�ect in a purely-functional language? What does it mean for an argument to be\the same" as a previously encountered one? Does a memo function have to bestrict? EÆcient memo tables require at least ordering, and preferably hashing;how should this be implemented for arbitrary argument types? Does the memofunction retain all past (argument,result) pairs, or can it be purged? Can theentire memo table ever be recovered by the garbage collector? And so on.One \solution" is to build in memo functions as a primitive of the languageimplementation, with special magic in the garbage collector and elsewhere todeal with these questions. But this is unsatisfactory, because a \one size �tsall" solution is unlikely to satisfy all customers. It would be better to provide asimpler set of primitives that together allowed a programmer to write a variety

of memo-table implementations. The purpose of this paper is to propose justsuch a set of primitives. Our design proposes four related mechanisms:1. The unsafePerformIO primitive allows the programmer to execute benignside e�ects (Section 3).2. Typed stable names allow a stable (i.e. invariant under garbage collection)\key" to be derived from an arbitrary value (Section 4).3. Typed weak pointers allow the programmer to avoid an otherwise-lethalspace leak (Section 5).4. Finalization allows the programmer to express a variety of policies for purg-ing the memo table of unused values (Section 6).Each of these four primitives also has independent uses of its own. The latterthree have in common that they require integrated support from the garbagecollector.Compared to earlier work, our new contributions are these:{ We o�er the �rst complete, integrated design that supports user-programmable memo tables in Haskell, a non-strict, purely-functional lan-guage.{ So far as we know, our stable-name proposal is new. The same underly-ing run-time system mechanism also supports both inter-heap references inGPH, our distributed implementation of Haskell [11], and Haskell referencesheld by external agents such as GUI widgets or COM objects.{ Weak pointers, in contrast, have been in use since at least the early 80's.Our design has some neat wrinkles, and solves the little-known key-in-valueproblem. Though developed independently, our solution is very close to thatof [4], but we believe that our characterisation of the (tricky) semantics ofweak pointers is easier for a programmer to understand.Everything we describe is implemented in the Glasgow Haskell Compiler(GHC). No single aspect of the design is startling, yet it has taken us a sur-prisingly long time to achieve, due to a number of interacting subtleties. Onecontribution of the paper is to summarise the folklore in this tricky area, thoughwe believe that we have also developed it signi�cantly.2 Memo functionsWe use memo functions as our running example because they highlight mostof the awkward issues. The basic idea is very simple: if a function is applieda second time to a given argument, return the result computed the �rst timeinstead of recomputing it.Memoisation is particularly attractive for a purely-functional language, be-cause there are guaranteed to be no side e�ects that might change the resulteven if the argument is the same as before [7]. Hughes [5] studied the implica-tions of memoisation in a lazy language. More recently, Cook and Launchbury [1]

describe disposable memo functions, a variant of Hughes' lazy memo functions,and give an operational semantics that clari�es their behaviour. Hash-consingis a specialised kind of memo table application that remembers previously-builtheap objects in case an identical object is required again. All these papers giveapplications that explain the usefulness of memo functions.2.1 A design for memo functionsFollowing [1], the most elegant way to construct a memo function is by providinga higher-order function memo:memo :: (a -> b) -> (a -> b)That is, memo takes a function with arbitrary range and domain, and returnsa memoised version of the function. The memoised function is a new value, incontrast to other approaches where memoisation is achieved by some kind ofpragma or side e�ect.The standard toy example is the Fibonacci function, whose complexity turnsfrom exponential to linear if the function is memoised in this way:fib :: Int -> Int ufib :: Int -> Intfib = memo ufib ufib 0 = 1ufib 1 = 1ufib n = fib (n-1) + fib (n-2)(Notice that the recursive call is made to fib, the memoised version of ufib).In this example we de�ned a single memoised �bonacci function, but memodoes not require that. Indeed, there may be many memoised versions of the samefunction in use at any time. Each such call to memo creates its own memo table,which should be garbage collected when the memoised function is discarded. Forexample, here is a version of map that might be used when the argument list isexpected to have many occurrences of the same value:memo_map f xs = map (memo f) xsHere, a single memoised version of f is applied to each element of the listxs. A function of several arguments can easily be memoised on a particularargument. For example, here is how to memoise a three-argument function, f,on its second argument1:memo_2_3 :: (a -> b -> c -> d) -> (a -> b -> c -> d)memo_2_3 f = \ a b c -> mf b a cwheremf = memo (\b a c -> f a b c)Similarly, a function can easily be memoised on several arguments. The �rstuse of memo maps the �rst argument to a function that is itself memoised:memo2 :: (a -> b -> c) -> (a -> b -> c)memo2 f = memo (\ a -> memo (f a))1 \\"is Haskell's notation for lambda

2.2 Variations on the themeThe �rst question that springs to mind is: how does memo decide whether a newargument is \the same" as one it has seen before? One could imagine at leastthree di�erent variants of memo:{ Perform no evaluation on the argument; simply use pointer equality. Recallthat Haskell is a lazy language and we would prefer it if memo did not changethe strictness of the function it is memoising, and using pointer equalitycertainly has this property. On the other hand, pointer equality will notdetect that the arguments (1+2) and (4-1) are the same, because they arethunks held at di�erent addresses.{ Evaluate the argument to weak-head normal form, and then use pointerequality. This approach will produce more \hits", because two thunks thatevaluate to the same value will match. It would also make the memoisedversion of the function strict. Even then we might worry that two thunksthat both evaluate to 3, say, might nevertheless evaluate to values held atdistinct addresses.{ Perform a proper equality check on the argument. In this case, the type ofmemo must change, since it is no longer fully polymorphic2:memoEq :: Eq a => (a -> b) -> a -> bThe main point is that there is more than one possible semantics for memo, apowerful argument for allowing the programmer to de�ne it rather than buildingit in.3 Benign side e�ectsAlthough a purely-functional language has no visible side e�ects, the implemen-tation overwrites heap objects all the time! When the value of a thunk (e.g. anunevaluated function argument) is demanded, the thunk is overwritten with thenewly-computed value, so that any subsequent demands need not recompute it.Memo functions require a similar sort of \benign side e�ect", but if we are toprogram memo in Haskell then we must expose this ability to the programmer.Side e�ects are expressed in Haskell using the IO monad [10]. In particular,the IO monad provides mutable cells with the following primitives:newIORef :: a -> IO (IORef a)readIORef :: IORef a -> IO awriteIORef :: IORef a -> a -> IO ()2 The notation Eq a means that the type a is a member of the Eq type class, i.e. itsupports equality.

