Beautiful differentiation

Conal Elliott

LambdaPix

2009-09-01 & 2013-07-18

Conal Elliott (LambdaPix)

Beautiful differentiation

Aside: functions as numbers

Aside: functions as numbers

Conal Elliott (LambdaPix)

Beautiful differentiation

Often done in math.

$$d(u+v) \equiv du+dv$$

$$d(u \cdot v) \equiv dv \cdot u + dv \cdot v$$

$$d(-u) \equiv -du$$

$$d(e^{u}) \equiv du \cdot e^{u}$$

$$d(\log u) \equiv du/u$$

$$d(\sqrt{u}) \equiv du/(2 \cdot \sqrt{u})$$

$$d(\sin u) \equiv du \cdot \cos u$$

$$d(\cos u) \equiv du \cdot (-\sin u)$$

...

Conal Elliott (LambdaPix)

Beautiful differentiation

Often done in math.

$$d(u+v) \equiv du+dv$$

$$d(u \cdot v) \equiv dv \cdot u + du \cdot v$$

$$d(-u) \equiv -du$$

$$d(e^{u}) \equiv du \cdot e^{u}$$

$$d(\log u) \equiv du/u$$

$$d(\sqrt{u}) \equiv du/(2 \cdot \sqrt{u})$$

$$d(\sin u) \equiv du \cdot \cos u$$

$$d(\cos u) \equiv du \cdot (-\sin u)$$

...

Can we really treat functions as numbers?

Conal Elliott (LambdaPix)

Beautiful differentiation

We can treat functions as numbers.

instance
$$Num \beta \Rightarrow Num (\alpha \rightarrow \beta)$$
 where
 $u + v = \lambda x \rightarrow u x + v x$
 $u * v = \lambda x \rightarrow u x * v x$
...
instance Floating $\beta \Rightarrow$ Floating $(\alpha \rightarrow \beta)$ where
 $sin \ u = \lambda x \rightarrow sin \ (u x)$
 $cos \ u = \lambda x \rightarrow cos \ (u x)$

We can treat functions as numbers.

instance
$$Num \beta \Rightarrow Num (\alpha \rightarrow \beta)$$
 where
 $u + v = \lambda x \rightarrow u x + v x$
 $u * v = \lambda x \rightarrow u x * v x$
...
instance Floating $\beta \Rightarrow$ Floating $(\alpha \rightarrow \beta)$ where
 $sin \ u = \lambda x \rightarrow sin \ (u x)$
 $cos \ u = \lambda x \rightarrow cos \ (u x)$

Note:

$$\begin{array}{l} \text{fmap } h \ u &\equiv \lambda x \rightarrow h \ (u \ x) \\ \text{lift} A_2 \ h \ u \ v &\equiv \lambda x \rightarrow h \ (u \ x) \ (v \ x) \end{array}$$

Conal Elliott (LambdaPix)

We can treat functions as numbers, more elegantly.

instance
$$Num \beta \Rightarrow Num (\alpha \rightarrow \beta)$$
 where
(+) = $liftA_2$ (+)
(*) = $liftA_2$ (*)

instance Floating $\beta \Rightarrow$ Floating $(\alpha \rightarrow \beta)$ where $sin = fmap \ sin$ $cos = fmap \ cos$

. . .

We can treat functions as numbers, more elegantly.

instance
$$Num \beta \Rightarrow Num (\alpha \rightarrow \beta)$$
 where
 $(+) = liftA_2 (+)$
 $(*) = liftA_2 (*)$

instance Floating $\beta \Rightarrow$ Floating $(\alpha \rightarrow \beta)$ where sin = fmap sincos = fmap cos

where

fmap
$$h u \equiv \lambda x \rightarrow h (u x)$$

lift $A_2 h u v \equiv \lambda x \rightarrow h (u x) (v x)$

Conal Elliott (LambdaPix)

. . .

We can treat applicatives as numbers.

instance (Applicative f, Num β) \Rightarrow Num (f β) where (+) = liftA₂ (+) (*) = liftA₂ (*)

instance (Functor f, Floating β) \Rightarrow Floating (f β) where sin = fmap sin cos = fmap cos

Conal Elliott (LambdaPix)

. . .

. . .

We can treat applicatives as numbers.

```
instance (Applicative f, Num \beta) \Rightarrow Num (f \beta) where
(+) = liftA<sub>2</sub> (+)
(*) = liftA<sub>2</sub> (*)
```

instance (Functor f, Floating β) \Rightarrow Floating (f β) where sin = fmap sin cos = fmap cos

where

instance Applicative $((\rightarrow) \alpha)$ instance Applicative [] Tree, State s, Either e,...

