
Beautiful differentiation

Conal Elliott

LambdaPix

2009-09-01 & 2013-07-18

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 1 / 1

Aside: functions as numbers

Aside: functions as numbers

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 2 / 1

Aside: functions as numbers

Often done in math.

d (u + v) ≡ d u + d v
d (u · v) ≡ d v · u + d u · v
d (−u) ≡ −d u
d (eu) ≡ d u · eu

d (log u) ≡ d u/u
d (
√
u) ≡ d u/(2 ·

√
u)

d (sin u) ≡ d u · cos u
d (cos u) ≡ d u · (− sin u)

...

Can we really treat functions as numbers?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 3 / 1

Aside: functions as numbers

Often done in math.

d (u + v) ≡ d u + d v
d (u · v) ≡ d v · u + d u · v
d (−u) ≡ −d u
d (eu) ≡ d u · eu

d (log u) ≡ d u/u
d (
√
u) ≡ d u/(2 ·

√
u)

d (sin u) ≡ d u · cos u
d (cos u) ≡ d u · (− sin u)

...

Can we really treat functions as numbers?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 3 / 1

Aside: functions as numbers

We can treat functions as numbers.

instance Num β ⇒ Num (α→ β) where
u + v = λx → u x + v x
u ∗ v = λx → u x ∗ v x

. . .

instance Floating β ⇒ Floating (α→ β) where
sin u = λx → sin (u x)
cos u = λx → cos (u x)

. . .

Note:

fmap h u ≡ λx → h (u x)
liftA2 h u v ≡ λx → h (u x) (v x)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 4 / 1

Aside: functions as numbers

We can treat functions as numbers.

instance Num β ⇒ Num (α→ β) where
u + v = λx → u x + v x
u ∗ v = λx → u x ∗ v x

. . .

instance Floating β ⇒ Floating (α→ β) where
sin u = λx → sin (u x)
cos u = λx → cos (u x)

. . .

Note:

fmap h u ≡ λx → h (u x)
liftA2 h u v ≡ λx → h (u x) (v x)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 4 / 1

Aside: functions as numbers

We can treat functions as numbers, more elegantly.

instance Num β ⇒ Num (α→ β) where
(+) = liftA2 (+)
(∗) = liftA2 (∗)

. . .

instance Floating β ⇒ Floating (α→ β) where
sin = fmap sin
cos = fmap cos

. . .

where

fmap h u ≡ λx → h (u x)
liftA2 h u v ≡ λx → h (u x) (v x)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 5 / 1

Aside: functions as numbers

We can treat functions as numbers, more elegantly.

instance Num β ⇒ Num (α→ β) where
(+) = liftA2 (+)
(∗) = liftA2 (∗)

. . .

instance Floating β ⇒ Floating (α→ β) where
sin = fmap sin
cos = fmap cos

. . .

where

fmap h u ≡ λx → h (u x)
liftA2 h u v ≡ λx → h (u x) (v x)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 5 / 1

Aside: functions as numbers

We can treat applicatives as numbers.

instance (Applicative f ,Num β)⇒ Num (f β) where
(+) = liftA2 (+)
(∗) = liftA2 (∗)

. . .

instance (Functor f ,Floating β)⇒ Floating (f β) where
sin = fmap sin
cos = fmap cos

. . .

where

instance Applicative ((→) α)
instance Applicative []
. . .Tree,State s,Either e, . . .

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 6 / 1

Aside: functions as numbers

We can treat applicatives as numbers.

instance (Applicative f ,Num β)⇒ Num (f β) where
(+) = liftA2 (+)
(∗) = liftA2 (∗)

. . .

instance (Functor f ,Floating β)⇒ Floating (f β) where
sin = fmap sin
cos = fmap cos

. . .

where

instance Applicative ((→) α)
instance Applicative []
. . .Tree,State s,Either e, . . .

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 6 / 1

Differentiation

Differentiation

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 7 / 1

Differentiation

Derivatives have many uses.

I optimization

I root-finding

I surface normals

I curve and surface tessellation

I . . .

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 8 / 1

Differentiation

What’s a derivative?

For scalar domain:

d :: Scalar s ⇒ (s → s)→ (s → s)

d f x = lim
ε→0

f (x + ε)− f x

ε

What about non-scalar domains?

Return to this question later.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 9 / 1

Differentiation

What’s a derivative?

For scalar domain:

d :: Scalar s ⇒ (s → s)→ (s → s)

d f x = lim
ε→0

f (x + ε)− f x

ε

What about non-scalar domains?