A value of type IORef t is a reference to a mutable cell holding a value oftype t. The primitives to allocate, read, and write the cell are all in the IOmonad.The idea is to use an IORef to hold the memo table. But memo is polymorphic:it says nothing about IO. We need a way to express side e�ects, and yet claimthat the overall e�ect is pure. So we provide one new primitive:unsafePerformIO :: IO a -> aThis function takes an I/O performing computation that delivers a value oftype a, and turns it into a value of type a. The I/O will be performed when(and if) the value is demanded. There is no guarantee when that will be, orhow it will interleave with other I/O computations; that is why the functionis unsafe. However \unsafe" is not the same as \wrong". It simply means thatthe programmer, not the compiler, must undertake the proof obligation that theprogram's semantics is una�ected by the moment at which all these side e�ectstake place.We are �nally ready to give one possible implementation of memoEq; we choosethis variant because it allows us to evade the issues of pointer equality for thepresent.memoEq :: Eq a => (a -> b) -> a -> bmemoEq f = unsafePerformIO (do { tref <- newIORef emptyTblEq; return (applyEq f tref)})applyEq :: Eq a => (a -> b) -> IORef (TblEq a b) -> a -> bapplyEq f tref arg= unsafePerformIO (do { tbl <- readIORef tref; case lookupEq tbl arg ofJust result -> return resultNothing -> do { let res = f arg; let tbl' = insertEq tbl arg res; writeIORef tref tbl'; return res} })type TblEq a b = [(a,b)]emptyEq :: TblEq a blookupEq :: Eq a => TblEq a b -> a -> Maybe binsertEq :: Eq a => TblEq a b -> a -> b -> TblEq a b-- Implementations omittedThe �rst application of unsafePerformIO allocates a mutable cell that holdsthe memo table, of type TblEq a b. It then immediately returns the memoisedfunction, a partial application of applyEq. When the latter is given an argument,

it again uses unsafePerformIO to get hold of the memo table, query it, andperhaps write a new value into it. The memo table, here represented as a simpleassociation list, contains argument-value pairs. In the context of memo tableswe will often refer to the function argument as the key, and the result as thevalue.Of course, an association list is hardly the most eÆcient structure for a memotable, a further reason for wanting memo tables to be programmable. We couldinstead use some kind of lookup tree, based on ordering (not just equality) ofthe argument. That would in turn require that the argument type was ordered,thus changing memo's type again:memoOrd :: Ord a => (a -> b) -> a -> bmemoOrd can be implemented exactly as above, except that the lookup and in-sert functions become more complicated. We can do hashing in a very similarway. Notation apart, all of this is exactly how a Lisp programmer might imple-ment memo functions. All we have done is to make explicit exactly where theprogrammer is undertaking proof obligations | a modest but important step.4 Stable namesUsing equality, as we have done in memoEq, works OK for base types, such as Intand Float, but it becomes too expensive when the function's argument is (say)a list. In this case, we almost certainly want something like pointer equality; inexchange for the fast test we accept that two lists might be equal without beingpointer-equal.However, having only (pointer) equality would force us back to associationlists. To do better we need ordering or a hash function. The well-known diÆ-culty is that unless the garbage collector never moves objects (an excessivelyconstraining choice), an object's address may change, and so it makes a poorhash key. Even the relative ordering of objects may change.4.1 The StableName typeWhat we need is a cheap address-like value, or name that can be derived froman arbitrary value. This name should be stable, in the sense that it does notchange over the lifetime of the object it names. With this in mind, we providean abstract data type StableName, with the following operations:data StableName a -- AbstractmkStableName :: a -> IO (StableName a)hashStableName :: StableName a -> Intinstance Eq (StableName a)instance Ord (StableName a)

The function mkStableName makes a stable name from any value. Stable namessupport equality (class Eq) and ordering (class Ord). In addition, the functionhashStableName converts a stable name to a hash key.Notice that mkStableName is in the IO monad. Why? Because two stablenames might compare less-than in one run of the program, and greater-than inanother run. Putting mkStableName in the IO monad is a standard trick that al-lows mkStableName to consult (in principle) some external oracle before decidingwhat stable name to return. In practice, we often wrap calls to mkStableName inan unsafePerformIO, thereby undertaking a proof obligation that the meaningof the program does not depend on the particular stable name that the systemchooses.Stable names have the following property: if two values have the same stablename, the two values are equal(y) mkStableName x = mkStableName y) x = yThis property means that stable names are unlike hash keys, where two keysmight accidentally collide. If two stable names are equal, no further test forequality is necessary. An immediate consequence of (y) is this: if two values arenot equal, their stable names will di�er.x 6= y) mkStableName x 6= mkStableName ymkStableName is not strict; it does not evaluate its argument. This means thattwo equal values might not have the same stable name, because they are stilldistinct unevaluated thunks. For example, consider the de�nitionsp = (x,x)f1 = fst pf2 = snd pSo long as f1 and f2 remain unevaluated, mkStableName f1 will return adi�erent stable name than mkStableName f23.It is easy to make mkStableName strict, by using Haskell's strict-applicationfunction \$!". For example, mkStableName $! f1 and mkStableName $! f2would return the same stable name. Using strict application loses laziness, butincreases sharing of stable names, a choice that only the programmer can make.4.2 Using stable names for memo tablesThroughout the rest of this paper, we will make use of Stable Name Maps, anabstract data type that maps Stable Names to values (Figure 1). The imple-mentation may be any kind of mutable �nite map, for example an IORef to astandard �nite map:3 A compiler optimisation might well have evaluated f1 and f2 at compile time, inwhich case the two calls would return the same stable name; another example ofwhy mkStableName is in the IO monad.