Conal Elliott (LambdaPix)

. . .

Differentiation

Differentiation

Conal Elliott (LambdaPix)

Beautiful differentiation

Derivatives have many uses.

- optimization
- root-finding
- surface normals
- curve and surface tessellation

What's a derivative?

For scalar domain:

$$d:: \mathit{Scalar} \; s \Rightarrow (s
ightarrow s)
ightarrow (s
ightarrow s)$$

$$d f x = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f x}{\varepsilon}$$

Conal Elliott (LambdaPix)

Beautiful differentiation

What's a derivative?

For scalar domain:

$$d:: \mathit{Scalar} \; s \Rightarrow (s
ightarrow s)
ightarrow (s
ightarrow s)$$

$$d f x = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f x}{\varepsilon}$$

What about non-scalar domains? Return to this question later.

Conal Elliott (LambdaPix)

Beautiful differentiation

What do we want in a technique?

- Simple to implement,
- simple to prove correct,
- convenient,
- accurate,
- ▶ efficient, and
- ► general.

There are three common differentiation techniques.

Numeric (approximation)

Symbolic

"Automatic" (forward & reverse modes)

Conal Elliott (LambdaPix)

Beautiful differentiation

Differentiation

Numeric (approximation)

For small h,

$$d f x \approx \frac{f (x + \varepsilon) - f x}{\varepsilon}$$

Simple but inaccurate.

We can improve accuracy while sacrificing simplicity.

Conal Elliott (LambdaPix)

Beautiful differentiation

Symbolic differentiation

$$d(u+v) \equiv du+dv$$

$$d(u+v) \equiv dv \cdot u + du \cdot v$$

$$d(-u) \equiv -du$$

$$d(e^{u}) \equiv du \cdot e^{u}$$

$$d(\log u) \equiv du/u$$

$$d(\sqrt{u}) \equiv du/(2 \cdot \sqrt{u})$$

$$d(\sin u) \equiv du \cdot \cos u$$

$$d(\cos u) \equiv du \cdot (-\sin u)$$

$$d(\sin^{-1} u) \equiv du/\sqrt{1-u^{2}}$$

$$d(\cos^{-1} u) \equiv -du/\sqrt{1-u^{2}}$$

$$d(\tan^{-1} u) \equiv du \cdot \cosh u$$

$$d(\cosh u) \equiv du \cdot \cosh u$$

$$d(\cosh u) \equiv du \cdot \sinh u$$

$$d(\sinh^{-1} u) \equiv -du/\sqrt{u^{2}+1}$$

$$d(\cosh^{-1} u) \equiv -du/\sqrt{u^{2}+1}$$

Conal Elliott (LambdaPix)

Beautiful differentiation

2009-09-01 & 2013-07-18

Differentiation

What is automatic differentiation?

Computes function & derivative values in tandem

"Exact" method

Numeric, not symbolic

Conal Elliott (LambdaPix)

Beautiful differentiation

Scalar, first-order AD

Overload functions to work on function/derivative value pairs:

data $D \alpha = D \alpha \alpha$

For instance,

$$D a a' + D b b' = D (a + b) (a' + b')$$

$$D a a' * D b b' = D (a * b) (b' * a + a' * b)$$

$$sin (D a a') = D (sin a) (a' * cos a)$$

$$sqrt (D a a') = D (sqrt a) (a' / (2 * sqrt a))$$

. . .

Conal Elliott (LambdaPix)

Beautiful differentiation

2009-09-01 & 2013-07-18

Scalar, first-order AD

Overload functions to work on function/derivative value pairs:

data $D \alpha = D \alpha \alpha$

For instance,

$$\begin{array}{l} D \ a \ a' + D \ b \ b' = D \ (a + b) \ (a' + b') \\ D \ a \ a' \ * D \ b \ b' = D \ (a \ * b) \ (b' \ * a + a' \ * b) \\ sin \ (D \ a \ a') = D \ (sin \ a) \ (a' \ * cos \ a) \\ sqrt \ (D \ a \ a') = D \ (sqrt \ a) \ (a' \ / \ (2 \ * sqrt \ a)) \end{array}$$

. . .

Are these definitions correct?

Conal Elliott (LambdaPix)

Differentiation

What is automatic differentiation — really?

► What does AD mean?

How does a correct implementation arise?

► Where else might these answers take us?

Conal Elliott (LambdaPix)

Beautiful differentiation

2009-09-01 & 2013-07-18

What does AD mean?

What does AD mean?