Return to this question later.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 9 / 1

Differentiation

What do we want in a technique?

I Simple to implement,

I simple to prove correct,

I convenient,

I accurate,

I efficient, and

I general.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 10 / 1

Differentiation

There are three common differentiation techniques.

I Numeric (approximation)

I Symbolic

I “Automatic” (forward & reverse modes)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 11 / 1

Differentiation

Numeric (approximation)

For small h,

d f x ≈ f (x + ε)− f x

ε

Simple but inaccurate.

We can improve accuracy while sacrificing simplicity.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 12 / 1

Differentiation

Symbolic differentiation

d (u + v) ≡ d u + d v
d (u · v) ≡ d v · u + d u · v
d (−u) ≡ −d u
d (eu) ≡ d u · eu

d (log u) ≡ d u/u
d (
√
u) ≡ d u/(2 ·

√
u)

d (sin u) ≡ d u · cos u
d (cos u) ≡ d u · (− sin u)

d (sin−1 u) ≡ d u/
√

1− u2

d (cos−1 u) ≡ −d u/
√

1− u2

d (tan−1 u) ≡ d u/(u2 + 1)
d (sinh u) ≡ d u · cosh u
d (cosh u) ≡ d u · sinh u

d (sinh−1 u) ≡ d u/
√
u2 + 1

d (cosh−1 u) ≡ −d u/
√
u2 − 1

d (tanh−1 u) ≡ d u/(1− u2)Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 13 / 1

Differentiation

What is automatic differentiation?

I Computes function & derivative values in tandem

I “Exact” method

I Numeric, not symbolic

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 14 / 1

Differentiation

Scalar, first-order AD

Overload functions to work on function/derivative value pairs:

data D α = D α α

For instance,

D a a′ + D b b′ = D (a + b) (a′ + b′)
D a a′ ∗ D b b′ = D (a ∗ b) (b′ ∗ a + a′ ∗ b)

sin (D a a′) = D (sin a) (a′ ∗ cos a)

sqrt (D a a′) = D (sqrt a) (a′ / (2 ∗ sqrt a))
. . .

Are these definitions correct?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 15 / 1

Differentiation

Scalar, first-order AD

Overload functions to work on function/derivative value pairs:

data D α = D α α

For instance,

D a a′ + D b b′ = D (a + b) (a′ + b′)
D a a′ ∗ D b b′ = D (a ∗ b) (b′ ∗ a + a′ ∗ b)

sin (D a a′) = D (sin a) (a′ ∗ cos a)

sqrt (D a a′) = D (sqrt a) (a′ / (2 ∗ sqrt a))
. . .

Are these definitions correct?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 15 / 1

Differentiation

What is automatic differentiation — really?

I What does AD mean?

I How does a correct implementation arise?

I Where else might these answers take us?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 16 / 1

What does AD mean?

What does AD mean?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 17 / 1

What does AD mean?

What does AD mean?

data D α = D α α

toD :: (α→ α)→ (α→ D α)
toD f = λx → D (f x) (d f x)

Spec: toD combinations correspond to function combinations, e.g.,

toD u + toD v ≡ toD (u + v)
toD u ∗ toD v ≡ toD (u ∗ v)

recip (toD u) ≡ toD (recip u)

sin (toD u) ≡ toD (sin u)
cos (toD u) ≡ toD (cos u)

I.e., toD preserves structure.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 18 / 1

How does a correct implementation arise?

How does a correct implementation arise?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 19 / 1

How does a correct implementation arise?

How does a correct implementation arise?

Goal: ∀u. sin (toD u) ≡ toD (sin u)

Simplify each side:

sin (toD u) ≡ sin ◦ toD u
≡ λx → sin (toD u x)
≡ λx → sin (D (u x) (d u x))

toD (sin u) ≡ λx → D (sin u x) (d (sin u) x)
≡ λx → D ((sin ◦ u) x) ((d u ∗ cos u) x)
≡ λx → D (sin (u x)) (d u x ∗ cos (u x))

Sufficient:

sin (D ux dux) = D (sin ux) (dux ∗ cos ux)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 20 / 1

How does a correct implementation arise?

How does a correct implementation arise?