data SNMap k v -- abstractnewSNMap :: IO (SNMap k v)lookupSNMap :: SNMap k v -> StableName k -> IO (Maybe v)insertSNMap :: SNMap k v -> StableName k -> v -> IO ()removeSNMap :: SNMap k v -> StableName k -> IO ()snMapElems :: SNMap k v -> IO [(k,v)]Fig. 1. Stable Name Map Librarydata SNMap k v = IORef (FiniteMap (StableName k) v)or a real hash table (using a combination of hashStableName and equalityon StableName):data SNMap k v = IOArray Int [(StableName k, v)]Using stable names it is easy to modify our memo-table implementation touse pointer equality (strict or lazy) instead of value equality. We give only thecode for the apply part of the implementationapplyStable :: (a -> b) -> SNMap a b -> a -> bapplyStable f tbl arg= unsafePerformIO (do { sn <- mkStableName arg; lkp <- lookupSNMap tbl sn; case lkp ofJust result -> return resultNothing ->do { let res = f arg; insertSNMap tbl sn res; return res} })4.3 Implementing stable namesOur implementation is depicted in Figure 2. We maintain two tables. The �rstis a hash table that maps the address of an object to an o�set into the secondtable, the Stable Name Table. If the address of a target changes during garbagecollection, the hash table must be updated to re
ect its new address. There aretwo possible approaches:{ Always throw away the old hash table and rebuild a new one after eachgarbage collection. This would slow down garbage collection considerablywhen there are a large number of stable names.

SN n

Heap

n

RTS

Target

Table
Stable Name

Hash

Table
Hash

Stable Name

ObjectFig. 2. Stable Name Implementation{ In a generational collector, we have the option of partially updating thehash table during a minor collection. Only the entries for targets which havemoved during the current GC need to be updated. This is the method usedby our implementation.Each slot in the Stable Name Table (SNT) corresponds to a distinct stablename. The stable name can be described by its o�set in the SNT, and it is thiso�set that is used for equality and comparison of stable names.However, we cannot simply use this o�set as the value returned bymkStableName! Why not? Because in order to maintain (y) we must ensure thatwe never re-use a stable name to which the program still has access, even if theobject from which the stable name was derived has long since died.Accordingly, we represent a value of type StableName a by a stable nameobject, a heap-allocated cell containing the SNT o�set. It is this object that isreturned as the result of mkStableName. The entry in the SNT points to thecorresponding stable name object, and also the object for which the stable namewas created (the target).Now entries in the SNT can be garbage-collected as follows. The SNT is nottreated as part of the root set. Instead, when garbage collection is complete, wescan the entries of the SNT that are currently in use. If an entry's stable nameobject is dead (not reachable), then it is safe to re-use the stable name entry,because the program cannot possibly \re-invent" it. For each stable name entry

that is still live, we also need to update the pointers to the stable name objectand the target, because a copying collector might have moved them.Available entries in the SNT are chained on a free list through the stable-object-pointer �eld.4.4 hashStableNameThe hashStableName function satis�es the following property, for stable namesa and b: a = b) hashStableName a = hashStableName bThe converse is not true, however. Why? The call hashStableName a is imple-mented by simply returning the o�set of the stable name a in the SNT. Becausethe Int value returned can't be tracked by the garbage collector in the sameway as the stable name object, it is possible that calls to hashStableName ondi�erent stable names could return the same value. For example:do { sn_a <- mkStableName a; let hash_a = hashStableName sn_a; sn_b <- mkStableName b; let hash_b = hashStableName sn_b; return (hash_a == hash_b)}Assuming a and b are distinct objects, this piece of code could return Trueif the garbage collector runs just after the �rst call to hashStableName, becausethe slot in the SNT allocated to sn_a could be re-used by sn_b since sn_a isgarbage at this point.4.5 Other applicationsAn advantage of the implementation we have described is that we can use thevery same pair of tables for two other purposes. When calling external librarieswritten in some other language, it is often necessary to pass a Haskell object.Since Haskell objects move around from time to time, we actually pass a StablePointer to the object. A stable pointer is a variant of a stable name, with slightlydi�erent properties:1. It is possible to dereference a stable pointer to get to the target. This meansthat the existence of a stable pointer must guarantee the existence of thetarget.2. Stable pointers are reference counted, and must be explicitly freed by theprogrammer. This is because a stable pointer can be passed to a foreignfunction, leaving no way for the Haskell garbage collector to track it.

We implement stable pointers using the same stable name technology. Thestable name table already contains a pointer to the target of the stable name,hence (1) is easy. To support (2) we add a reference count to the SNT entry, andoperations to increment and decrement it. The pointer to the target is treatedas a root by the garbage collector if and only if the reference count is greaterthan zero.We use exactly the same technology again for our parallel implementationof Haskell, Glasgow Parallel Haskell (GPH). GPH distributes a single logicalHaskell heap over a number of disjoint address spaces [11]. Pointers betweenthese sub-heaps go via stable names, thus allowing each sub-heap to be garbagecollected independently. Weighted reference counting is used for global garbagecollection [8].The point here is simply that a single, primitive mechanism supports allthree facilities: stable names, passing pointers to foreign libraries, and distributedheaps.5 Weak pointersIf a memoised function is discarded, then its memo table will automatically begarbage collected. But suppose that a memoised function is long-lived, and isapplied to many arguments, many of which are soon discarded. This situationgives rise to a well-known space leak:{ Since the memo table contains references to all the arguments to which thefunction has ever been applied, those arguments will be reachable (in theeyes of the garbage collector) even though the function will never be appliedto that argument again.{ Not only that, but the result of applying the function to those arguments isalso held in the memo table, and hence will be retained for ever.{ Finally, the memo table itself becomes clogged with useless entries that serveonly to slow down lookup operations.The �rst of these problems seems to go away when we use stable names, sinceit is the stable names that are retained in the memo table, not the argumentitself; but the latter two problems remain, and the �rst reappears as an inabilityto recycle stable names.5.1 Weak pointersThe standard solution to these woes is to use weak pointers. The garbage collectorrecovers all heap objects that are not reachable. A heap object is reachable ifit is in the transitive closure of the points-to relation starting from the set ofroot pointers. A weak pointer is a pointer that is not treated as a pointer for thepurposes of computing reachability. That is, even if object A is reachable, and A

