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Aside: functions as numbers

Often done in math.
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Aside: functions as numbers

Often done in math.

<

d(u+v)
d(u-v)
d(—u)
d(e)
d (log v)

d(Vu)
d(sinu)
d (cos u)

du+dv
dv-u+du-v
—du

du-e"

du/u
du/(2-+/a)
du-cosu
du-(—sinu)

Can we really treat functions as numbers?
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Aside: functions as numbers

We can treat functions as numbers.

instance Num 3 = Num (o — [3) where
U+v=XAX—ux+vx
U*xV=AX—>UX%VX

instance Floating = Floating (o — ) where

sin u= Ax — sin (u x)
cos u = Ax — cos (u x)
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Aside: functions as numbers

We can treat functions as numbers.

instance Num 3 = Num (o — [3) where
U+v=XAX—ux+vx
U*xV=AX—>UX%VX

instance Floating = Floating (o — ) where
sin u= Ax — sin (u x)
cos u = Ax — cos (u x)

Note:

fmap hu = Ax — h(ux)
liftAy huv = Ax — h (ux) (v x)
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Aside: functions as numbers

We can treat functions as numbers, more elegantly.

instance Num 3 = Num (o — [3) where
(+) = liftAz (+)
(%) = liftAy (%)

instance Floating = Floating (o — ) where
sin = fmap sin
cos = fmap cos
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Aside: functions as numbers

We can treat functions as numbers, more elegantly.

instance Num 3 = Num (o — [3) where
(+) = liftAz (+)
(%) = liftAy (%)

instance Floating = Floating (o — ) where

sin = fmap sin
cos = fmap cos

where

fmap hu = Ax — h(ux)
liftAy huv = Ax — h (ux) (v x)
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Aside: functions as numbers

We can treat applicatives as numbers.

instance (Applicative f, Num () = Num (f /3) where
(+) = liftAs (+)
(x) = liftAz (%)

instance (Functor f, Floating ) = Floating (f () where
sin = fmap sin
cos = fmap cos
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Aside: functions as numbers

We can treat applicatives as numbers.

instance (Applicative f, Num () = Num (f /3) where
(+) = liftAs (+)
(x) = liftAz (%)

instance (Functor f, Floating ) = Floating (f () where
sin = fmap sin
cos = fmap cos

where

instance Applicative ((—) «)
instance Applicative []
... Tree, State s, Either e, . ..
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Differentiation

Differentiation
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Differentiation

Derivatives have many uses.

> optimization
» root-finding
» surface normals

» curve and surface tessellation
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Differentiation

What's a derivative?

For scalar domain:

d:: Scalar s = (s —s) = (s = s)

de:”mM

e—0 €
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Differentiation

What's a derivative?

For scalar domain:

d:: Scalar s = (s —s) = (s = s)

de:“mM

e—0 €

What about non-scalar domains?

Return to this question later.
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Differentiation

What do we want in a technique?

» Simple to implement,
» simple to prove correct,
» convenient,

> accurate,

» efficient, and

> general.
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Differentiation

There are three common differentiation techniques.

» Numeric (approximation)

» Symbolic

» “Automatic” (forward & reverse modes)
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Differentiation

Numeric (approximation)

For small h,

de%f(X—l—E)—fX

Simple but inaccurate.

We can improve accuracy while sacrificing simplicity.
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Differentiation

Symbolic differentiation
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Differentiation

What is automatic differentiation?

» Computes function & derivative values in tandem

» “Exact” method

» Numeric, not symbolic
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Differentiation

Scalar, first-order AD

Overload functions to work on function/derivative value pairs:
dataDa=Daa«

For instance,

Dad +Dbb =D (a+b)(d+Vb)

Dad «Dbb =D (axb)(bxa+ax*b)
sin (Daa) =D(sin a)(a *cos a)
sqrt (D ad) =D (sqrta)(a'/(2x*sqrt a))
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Differentiation

Scalar, first-order AD

Overload functions to work on function/derivative value pairs:
dataDa=Daa«

For instance,

Dad +Dbb =D (a+b)(d+Vb)
Dad «Dbb =D (axb)(bxa+ax*b)

D (
sin (Daa) =D(sin a)(a *cos a)
sqrt (D ad) =D (sqrta)(a'/(2x*sqrt a))

Are these definitions correct?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 15 /1



Differentiation

What is automatic differentiation — really?

» What does AD mean?

» How does a correct implementation arise?

» Where else might these answers take us?
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What does AD mean?

What does AD mean?
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What does AD mean?

What does AD mean?

dataDa=D o«

toD :: (¢ —» o) = (. — D «)
toD f =Xx — D (f x) (d f x)

Spec: toD combinations correspond to function combinations, e.g.,

toD u+ toD v = toD (u + v)
toD u *x toD v = toD (u * v)

recip (toD u) toD (recip u)
sin (toD u) = toD (sin u)
cos (toD u) = toD (cos u)
l.e., toD preserves structure.
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How does a correct implementation arise?