Conal Elliott (LambdaPix)

Beautiful differentiation

2009-09-01 & 2013-07-18 1

What does AD mean?

data $D \alpha = D \alpha \alpha$

$$toD :: (\alpha \to \alpha) \to (\alpha \to D \alpha)$$
$$toD f = \lambda x \to D (f x) (d f x)$$

Spec: toD combinations correspond to function combinations, e.g.,

 $toD \ u + toD \ v \equiv toD \ (u + v)$ $toD \ u * toD \ v \equiv toD \ (u * v)$ $recip \ (toD \ u) \equiv toD \ (recip \ u)$ $sin \ (toD \ u) \equiv toD \ (sin \ u)$ $cos \ (toD \ u) \equiv toD \ (cos \ u)$

I.e., toD preserves structure.

Conal Elliott (LambdaPix)

Conal Elliott (LambdaPix)

Beautiful differentiation

2009-09-01 & 2013-07-18

Goal: $\forall u. sin (toD u) \equiv toD (sin u)$

Conal Elliott (LambdaPix)

Beautiful differentiation

Goal: $\forall u. \ sin(toD \ u) \equiv toD(sin \ u)$ Simplify each side:

$$\begin{array}{l} toD\ (sin\ u) \equiv \lambda x \rightarrow D\ (sin\ u\ x) & (d\ (sin\ u)\ x) \\ \equiv \lambda x \rightarrow D\ ((sin\ \circ\ u)\ x)\ ((d\ u\ *\ cos\ u)\ x) \\ \equiv \lambda x \rightarrow D\ (sin\ (u\ x)) & (d\ u\ *\ cos\ (u\ x)) \end{array}$$

Conal Elliott (LambdaPix)

Goal: $\forall u. \ sin(toD \ u) \equiv toD(sin \ u)$ Simplify each side:

$$\begin{array}{l} toD\ (sin\ u) \equiv \lambda x \rightarrow D\ (sin\ u\ x) & (d\ (sin\ u)\ x) \\ \equiv \lambda x \rightarrow D\ ((sin\ \circ\ u)\ x)\ ((d\ u\ *\ cos\ u)\ x) \\ \equiv \lambda x \rightarrow D\ (sin\ (u\ x)) & (d\ u\ x\ *\ cos\ (u\ x)) \end{array}$$

Sufficient:

$$sin (D ux dux) = D (sin ux) (dux * cos ux)$$

Conal Elliott (LambdaPix)

Where else might these answers take us?

Where else might these answers take us?

Conal Elliott (LambdaPix)

Beautiful differentiation

Where else might these answers take us?

In this talk:

Prettier definitions

Higher-order derivatives

Higher-dimensional functions

Conal Elliott (LambdaPix)

Beautiful differentiation

Digging deeper — the scalar chain rule

$$d (g \circ u) x \equiv d g (u x) * d u x$$

For scalar domain & range. Variations for other dimensions. Define and reuse:

$$(g \bowtie dg) (D ux dux) = D (g ux) (dg ux * dux)$$

For instance,

$$sin = sin \bowtie cos$$

 $cos = cos \bowtie \lambda x \rightarrow -sin x$
 $sqrt = sqrt \bowtie \lambda x \rightarrow recip (2 * sqrt x)$

Conal Elliott (LambdaPix)

Function overloadings make for prettier definitions.

instance Floating $\alpha \Rightarrow$ Floating $(D \alpha)$ where $exp = exp \bowtie exp$ $log = log \bowtie recip$ $sqrt = sqrt \bowtie recip (2 * sqrt)$ $sin = sin \bowtie cos$ $cos = cos \bowtie -sin$ $acos = acos \bowtie recip (-sqrt (1 - sqr))$ $atan = atan \bowtie recip (1 + sqr)$ $sinh = sinh \bowtie cosh$ $cosh = cosh \bowtie sinh$

sqr x = x * x

Conal Elliott (LambdaPix)

Scalar, higher-order AD

Generate infinite towers of derivatives (Karczmarczuk 1998):

data $D \alpha = D \alpha (D \alpha)$

Suffices to tweak the chain rule:

 $(g \bowtie dg) \qquad (D ux_0 dux) = D (g ux_0) (dg ux_0 * dux) \quad \text{-- old}$ $(g \bowtie dg) ux @(D ux_0 dux) = D (g ux_0) (dg ux * dux) \quad \text{-- new}$

Most other definitions can then go through unchanged. The derivations adapt.