contains a weak pointer to another object B, the latter is not thereby consideredreachable4.Object B may be reachable from the root set by some other path, of course,but if not, it is considered garbage. In this case, the weak pointer in object Ano longer points to a valid object, and is replaced by a tombstone. The act ofdereferencing a weak pointer will fail if the latter has been tombstoned.Weak pointers help memo tables in the following way. Ignoring stable namesfor now, assume that the memo table refers to both the keys and values. If thepointer to the key is a weak pointer, then the memo table will not keep thekey alive, thus solving the �rst problem. Periodically the memo table can be\purged", by searching for keys that have been tombstoned, and deleting theirentry from the memo table, thus releasing the value as well.5.2 A problem with weak pointersA little-recognised problem with using weak pointers for memo tables is this: ifthe value contains a pointer to the key, the entry will never be removed. If thevalue refers to the key, then the memo table will keep the value alive, the valuewill keep the key alive, and the entry in the memo table can never be purged,which defeats the whole purpose of the weak pointer. We will refer to this as thekey-in-value problem.If this problem actually occurs in practice, it causes a potentially-lethal spaceleak, and one that is not easy to identify or cure. Unfortunately, the situationis by no means unusual. Consider a lookup table that maps a person's nameto a record describing the person. It is quite likely that the record will include,among other things, the person's name.5.3 A new designIn the light of these issues, we have developed a new design for weak pointersin Haskell, called key/value weak pointers. Here is (part of) the signature of theWeak module:data Weak a -- AbstractmkSimpleWeak :: k -> v -> IO (Weak v)deRefWeak :: Weak v -> IO (Maybe v)The function mkSimpleWeak takes a \key", a \value" of type v, and builds aweak pointer object of type Weak v. Weak pointers have the following e�ect ongarbage collection:{ The value of a weak pointer object is reachable if the key is reachable5.4 The alert reader may have noticed that an entry in the Stable Name Table of Sec-tion 4.3 e�ectively contains a weak pointer to its stable name object.5 Recall that the garbage collector recovers memory that is not reachable; and alsonote that the statement says \if", not \if and only if"

The speci�cation says nothing about the reachability of the weak pointerobject itself, so whether or not the weak pointer object is reachable does nota�ect the reachability of its key or value.This simple, crisp, speci�cation conceals quite a subtle implementation (Sec-tion 5.5), but it o�ers precisely the support we need for memo tables. It does notmatter if the value refers to the key, because the value is not reachable unlessthe key is | or unless the value is reachable some other way, in which case thekey is certainly reachable via the value.mkSimpleWeak is in the IO monad because it has an important operationalbehaviour: before the call, the key and value are both reachable, but after thecall the reachability of the value is dependent on the reachability of the key. Thisisn't a side-e�ect as such | it wouldn't change the meaning of the program ifwe delayed the operation | but to obtain the desired e�ect it's important thatwe can force the call to mkSimpleWeak to be performed at a certain time, hencewe use the IO monad for sequencing.The function deRefWeak dereferences a weak pointer, returning eitherNothing (if the value has been garbage collected), or Just v (where v is thevalue originally given to mkSimpleWeak). The deRefWeak operation is in the IOmonad for an obvious reason: its return value can depend on the time at whichthe garbage collector runs.Though we developed our design independently, we subsequently discoveredthat Hayes's OOPSLA'97 paper [4] describes a much earlier implementation ofthe same core idea, there dubbed ephemerons, originally due to Bosworth. Wecontrast our designs in Section 9.5.4 Memo table using key/value weak pointersWe can now give the code for a memo table that uses weak pointers, based onour earlier stable-name version.applyWeak :: (a -> b) -> SNMap a (Weak b) -> a -> bapplyWeak f tbl arg= unsafePerformIO (do { sn <- mkStableName arg; lkp <- lookupSNMap tbl sn; case lkp ofNothing -> not_found tbl snJust weak ->do { val <- deRefWeak weak; case val ofJust result ->return resultNothing ->not_found tbl sn} })wherenot_found tbl sn = do { let res = f arg

; weak <- mkSimpleWeak arg res; insertSNMap tbl sn weak; return res}The memo table maps a stable name for the argument to a weak pointerto the value. If the function has not been applied to arg before, the call tolookupSNMap will return Nothing, and the auxiliary function not_found will becalled. The latter makes a weak pointer for the result, with a lifetime controlledby arg, and inserts this weak pointer into the memo table as before.If the lookup is successful, deRefWeak is used to �nd the actual value. Thereis an awkward race condition here, because at the moment deRefWeak is calledthere might, conceivably, be no further references to arg. If that is so, anda garbage collection intervenes, the weak pointer might be tombstoned beforedeRefWeak gets to it. In this unusual case we simply call not_found. Strangelyenough, doing so makes arg reachable in the continuation of deRefWeak, and thusensures that deRefWeak will always succeed. This sort of weirdness is typical ofthe world of weak pointers.5.5 Implementing weak pointersThe de�nition of reachability is simple, but it takes a little care to implement itcorrectly. Our implementation works as follows. We maintain a list of all currentweak pointer objects, called the Weak Pointer List. When a new weak pointerobject is created, it is immediately added to this list. Garbage collection proceedsas follows:1. Mark all the heap reachable from the roots. (We will pretend that we areusing a mark-sweep garbage collector, but everything works �ne for copyingcollectors too.)2. Examine each weak pointer object on the Weak Pointer List, whether or notit is itself reachable. If it has a key that is marked (i.e. is reachable), thenmark all the heap reachable from its value �eld, and move the weak pointerobject to a new list.3. Repeat from step (2), until a complete scan of the Weak Pointer List �ndsno weak pointer object with a marked key.4. For each remaining object on the Weak Pointer List, either tombstone it (ifit is marked), or simply discard it (otherwise).5. The list accumulated in step (2) becomes the new Weak Pointer List. Markany unreachable weak pointer objects on this list as reachable, so that theywill be retained by the garbage collector.There are two subtleties in the implementation. The �rst is the iterationnecessary in step (3). This is required, because making one value reachable maymake the key of some other weak pointer object reachable; and so on. Noticethat the reachability of the value of a weak pointer object is in
uenced only by