How does a correct implementation arise?
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How does a correct implementation arise?

How does a correct implementation arise?

Goal: Yu. sin (toD u) = toD (sin u)
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How does a correct implementation arise?

How does a correct implementation arise?
Goal: Yu. sin (toD u) = toD (sin u)
Simplify each side:

sin (toD u) = sin o toD u
= Ax — sin (toD u x)
= Ax — sin (D (u x) (d u x))

toD (sinu) =Ax — D (sinu x)  (d (sin u) x)
= M — D ((sino u) x) ((d u* cos u) x)
=X — D (sin (ux)) (dux=x*cos(ux))
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How does a correct implementation arise?

How does a correct implementation arise?
Goal: Yu. sin (toD u) = toD (sin u)
Simplify each side:

=sino toD u
= Ax — sin (toD u x)
= Ax — sin (D (u x) (d u x))

sin (toD u)

toD (sinu) =Ax — D (sinu x)  (d (sin u) x)
= M — D ((sino u) x) ((d u* cos u) x)
=X — D (sin (ux)) (dux=x*cos(ux))
Sufficient:

sin (D ux dux) = D (sin ux) (dux x cos ux)
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Where else might these answers take us?

Where else might these answers take us?
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Where else might these answers take us?

Where else might these answers take us?

In this talk:

» Prettier definitions

» Higher-order derivatives

» Higher-dimensional functions
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Where else might these answers take us? Prettier definitions

Digging deeper — the scalar chain rule

d(gouyx=dg(ux)xdux
For scalar domain & range. Variations for other dimensions.
Define and reuse:
(g > dg) (D ux dux) = D (g ux) (dg ux * dux)
For instance,
sin = sin > cos

€COS = COS DI AX — —sin x
sqrt = sqrt < Ax — recip (2 x sqrt x)
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Where else might these answers take us? Prettier definitions

Function overloadings make for prettier definitions.

instance Floating « = Floating (D o)) where
exp = exp < exp
log = log ™ recip
sqrt = sqrt < recip (2 * sqrt)
sin = sin 1< cos
cos = cos > —sin

acos = acos < recip (—sqrt (1 — sqr))
atan = atan < recip (1 + sqr)

sinh = sinh > cosh

cosh = cosh < sinh

Sqr x = X * X
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Where else might these answers take us? Higher-order derivatives

Scalar, higher-order AD

Generate infinite towers of derivatives (Karczmarczuk 1998):
dataDa=D a (D «a)
Suffices to tweak the chain rule:

(g > dg) (D uxg dux) = D (g uxo) (dg uxg * dux) -- old
(g > dg) ux®(D uxo dux) = D (g uxo) (dg ux *dux) -- new

Most other definitions can then go through unchanged.

The derivations adapt.
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Where else might these answers take us? Higher-dimensional functions
’ . .
What's a derivative — really?
For scalar domain:

de:“mM

e—0 €
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Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

For scalar domain:

f —f
d Fx = lim T XTE) = Fx
e—0 €
Redefine: unique scalar s such that
f —f
fim XRE) = F X
e—0 €
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Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

For scalar domain:

dfx=lim M
e—0 €
Redefine: unique scalar s such that
f —f
fim XRE) = F X
e—0 €
Equivalently,
f —fx—s-
jim LX) Zfx=se
e—0 €
or
im f(x+e)—(fx+s-¢) —0
e—0 €
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Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

im f(x+e)—(fx+s-¢)
e—0 €

Il
o
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Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

f(x+e)—(fx+s-¢)

lim =)
e—0 €

Now generalize: unique linear map T such that:
im If (x+¢e)—(fx+ T ¢ _o
e—0 |6’
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Where else might these answers take us? Higher-dimensional functions

What's a derivative — really?

f(x+e)—(fx+s-¢)

lim =)
e—0 €

Now generalize: unique linear map T such that:
im If (x+¢e)—(fx+ T ¢ _o
e—0 |5’

Derivatives are linear maps.
Captures all “partial derivatives” for all dimensions.
See Calculus on Manifolds by Michael Spivak.
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Where else might these answers take us? Higher-dimensional functions

The chain rules all unify into one.

Generalize from

d(gouyx=dg(ux)«xdux

etc
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Where else might these answers take us? Higher-dimensional functions

The chain rules all unify into one.