Conal Elliott (LambdaPix)

Beautiful differentiation

For scalar domain:

$$d f x = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f x}{\varepsilon}$$

Conal Elliott (LambdaPix)

For scalar domain:

$$d f x = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f x}{\varepsilon}$$

Redefine: unique scalar s such that

$$\lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f x}{\varepsilon} - s \equiv 0$$

Conal Elliott (LambdaPix)

Beautiful differentiation

For scalar domain:

$$d f x = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f x}{\varepsilon}$$

Redefine: unique scalar s such that

$$\lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f x}{\varepsilon} - s \equiv 0$$

Equivalently,

$$\lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x-s)\varepsilon}{\varepsilon} \equiv 0$$
$$\lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - (f(x+s)\varepsilon)}{\varepsilon} \equiv 0$$

or

Conal Elliott (LambdaPix)

Beautiful differentiation

2009-09-01 & 2013-07-18

<u>What's</u> a derivative – really?

$$\lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - (fx + s \cdot \varepsilon)}{\varepsilon} \equiv 0$$

Conal Elliott (LambdaPix)

Beautiful differentiation

$$\lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - (fx+s \cdot \varepsilon)}{\varepsilon} \equiv 0$$

Now generalize: unique *linear map T* such that:

$$\lim_{\varepsilon \to 0} \frac{|f(x+\varepsilon) - (fx+T\varepsilon)|}{|\varepsilon|} \equiv 0$$

Conal Elliott (LambdaPix)

Beautiful differentiation

$$\lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - (fx + s \cdot \varepsilon)}{\varepsilon} \equiv 0$$

Now generalize: unique *linear map T* such that:

$$\lim_{\varepsilon \to 0} \frac{|f(x+\varepsilon) - (fx+T\varepsilon)|}{|\varepsilon|} \equiv 0$$

Derivatives are linear maps.

Captures all "partial derivatives" for all dimensions.

See Calculus on Manifolds by Michael Spivak.

Conal Elliott (LambdaPix)

Beautiful differentiation

The chain rules all unify into one.

Generalize from

 $d(g \circ u) x \equiv dg(u x) * du x$

etc

Conal Elliott (LambdaPix)

Beautiful differentiation

The chain rules all unify into one.

Generalize from

$$d (g \circ u) x \equiv d g (u x) * d u x$$

etc to

 $d (g \circ u) x \equiv d g (u x) \circ d u x$

Conal Elliott (LambdaPix)

Beautiful differentiation

2009-09-01 & 2013-07-18

Generalized derivatives

Derivative values are *linear maps*: $\alpha \multimap \beta$.

$$d :: (Vector \ s \ \alpha, Vector \ s \ \beta) \Rightarrow (\alpha \to \beta) \to (\alpha \to (\alpha \to \beta))$$

Conal Elliott (LambdaPix)

Generalized derivatives

Derivative values are *linear maps*: $\alpha \multimap \beta$.

$$d :: (Vector \ s \ \alpha, Vector \ s \ \beta) \Rightarrow (\alpha \to \beta) \to (\alpha \to (\alpha \multimap \beta))$$

First-order AD:

data $\alpha \triangleright \beta = D \beta (\alpha \multimap \beta)$

Conal Elliott (LambdaPix)

Generalized derivatives

Derivative values are *linear maps*: $\alpha \multimap \beta$.

$$d :: (Vector \ s \ \alpha, Vector \ s \ \beta) \Rightarrow (\alpha \to \beta) \to (\alpha \to (\alpha \multimap \beta))$$

First-order AD:

data $\alpha \triangleright \beta = D \beta (\alpha \multimap \beta)$

Higher-order AD:

data
$$\alpha \triangleright^* \beta = D \beta (\alpha \triangleright^* (\alpha \multimap \beta))$$

 $\approx \beta \times (\alpha \multimap \beta) \times (\alpha \multimap (\alpha \multimap \beta)) \times \dots$

Conal Elliott (LambdaPix)

Beautiful differentiation

What's a linear map?

Preserves linear combinations:

$$h(s_1 \cdot u_1 + \ldots + s_n \cdot u_n) \equiv s_1 \cdot h u_1 + \ldots + s_n \cdot h u_n$$

Conal Elliott (LambdaPix)

What's a linear map?

Preserves linear combinations:

$$h(s_1 \cdot u_1 + \ldots + s_n \cdot u_n) \equiv s_1 \cdot h u_1 + \ldots + s_n \cdot h u_n$$

Fully determined by behavior on *basis* of α , so

type
$$\alpha \multimap \beta = Basis \ \alpha \xrightarrow{M} \beta$$

Memoized for efficiency.