the reachability of the corresponding key, and not at all by the reachability, orotherwise, of the weak pointer object itself.The second subtlety is the relationship between reachability and retainability.The reachability criterion is used to determine which weak pointers to tombstone,but it is not the same as the set of objects retained by the garbage collector.The objects retained are precisely the reachable objects, plus any weak pointerobjects which have reachable keys, but which are unreachable themselves at theend of the algorithm.Although all live weak pointer objects are implicitly kept by the garbagecollector regardless of whether they are reachable, it would be wrong to markthem all as reachable as a �rst step in the above algorithm. This is because doingso would preclude having a weak pointer object whose key is itself a weak pointerobject, because the key would always be considered reachable. Weak pointers toweak pointers are a useful concept, as we shall see later (Section 9).The above implementation can be extended straightforwardly to work with agenerational garbage collector. The guiding principle is: any object which residesin a generation which we are not collecting is considered to be reachable for thepurposes of this collection. So if the key of a weak pointer lives in the oldestgeneration, we will not be able to determine that the weak pointer is dead untilwe perform a major collection.5.6 Other applicationsAnother situation where we found weak pointers to be \just the right thing" iswhen referencing objects outside the Haskell heap via proxy objects (a proxyobject is an object in the local heap that just contains a pointer to the foreignobject).Consider a structured foreign object, to which we have a proxy object in theHaskell heap. The garbage collector will track the proxy object in order thatthe foreign object can be freed when it is no longer referenced from Haskell(probably using a �nalizer, see the next section). If we are given a pointer toa subcomponent of the foreign object, then we need a suitable way to keep theproxy for the root of the foreign object alive until we drop the reference to thesubcomponent.A weak pointer solves this problem nicely: the key points to a proxy forthe subcomponent, and the value points to the proxy for the root. The entireforeign object will thereby be retained until all references to the subcomponentare dropped.6 FinalizationWe did not present code for purging the memo table of useless key/value pairs.Indeed, the whole idea is less than satisfactory, because it amounts to pollingthe keys to see if they have died. It would be better to receive some sort ofnoti�cation when the key died.

Indeed, it is quite common to want to perform some sort of clean-up actionwhen an object dies; such actions are commonly called �nalization. If it werepossible to attach a �nalizer to the key, then when the key dies, the �nalizercould delete the entry from the memo table. A particular key might be in manymemo tables, so it is very desirable to be able to attach multiple �nalizers to aparticular object.Finalizers are often used for proxy objects that encapsulate some externalresource, such as a �le handle, graphics context, malloc'd block, network con-nection, or whatever. When the object becomes garbage, the �nalizer runs, andcan close the �le, release the graphics context, free the malloc'd block, etc. Insome sense, these proxy objects are the dual to stable pointers (Section 4.5):they encapsulate a pointer from Haskell to some external world, while a stablepointer encapsulates a pointer from the external world into Haskell.Finalizers raise numerous subtle issues. For example, does it matter whichorder �nalizers run in, if several objects die \simultaneously" (whatever thatmeans)? The �nalizer may need to refer to the object it is �nalizing, whichpresumably means \resurrecting" it from the dead. If the �nalizer refers to theobject, might that keep it alive, thereby vitiating the whole e�ect? If not, howdoes the �nalizer get access to the object? How promptly do �nalizers run? Andso on. [3] gives a useful overview of these issues, and a survey of implementations.6.1 A design for �nalizersIn our experience, applications that use weak pointers almost always requiresome sort of �nalization as well, so we have chosen to couple the two. We addthe following two new functions:mkWeak :: k -> v -> Maybe (IO ()) -> IO (Weak v)finalize :: Weak v -> IO ()mkWeak is like mkSimpleWeak, except that it takes an extra argument, an op-tional �nalization action. The call (mkWeak k v (Just a)) has the followingsemantics:{ If k becomes unreachable, the �nalization action a is performed some timeafterwards. There is no guarantee of how soon afterwards, nor about theorder in which �nalizers are run.{ Finalization of a weak object may be initiated at any time, by applyingfinalize to it. The weak pointer object is immediately replaced by a tomb-stone, and its �nalizer (if it has one) is run. The finalize operation returnsonly on completion of the �nalizer.{ The �nalization action a is guaranteed to be performed exactly once duringthe run of the program, either when the programmer calls finalize, or sometime after k becomes unreachable, or at the end of the program run.The mkSimpleWeak operation is implemented in terms of mkWeak, by passingNothing as the �nalizer.