Generalize from

d(gouyx=dg(ux)«xdux

etc to

d(gouyx=dg(ux)odux
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Where else might these answers take us? Higher-dimensional functions
Generalized derivatives
Derivative values are linear maps: o — f3.

d :: (Vector s a, Vector s [3)
= (@ = B) = (@ = (@ — b))
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Where else might these answers take us? Higher-dimensional functions
Generalized derivatives
Derivative values are linear maps: o — f3.

d :: (Vector s a, Vector s [3)
= (= p) = (a = (a— )

First-order AD:

dataa>p =D g (a — B)
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Where else might these answers take us? Higher-dimensional functions
Generalized derivatives
Derivative values are linear maps: o — f3.

d :: (Vector s a, Vector s [3)
= (= p) = (a = (a— )

First-order AD:

dataa>p =D g (a — B)

Higher-order AD:

data a* 3 = D B (as(a —o B))
~ B X (a—f) X (a—(a—p)) ...
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Where else might these answers take us? Higher-dimensional functions

What's a linear map?

Preserves linear combinations:

h(si-uv1+...+sp-up)=s1-huyr+...+s,-hup
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Where else might these answers take us? Higher-dimensional functions

What's a linear map?

Preserves linear combinations:

h(si-uv1+...+sp-up)=s1-huyr+...+s,-hup

Fully determined by behavior on basis of «, so
.M
type o — [ = Basis a — f3

Memoized for efficiency.
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Where else might these answers take us? Higher-dimensional functions

What's a linear map?

Preserves linear combinations:

h(si-uv1+...4sp-up)=s1-hu+...

Fully determined by behavior on basis of «, so
.M
type o — [ = Basis a — f3

Memoized for efficiency.

Vectors, matrices, etc re-emerge as memo-tries.

Statically dimension-typed!
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Where else might these answers take us? Higher-dimensional functions

What's a basis?

class Vector s v = HasBasis s v where
type Basis v :: x
coord v — (Basis v — s)
basisValue :: Basis v — v
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Where else might these answers take us?

instance HasBasis Double Double where
type Basis Double = ()
coord s =) —s
basisValue () =1

instance (HasBasis s u, HasBasis s v)
= HasBasis s (u, v) where

Higher-dimensional functions

type Basis (u,v) = Basis u 'Either' Basis v

coord

Conal Elliott (LambdaPix) Beautiful differentiation

(u,v) = coord u 'either' coord v
basisValue (Left a) = (basisValue a,0)
basisValue (Right b) = (0, basisValue b)
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Automatic differentiation — naturally

Automatic differentiation — naturally
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Automatic differentiation — naturally

Can we make AD even simpler?

Recall our function overloadings:

instance Num 5 = Num (a — () where
(+) = liftAz (+)
(%) = liftAs (x)

instance Floating = Floating (o — [3) where
sin = fmap sin
cos = fmap cos

These definitions are standard for applicative functors.

Could they work for D?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18

34 /1



Automatic differentiation — naturally

Automatic differentiation — naturally

Could we simply define AD via the standard
sin = fmap sin

etc? What is fmap?
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Automatic differentiation — naturally

Automatic differentiation — naturally

Could we simply define AD via the standard
sin = fmap sin

etc? What is fmap?

Require toD, be a natural transformation:
fmap g o toD, = toDy o fmap g
where
toDy u= D (u x) (d u x)

Derive fmap from this naturality condition.
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Automatic differentiation — naturally

Derive AD naturally

Dx (g o v)
((gou)x) (d (gowu)x)
(g (ux))(dg (ux)odux)

toDy (fmap g u) = to
D
D

fmap g (toDy u) = fmap g (D (u x) (d u x))

Sufficient definition:

fmap g (D ux dux) = D (g ux) (d g ux o dux)

Similar derivation for liftA; (for (+), (x), etc).
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Automatic differentiation — naturally

Sufficient definition:

fmap g (D ux dux) = D (g ux) (d g ux o dux)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 37 /1



Automatic differentiation — naturally

Sufficient definition:

fmap g (D ux dux) = D (g ux) (d g ux o dux)

Oops. d doesn’t have an implementation.
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Automatic differentiation — naturally

Sufficient definition:

fmap g (D ux dux) = D (g ux) (d g ux o dux)

Oops. d doesn’t have an implementation.

Solution A: Inline fmap for each fmap g and rewrite d g to known
derivative.
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Automatic differentiation — naturally

Sufficient definition:

fmap g (D ux dux) = D (g ux) (d g ux o dux)

Oops. d doesn’t have an implementation.

Solution A: Inline fmap for each fmap g and rewrite d g to known
derivative.

Solution B: Generalize Functor to allow non-function arrows, and replace
functions by differentiable functions.
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Automatic differentiation — naturally

Conclusions

\{

Specification as a structure-preserving semantic function.

\4

Implementation derived systematically from specification.

\{

Prettier implementation via functions-as-numbers.

\{

Infinite derivative towers with nearly no extra code.

\4

Generalize to differentiation over vector spaces.

\{

Even simpler specification/derivation via naturality.
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