Goal: ∀u. sin (toD u) ≡ toD (sin u)

Simplify each side:

sin (toD u) ≡ sin ◦ toD u
≡ λx → sin (toD u x)
≡ λx → sin (D (u x) (d u x))

toD (sin u) ≡ λx → D (sin u x) (d (sin u) x)
≡ λx → D ((sin ◦ u) x) ((d u ∗ cos u) x)
≡ λx → D (sin (u x)) (d u x ∗ cos (u x))

Sufficient:

sin (D ux dux) = D (sin ux) (dux ∗ cos ux)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 20 / 1

How does a correct implementation arise?

How does a correct implementation arise?

Goal: ∀u. sin (toD u) ≡ toD (sin u)

Simplify each side:

sin (toD u) ≡ sin ◦ toD u
≡ λx → sin (toD u x)
≡ λx → sin (D (u x) (d u x))

toD (sin u) ≡ λx → D (sin u x) (d (sin u) x)
≡ λx → D ((sin ◦ u) x) ((d u ∗ cos u) x)
≡ λx → D (sin (u x)) (d u x ∗ cos (u x))

Sufficient:

sin (D ux dux) = D (sin ux) (dux ∗ cos ux)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 20 / 1

Where else might these answers take us?

Where else might these answers take us?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 21 / 1

Where else might these answers take us?

Where else might these answers take us?

In this talk:

I Prettier definitions

I Higher-order derivatives

I Higher-dimensional functions

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 22 / 1

Where else might these answers take us? Prettier definitions

Digging deeper — the scalar chain rule

d (g ◦ u) x ≡ d g (u x) ∗ d u x

For scalar domain & range. Variations for other dimensions.

Define and reuse:

(g ./ dg) (D ux dux) = D (g ux) (dg ux ∗ dux)

For instance,

sin = sin ./ cos
cos = cos ./ λx → −sin x
sqrt = sqrt ./ λx → recip (2 ∗ sqrt x)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 23 / 1

Where else might these answers take us? Prettier definitions

Function overloadings make for prettier definitions.

instance Floating α⇒ Floating (D α) where
exp = exp ./ exp
log = log ./ recip
sqrt = sqrt ./ recip (2 ∗ sqrt)
sin = sin ./ cos
cos = cos ./ −sin

acos = acos ./ recip (−sqrt (1− sqr))
atan = atan ./ recip (1 + sqr)
sinh = sinh ./ cosh
cosh = cosh ./ sinh

sqr x = x ∗ x

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 24 / 1

Where else might these answers take us? Higher-order derivatives

Scalar, higher-order AD

Generate infinite towers of derivatives (Karczmarczuk 1998):

data D α = D α (D α)

Suffices to tweak the chain rule:

(g ./ dg) (D ux0 dux) = D (g ux0) (dg ux0 ∗ dux) -- old

(g ./ dg) ux@(D ux0 dux) = D (g ux0) (dg ux ∗ dux) -- new

Most other definitions can then go through unchanged.

The derivations adapt.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 25 / 1

Where else might these answers take us? Higher-dimensional functions

What’s a derivative – really?

For scalar domain:

d f x = lim
ε→0

f (x + ε)− f x

ε

Redefine: unique scalar s such that

lim
ε→0

f (x + ε)− f x

ε
− s ≡ 0

Equivalently,

lim
ε→0

f (x + ε)− f x − s · ε
ε

≡ 0

or

lim
ε→0

f (x + ε)− (f x + s · ε)

ε
≡ 0

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 26 / 1

Where else might these answers take us? Higher-dimensional functions

What’s a derivative – really?

For scalar domain:

d f x = lim
ε→0

f (x + ε)− f x

ε

Redefine: unique scalar s such that

lim
ε→0

f (x + ε)− f x

ε
− s ≡ 0

Equivalently,

lim
ε→0

f (x + ε)− f x − s · ε
ε

≡ 0

or

lim
ε→0

f (x + ε)− (f x + s · ε)

ε
≡ 0

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 26 / 1

Where else might these answers take us? Higher-dimensional functions

What’s a derivative – really?

For scalar domain:

d f x = lim
ε→0

f (x + ε)− f x

ε

Redefine: unique scalar s such that

lim
ε→0

f (x + ε)− f x

ε
− s ≡ 0

Equivalently,

lim
ε→0

f (x + ε)− f x − s · ε
ε

≡ 0

or

lim
ε→0

f (x + ε)− (f x + s · ε)

ε
≡ 0

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 26 / 1

Where else might these answers take us? Higher-dimensional functions

What’s a derivative – really?

lim
ε→0

f (x + ε)− (f x + s · ε)

ε
≡ 0

Now generalize: unique linear map T such that:

lim
ε→0

|f (x + ε)− (f x + T ε)|
|ε|

≡ 0

Derivatives are linear maps.