The �nalization action a is simply an I/O action of type IO (). Here, forexample, is how one might arrange to automatically close a �le that was nolonger required:fopen :: String -> IO Handlefopen filename= do { hdl <- open filename; mkWeak hdl () (Just (close hdl)); return hdl}open :: String -> IO Handleclose :: Handle -> IO ()Here, fopen uses open to open the �le, and then calls mkWeak to attach a �nalizerto the handle returned by open. (In this case the second parameter of mkWeakis irrelevant.) The �nalizer (close hdl) is of type IO (); when hdl becomesunreachable the �nalizer is performed, which closes the �le.The following points are worth noticing about �nalizers:{ In the fopen example, the �nalizer refers to hdl. We are immediately facedwith a variant of the key/value problem for memo tables (Section 5.2). Itwould be a disaster if the �nalizer kept the key alive, which in turn wouldensure the �nalizer never ran! We solve this simply by modifying the reach-ability rule for weak pointers:� The value and �nalizer of a weak pointer object are reachable if the keyis reachable.{ Any value whatsoever (even a weak pointer object) can have a �nalizerattached in this way { this is called container-based �nalization. It contrastswith destructors in C++, which implement object-based �nalization in whichthe �nalizer is part of the object's de�nition.{ A value can have any number of �nalizers attached, simply by making sev-eral calls to mkWeak. (This is essential if (say) a key is entered in severalmemo tables.) Each of the �nalizers is run exactly once, with no guaranteeof relative order.{ The program may discard the weak pointer object returned by mkWeak if itisn't required (as we did in the example above). The �nalizer will still runwhen the key becomes unreachable, but we won't be able to call finalizeto run the �nalizer early.6.2 Implementing �nalizationFinalizers are relatively easy to implement. The weak pointer implementation ofSection 5.5 needs modi�cation as follows:1. Mark all the heap reachable from the roots.

2. Scan the Weak Pointer List. If a weak pointer object has a key that ismarked (i.e. is reachable), then mark all the heap reachable from its valueor its �nalizer, and move the weak pointer object to a new list.3. Repeat from step (2), until a complete scan of the Weak Pointer List �ndsno weak pointer object with a marked key.4. Scan the Weak Pointer List again. If the weak pointer object is reachable,then tombstone it. If the weak pointer object has a �nalizer, then moveit to the Finalization Pending List, and mark all the heap reachable fromthe �nalizer. If the �nalizer refers to the key (and/or value), this step will\resurrect" it.5. The list accumulated in step (3) becomes the new Weak Pointer List. Markany unreachable weak pointer objects on this list as reachable.Subsequent to garbage collection, a dedicated �nalization thread successivelyremoves a item from the Finalization Pending List, and executes the �nalizer.The �nalization thread runs pseudo-concurrently with the program; if a �nalizershares state with the main program then suitable synchronisation must be used.We use the primitives of Concurrent Haskell for this purpose [9].7 Memo tables with �nalizationIn this section we bring together stable names, weak pointers and �nalizers inan implementation of a memo table that can purge itself of unneeded key/valuepairs, and also release itself when the memoized function is no longer reachable.The implementation is given in Figure 3, and a diagram depicting the memotable structure is given in Figure 4.The memo table representation is identical to the one given in Section 5.4,except that we now add a �nalizer to each weak pointer in the table. Wheninvoked, the �nalizer will remove its own entry from the memo table, allowingthe value (the memoized result of this computation) to be garbage collected.This inadvertently creates a problem for garbage collecting the entire memotable: since each �nalizer now needs to refer to the memo table, and by thereachability rule we gave for weak pointers with �nalizers, this means that thememo table is reachable if the key of any weak pointer in the table is reachable.This is a disaster! Even if the memoized function dies, the memo table, includingall the cached values, will live on until all the keys become unreachable.The solution, not unsurprisingly, is to use another weak pointer. If all the�nalizers refer to the memo table only through a weak pointer, we retain thedesired reachability behaviour for the memo table itself. If a running �nalizer�nds that the memo table has already become unreachable, because deRefWeakon the weak pointer to the table returns Nothing, then there's no �nalization todo.We also add a �nalizer to the memo table (table_finalizer), which runsthrough all the entries in the table calling finalize on each weak pointer. Thisis important because it allows all the values to be garbage collected at the same

type MemoTable a b = SNMap a (Weak b)memo :: (a -> b) -> a -> bmemo f =let (tbl,weak) = unsafePerformIO (do { tbl <- newSNMap; weak <- mkWeak tbl tbl (Just (table_finalizer tbl)); return (tbl,weak)})in memo' f tbl weaktable_finalizer :: SNMap a (Weak b) -> IO ()table_finalizer tbl =do { pairs <- snMapElems tbl; sequence_ [finalize w | (_,w) <- pairs] }memo' :: (a -> b) -> MemoTable a b -> Weak (MemoTable a b) -> a -> bmemo' f tbl weak_tbl arg = unsafePerformIO (do { sn <- mkStableName arg; lkp <- lookupSNMap tbl sn; case lkp ofNothing -> not_foundJust w -> do { maybe_val <- deRefWeak w; case maybe_val ofNothing -> not_foundJust val -> return val}})where val = f argnot_found = do { weak <- mkWeak arg val (Just (finalizer sn weak_tbl)); insertSNMap tbl sn val; return val}finalizer :: StableName a -> Weak (MemoTable a b) -> IO ()finalizer sn weak_tbl = do { r <- deRefWeak weak_tbl; case r ofNothing -> return ()Just mvar -> removeSNMap tbl sn}Fig. 3. Full Memo Table Implementation

Memo
Table

SN

Weak Table
Finalizer

Weak

n

ValueKey

Finalizer

Fig. 4. Full Memo Table Implementationtime as the table; without this �nalizer, the values would live on until theirrespective keys became unreachable.8 Push-based ArchitecturesOne compelling and intriguing application of key/value weak pointers turnedup in a new implementation of the Fran reactive animation system, which isimplemented in Haskell. In this section we sketch the problem and explain howweak pointers solve it.8.1 Message NetworksA Fran program can usefully be thought of as a \message network". A mes-sage network is a directed acyclic graph (dag) that de�nes a conceptual
ow ofmessages through a collection of hardware and software components. In such anetwork, each node may be a source, sink or �lter of messages. For example,