Conal Elliott (LambdaPix)

Beautiful differentiation

What's a linear map?

Preserves linear combinations:

$$h(s_1 \cdot u_1 + \ldots + s_n \cdot u_n) \equiv s_1 \cdot h u_1 + \ldots + s_n \cdot h u_n$$

Fully determined by behavior on *basis* of α , so

type $\alpha \multimap \beta = Basis \ \alpha \xrightarrow{M} \beta$

Memoized for efficiency.

Vectors, matrices, etc re-emerge as memo-tries.

Statically dimension-typed!

Conal Elliott (LambdaPix)

Beautiful differentiation

What's a basis?

class Vector $s v \Rightarrow$ HasBasis s v where type Basis v :: *coord $:: v \rightarrow$ (Basis $v \rightarrow s$) basisValue :: Basis $v \rightarrow v$

Conal Elliott (LambdaPix)

Beautiful differentiation

instance HasBasis Double Double where type Basis Double = () coord s = λ () \rightarrow s basisValue () = 1

instance (HasBasis s u, HasBasis s v) \Rightarrow HasBasis s (u, v) where type Basis (u, v) = Basis u 'Either' Basis v coord (u, v) = coord u 'either' coord v basisValue (Left a) = (basisValue a, 0) basisValue (Right b) = (0, basisValue b)

Conal Elliott (LambdaPix)

Beautiful differentiation

Automatic differentiation – naturally

Conal Elliott (LambdaPix)

Beautiful differentiation

Can we make AD even simpler?

Recall our function overloadings:

instance $Num \beta \Rightarrow Num (\alpha \rightarrow \beta)$ where (+) = $liftA_2$ (+) (*) = $liftA_2$ (*)

instance Floating $\beta \Rightarrow$ Floating $(\alpha \rightarrow \beta)$ where sin = fmap sincos = fmap cos

These definitions are standard for applicative functors.

Could they work for D?

. . .

Conal Elliott (LambdaPix)

Beautiful differentiation

Automatic differentiation – naturally

Automatic differentiation – *naturally*

Could we simply define AD via the standard

sin = fmap sin

etc? What is *fmap*?

Conal Elliott (LambdaPix)

Automatic differentiation – naturally

Could we simply define AD via the standard

sin = *fmap sin*

etc? What is *fmap*?

Require toD_x be a *natural transformation*:

fmap $g \circ toD_x \equiv toD_x \circ fmap g$

where

 $toD_x u = D(ux)(dux)$

Derive *fmap* from this naturality condition.

Conal Elliott (LambdaPix)

Beautiful differentiation

Derive AD naturally

$$\begin{aligned} toD_{\times} \ (\textit{fmap } g \ u) &\equiv toD_{\times} \ (g \circ u) \\ &\equiv D \ ((g \circ u) \ x) \ (d \ (g \circ u) \ x) \\ &\equiv D \ (g \ (u \ x)) \ (d \ g \ (u \ x) \circ d \ u \ x) \end{aligned}$$

fmap g $(toD_x u) \equiv fmap g (D (u x) (d u x))$

Sufficient definition:

fmap $g(D ux dux) = D(g ux)(d g ux \circ dux)$

Similar derivation for $liftA_2$ (for (+), (*), etc).

Conal Elliott (LambdaPix)

fmap $g(D ux dux) = D(g ux)(d g ux \circ dux)$

Conal Elliott (LambdaPix)

Beautiful differentiation

fmap g $(D \ ux \ dux) = D \ (g \ ux) \ (d \ g \ ux \circ dux)$

Oops. *d* doesn't have an implementation.

Conal Elliott (LambdaPix)

Beautiful differentiation

fmap $g(D ux dux) = D(g ux)(d g ux \circ dux)$

Oops. *d* doesn't have an implementation.

Solution A: Inline fmap for each fmap g and rewrite d g to known derivative.

Conal Elliott (LambdaPix)

Beautiful differentiation

fmap $g(D ux dux) = D(g ux)(d g ux \circ dux)$

Oops. *d* doesn't have an implementation.

Solution A: Inline fmap for each fmap g and rewrite d g to known derivative.

Solution B: Generalize *Functor* to allow non-function arrows, and replace functions by differentiable functions.

Conal Elliott (LambdaPix)

Beautiful differentiation

Conclusions

- ► Specification as a *structure-preserving semantic function*.
- ► Implementation *derived systematically* from specification.
- Prettier implementation via functions-as-numbers.
- ► Infinite derivative towers with nearly no extra code.
- ► Generalize to differentiation over *vector spaces*.
- Even simpler specification/derivation via naturality.