Captures all “partial derivatives” for all dimensions.

See Calculus on Manifolds by Michael Spivak.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 27 / 1

Where else might these answers take us? Higher-dimensional functions

What’s a derivative – really?

lim
ε→0

f (x + ε)− (f x + s · ε)

ε
≡ 0

Now generalize: unique linear map T such that:

lim
ε→0

|f (x + ε)− (f x + T ε)|
|ε|

≡ 0

Derivatives are linear maps.

Captures all “partial derivatives” for all dimensions.

See Calculus on Manifolds by Michael Spivak.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 27 / 1

Where else might these answers take us? Higher-dimensional functions

What’s a derivative – really?

lim
ε→0

f (x + ε)− (f x + s · ε)

ε
≡ 0

Now generalize: unique linear map T such that:

lim
ε→0

|f (x + ε)− (f x + T ε)|
|ε|

≡ 0

Derivatives are linear maps.

Captures all “partial derivatives” for all dimensions.

See Calculus on Manifolds by Michael Spivak.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 27 / 1

Where else might these answers take us? Higher-dimensional functions

The chain rules all unify into one.

Generalize from

d (g ◦ u) x ≡ d g (u x) ∗ d u x

etc

to

d (g ◦ u) x ≡ d g (u x) ◦ d u x

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 28 / 1

Where else might these answers take us? Higher-dimensional functions

The chain rules all unify into one.

Generalize from

d (g ◦ u) x ≡ d g (u x) ∗ d u x

etc to

d (g ◦ u) x ≡ d g (u x) ◦ d u x

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 28 / 1

Where else might these answers take us? Higher-dimensional functions

Generalized derivatives

Derivative values are linear maps: α(β.

d :: (Vector s α,Vector s β)
⇒ (α→ β)→ (α→ (α(β))

First-order AD:

data α . β = D β (α(β)

Higher-order AD:

data α.∗ β = D β (α.∗(α(β))
≈ β × (α(β)× (α((α(β))× . . .

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 29 / 1

Where else might these answers take us? Higher-dimensional functions

Generalized derivatives

Derivative values are linear maps: α(β.

d :: (Vector s α,Vector s β)
⇒ (α→ β)→ (α→ (α(β))

First-order AD:

data α . β = D β (α(β)

Higher-order AD:

data α.∗ β = D β (α.∗(α(β))
≈ β × (α(β)× (α((α(β))× . . .

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 29 / 1

Where else might these answers take us? Higher-dimensional functions

Generalized derivatives

Derivative values are linear maps: α(β.

d :: (Vector s α,Vector s β)
⇒ (α→ β)→ (α→ (α(β))

First-order AD:

data α . β = D β (α(β)

Higher-order AD:

data α.∗ β = D β (α.∗(α(β))
≈ β × (α(β)× (α((α(β))× . . .

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 29 / 1

Where else might these answers take us? Higher-dimensional functions

What’s a linear map?

Preserves linear combinations:

h (s1 · u1 + . . .+ sn · un) ≡ s1 · h u1 + . . .+ sn · h un

Fully determined by behavior on basis of α, so

type α(β = Basis α
M→β

Memoized for efficiency.

Vectors, matrices, etc re-emerge as memo-tries.

Statically dimension-typed!

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 30 / 1

Where else might these answers take us? Higher-dimensional functions

What’s a linear map?

Preserves linear combinations:

h (s1 · u1 + . . .+ sn · un) ≡ s1 · h u1 + . . .+ sn · h un

Fully determined by behavior on basis of α, so

type α(β = Basis α
M→β

Memoized for efficiency.

Vectors, matrices, etc re-emerge as memo-tries.

Statically dimension-typed!

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 30 / 1

Where else might these answers take us? Higher-dimensional functions

What’s a linear map?

Preserves linear combinations:

h (s1 · u1 + . . .+ sn · un) ≡ s1 · h u1 + . . .+ sn · h un

Fully determined by behavior on basis of α, so

type α(β = Basis α
M→β

Memoized for efficiency.

Vectors, matrices, etc re-emerge as memo-tries.

Statically dimension-typed!