filter 1 filter 2

Merge

�
�
�
�

KeyboardInput Widget

Display 2Display 1Fig. 5. Sample message networkdigital input devices are sources, whether implemented in hardware (e.g., mice,head trackers, or video cameras), or software (e.g., slider and type-in widgets).Similarly, hardware and software digital output devices are sinks. Message \�l-ters" come in two forms. Some �lters pass all received messages through, butalter each one according to some algorithm. Other �lters pass some messagesthrough, while blocking others.Pairs of nodes that are directly connected to each other in a message networkare in an ordered \service/client" relationship. The provider of a message is theservice and the recipient is the client. In general, source nodes can only beservices, sinks can only be clients, and �lters can act as either, and frequentlyact as both clients and services simultaneously.6As a simple example, Figure 5 shows a message network with two sources(keyboard and button widget) whose messages are merged, then transformedby a calculation, then separately �ltered and passed on to two separate displaysinks.So far, we have avoided saying how messages
ow through a network. Twoobvious candidates are pushing and pulling. In a push implementation, servicestake the initiative. Whenever a node receives a message, it pushes the messageto each of its clients (possibly altering it �rst), unless it decides to block themessage. The overall e�ect is that availability of source data drives work throughthe network toward sinks. In a pull implementation, on the other hand, clientstake the initiative. Every time a node wants a message, it tries to pull one from6 Note that a sink is not just a node with no clients, but rather a node that has anexternal e�ect. A source or �lter node could also lack clients merely because no oneis currently interested in its messages. Similarly, a source is not just a node with noservices.

each of its services. These demands eventually reach sources, where they will besatis�ed if new data is available.In order to decide whether to use a pull- or push-based implementation, oneneeds to examine the relative frequency of (a) data generation at sources, vs (b)data consumption at sinks. If sources generate values much more frequently thansinks need them (even considering rejection by �lters), then pull may be the rightchoice. If, however, source data is infrequent compared to sink demands, thenpushing is probably called for. The push model has an additional advantage,namely that it minimizes the latency between the external stimulus and itsresulting response. Because we have been doing interactive graphics, we areinterested both in high display rates and low latency reactions, so the pushmodel is very appealing.8.2 Garbage CollectionWhat does the question of push vs pull have to do with garbage collection?Considering again the example in Figure 5, which nodes should be kept aliveduring a garbage collection? The answer should be exactly the \useful" ones.Certainly any nodes that have references external to the message network shouldbe kept, because they can be used by the reference holders. The sink (display)nodes are also useful, because they have external e�ect. The nodes that directlyact as services with these sinks as clients are useful because they are useful to(i.e., they serve) the sinks. In general, for each service/client pair, if the client isuseful, then the service is also.All nodes in Figure 5 are useful, but what if display 2 were turned o�, i.e.,became no longer useful? Then filterB no longer has any client, so it is nolonger useful. The shared calculation node still has a useful client (display 1),so it is still useful, as are the rest of nodes in the graph.This notion of \usefulness" has an intriguing similarity to the notion of reach-ability that underlies garbage collection. In a simple garbage collection setting(without weak pointers or �nalizers), the set of accessible objects is the transitiveclosure of the set of root objects under the binary points-to relation. Similarly,the set of useful nodes in a message network is the transitive closure of the setof sinks under the binary served-by relation.While the demands of our application area favor push, as described above,garbage collection favors pull. The reason is that for pull, served-by impliespoints-to. That is, for node A to be served by node B, A must point to B.By closure then, useful implies reachable, and thus the garbage collection willpreserve all useful nodes. For push, however, the served-by and points-to relationshave opposite orientation! For A to be served by B, B must point to A.In our example, display 2 was served by filter 2, so filter 2 pointsto display 2. With conventional garbage collection, filterB would thereforesustain display 2, and the shared calculations node would sustain them both.The result is not only a space- but also an \e�ort-leak", since work is being doneby the useless but sustained nodes.

To �x this space- and e�ort-leak, observe that the served-by relation is nota strong enough reason to keep a client alive, and thus should be represented bya weak pointer from service to client. This step goes too far, however, allowingevery node in a message network to be reclaimed if it has no reference fromoutside of the network. In addition to making services not sustain clients, wemust also make clients sustain services. This step is easy: merely construct asecond weak pointer, this time with the client as the key and service as thevalue, and no �nalizer. It is not even necessary to hold onto this second weakpointer object.As an optimization, combine the two weak pointers into one, stored at theservice. The key is the client, in order to control lifetime. The value containsthe service, so it will be sustained, and the client, so that service can send itmessages. What about the (optional) �nalizer? Just as in the case of memotables, a service node will in fact contain a set of these weak pointers. When thekey (client) dies, the corresponding weak pointer is tombstoned. For eÆciency,however, we would also like to have these weak pointers be removed from theirsets. A �nalizer is just the right tool for this job.8.3 ObservationsWe have deliberately cast the discussion in general terms, because we believethat it illuminates a fundamental mis-match between traditional garbage collec-tion and \push" applications. Solving the mis-match seems to require the fullgenerality of key/value weak pointers. An open question is whether key/valueweak pointers are \complete" (whatever that means), or whether some new ap-plication may require something yet more complicated.9 ComparisonWe are not aware of any other published work on stable names, although itseems likely that others have implemented similar mechanisms internally. Java'sglobal and local references (part of the Java Native Interface, described in [6])are similar to our stable pointers (Section 4.5) in that their primary function is toallow Java objects to be passed to foreign functions, by providing an indirectiontable and explicit freeing of references.Weak pointers, on the other hand, are well known. Several language imple-mentations include simple weak pointers, that is weak pointers that cannot ex-press the key/value relationship and hence su�er from the problem we describedin Section 5.2. These include Smalltalk, T, Caml, MoscowML, SML/NJ, and sev-eral Scheme implementations. Java has no less than three kinds of weak pointer[6]: Soft References allow objects to be reclaimed when memory is short, WeakReferences are simple weak pointers, and Phantom References are a weaker formof Weak Reference.Ephemerons, described by Hayes [4], are very similar to our weak pointers.They di�er in subtle but important ways. First, the semantics of ephemerons

is described by presenting a tricky garbage collection algorithm (similar to thatin Section 5.5). We believe that our characterisation in terms of reachability ismuch more useful for programmers. This is a presentational di�erence, but thereis a semantic di�erence too: the reachability rule for ephemerons is{ The value �eld of an ephemeron is reachable if both (a) the ephemeron (weakpointer object) is reachable, and (b) the key is reachable.This semantics is actually a little more convenient than ours for the memo-table application, because it means there is no need to �nalize the memo tableitself (Section 7). We chose our semantics (i.e. delete clause (a)) for severalreasons. First, it is simpler. Second, with the ephemeron semantics it is not clearwhen the �nalizer should be run. When the key becomes unreachable? Whenthe key and the ephemeron become unreachable? In fact, the choice made forephemerons is neither of these: the �nalizer of an ephemeron is run only if (a)the ephemeron is reachable and (b) the key is not. If the ephemeron itself is notreachable, the �nalizer is never run. This contrasts with our guarantee that each�nalizer is run precisely once.Third, one can easily simulate the ephemeron reachability semantics withours, but the reverse is not possible. The following function simulates theephemeron semantics:mkEphemeron :: k -> v -> Maybe (IO ())-> IO (Weak v)mkEphemeron k v f= do { eph <- mkWeak k v f; mkWeak eph () (Just (finalize eph)); return eph}The second call to mkWeak simply attaches a �nalizer to the ephemeron, so thatif the ephemeron ever becomes unreachable it is �nalized, thus breaking the key-to-value link. This does not have the same �nalization semantics as ephemeronsdo, but whether that is a bug or a feature is debatable.Finalizers have been the subject of heated debate on the gclist mailing list.The conclusions of this debate, and of Hayes's excellent survey [3], are that{ A programmer should not rely on �nalizers running promptly. Promptnessis just too hard to guarantee. If promptness is required, then explicit �nal-ization is indicated.{ No guarantees should be made about the order in which �nalizers shouldrun.Dybvig proposed guardians for Scheme [2], a sort of batched version of �nal-izers. A (weak) pointer can be added to a guardian, and the guardian can bequeried to �nd out which of the objects it maintains have become inaccessible.Dybvig also describes how to implement hash tables using guardians. The hash

table he describes is capable of purging old key/value pairs, but only on acti-vation of the lookup function (i.e. not asynchronously), and it also su�ers fromthe key-in-value problem.10 ConclusionWe have now described four mechanisms | unsafePerformIO, stable names,weak pointers, and �nalization | that collectively allow us to implement memotables in Haskell. If that were the sole application, we could be accused of overkill.But each of the mechanisms has independent uses of its own, as we have alreadyindicated. What is surprising, perhaps, is that memo functions require such anelaborate armoury.Many readers, ourselves included, will have a queasy feeling by this stage.What is left of the beauty of functional programming by the time all theseprimitives have been added? How can the unspeci�ed \proof obligations" ofunsafePerformIO be characterised and proved? Has the baby been thrown outwith the bath water? These are justi�able criticisms. The baby is indeed indanger.Our primary response is this: if we can simply provide a completely encap-sulated implementation of memo, implemented as a primitive in (say) C, wouldthat have been better? Far from it! The same functionality would have to beimplemented, but with greater scope for error. Furthermore, it would take inter-vention by the language implementors to modify or extend the implementation.In any case, memo is but one of a whole raft of applications for the primitives wehave introduced. So, we regard the primitives of this paper as the raw materialfrom which experienced system programmers can construct beautiful abstractions.We wish that it were possible for the primitives to themselves be beautiful ab-stractions, but that aspiration seems to be beyond our reach.So, our proposals have clear shortcomings. But the alternatives are worse.We could eschew weak pointers, �nalizers, etc etc, and thereby exclude an im-portant and useful class of applications. Or we could keep their existence secret,advertising only their acceptable face (such as memo). Instead, we have striven todevelop as precise a characterisation of our primitives as we can, warts and all.We hope thereby to provoke a debate that may ultimately lead to new insights,and a better overall design.11 AcknowledgementsWe would like to thank the following people for helpful comments on earlierversions of this paper: Kevin Backhouse, Byron Cook, Barry Hayes, Fergus Hen-derson, Richard Jones, Andrew Kennedy, Sven Panne, and Julian Seward.References1. B. Cook and J. Launchbury. Disposable memo functions. In Proceedings of the1997 Haskell Workshop, 1997.

2. R. Dybvig, C. Bruggeman, and D. Elby. Guardians in a generation-based garbagecollector. In SIGPLAN Symposium on Programming Language Design and Imple-mentation (PLDI'93), Albuquerque, pages 207{216, June 1993.3. B. Hayes. Finalization in the collector interface. In Y. Bekkers and J. Co-hen, editors, Proceedings of the International Workshop on Memory Management(IWMM'92), St Malo, pages 277{298. Springer Verlag LNCS 637, Sept 1992.4. B. Hayes. Ephemerons: a new �nalization mechanism. In Proceedings ACM Con-ference on Object-Oriented Programming, Systems, Languages, and Applications(OOPSLA'97), pages 176{183. ACM, Oct 1997.5. R. Hughes. Lazy memo-functions. In Proc Aspenas workshop on implementationof functional languages, Feb 1985.6. Java Software, Sun Microsystems, Inc., http://java.sun.com/docs/. Java Devel-opment Kit 1.2 Documentation.7. R. Keller and M. Sleep. Applicative caching. ACM Transactions on ProgrammingLanguages and Systems, 8:88{108, Jan. 1986.8. D. Lester. An eÆcient distributed garbage-collection algorithm. In Proc ParallelArchitectures and Languages Europe (PARLE), pages 207{223. Springer VerlagLNCS 365, June 1989.9. SL Peyton Jones, AJ Gordon, and SO Finne. Concurrent Haskell. In 23rdACM Symposium on Principles of Programming Languages, St Petersburg Beach,Florida, pages 295{308. ACM, Jan 1996.10. SL Peyton Jones and PL Wadler. Imperative functional programming. In20th ACM Symposium on Principles of Programming Languages (POPL'93),Charleston, pages 71{84. ACM, Jan 1993.11. P. Trinder, K. Hammond, J. Mattson, A. Partridge, and S. P. Jones. GUM: aportable parallel implementation of Haskell. In SIGPLAN Symposium on Pro-gramming Language Design and Implementation (PLDI'96), Philadelphia. ApCM,May 1996.