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 30 / 1

Where else might these answers take us? Higher-dimensional functions

What’s a basis?

class Vector s v ⇒ HasBasis s v where
type Basis v :: ∗
coord :: v → (Basis v → s)
basisValue :: Basis v → v

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 31 / 1

Where else might these answers take us? Higher-dimensional functions

instance HasBasis Double Double where
type Basis Double = ()
coord s = λ()→ s
basisValue () = 1

instance (HasBasis s u,HasBasis s v)
⇒ HasBasis s (u, v) where

type Basis (u, v) = Basis u ‘Either ‘ Basis v
coord (u, v) = coord u ‘either ‘ coord v
basisValue (Left a) = (basisValue a, 0)
basisValue (Right b) = (0, basisValue b)

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 32 / 1

Automatic differentiation – naturally

Automatic differentiation – naturally

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 33 / 1

Automatic differentiation – naturally

Can we make AD even simpler?

Recall our function overloadings:

instance Num β ⇒ Num (α→ β) where
(+) = liftA2 (+)
(∗) = liftA2 (∗)

. . .

instance Floating β ⇒ Floating (α→ β) where
sin = fmap sin
cos = fmap cos

. . .

These definitions are standard for applicative functors.

Could they work for D?

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 34 / 1

Automatic differentiation – naturally

Automatic differentiation – naturally

Could we simply define AD via the standard

sin = fmap sin

etc? What is fmap?

Require toDx be a natural transformation:

fmap g ◦ toDx ≡ toDx ◦ fmap g

where

toDx u = D (u x) (d u x)

Derive fmap from this naturality condition.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 35 / 1

Automatic differentiation – naturally

Automatic differentiation – naturally

Could we simply define AD via the standard

sin = fmap sin

etc? What is fmap?

Require toDx be a natural transformation:

fmap g ◦ toDx ≡ toDx ◦ fmap g

where

toDx u = D (u x) (d u x)

Derive fmap from this naturality condition.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 35 / 1

Automatic differentiation – naturally

Derive AD naturally

toDx (fmap g u) ≡ toDx (g ◦ u)
≡ D ((g ◦ u) x) (d (g ◦ u) x)
≡ D (g (u x)) (d g (u x) ◦ d u x)

fmap g (toDx u) ≡ fmap g (D (u x) (d u x))

Sufficient definition:

fmap g (D ux dux) = D (g ux) (d g ux ◦ dux)

Similar derivation for liftA2 (for (+), (∗), etc).

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 36 / 1

Automatic differentiation – naturally

Sufficient definition:

fmap g (D ux dux) = D (g ux) (d g ux ◦ dux)

Oops. d doesn’t have an implementation.

Solution A: Inline fmap for each fmap g and rewrite d g to known
derivative.

Solution B: Generalize Functor to allow non-function arrows, and replace
functions by differentiable functions.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 37 / 1

Automatic differentiation – naturally

Sufficient definition:

fmap g (D ux dux) = D (g ux) (d g ux ◦ dux)

Oops. d doesn’t have an implementation.

Solution A: Inline fmap for each fmap g and rewrite d g to known
derivative.

Solution B: Generalize Functor to allow non-function arrows, and replace
functions by differentiable functions.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 37 / 1

Automatic differentiation – naturally

Sufficient definition:

fmap g (D ux dux) = D (g ux) (d g ux ◦ dux)

Oops. d doesn’t have an implementation.

Solution A: Inline fmap for each fmap g and rewrite d g to known
derivative.

Solution B: Generalize Functor to allow non-function arrows, and replace
functions by differentiable functions.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 37 / 1

Automatic differentiation – naturally

Sufficient definition:

fmap g (D ux dux) = D (g ux) (d g ux ◦ dux)

Oops. d doesn’t have an implementation.

Solution A: Inline fmap for each fmap g and rewrite d g to known
derivative.

Solution B: Generalize Functor to allow non-function arrows, and replace
functions by differentiable functions.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 37 / 1

Automatic differentiation – naturally

Conclusions

I Specification as a structure-preserving semantic function.

I Implementation derived systematically from specification.

I Prettier implementation via functions-as-numbers.

I Infinite derivative towers with nearly no extra code.

I Generalize to differentiation over vector spaces.

I Even simpler specification/derivation via naturality.

Conal Elliott (LambdaPix) Beautiful differentiation 2009-09-01 & 2013-07-18 38 / 1

	Aside: functions as numbers
	Differentiation
	What does AD mean?
	How does a correct implementation arise?
	Where else might these answers take us?
	Prettier definitions
	Higher-order derivatives
	Higher-dimensional functions

	Automatic differentiation – naturally

