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Abstraction

The purpose of abstraction is not to be vague,
but to create a new semantic level

wn which one can be absolutely precise.

- Edsger Dijkstra
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Goals

o Abstractions: precise, elegant, reusable.

o Implementations: correct, efficient, maintainable.

o Documentation: clear, simple, accurate.
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Not even wrong

Conventional programming is precise only about how, not what.
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Not even wrong

Conventional programming is precise only about how, not what.

It is not only not right, it is not even wrong.

- Wolfgang Pauli

Everything is vague to a degree you do mot realize

till you have tried to make it precise.

- Bertrand Russell
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Not even wrong

Conventional programming is precise only about how, not what.

It is not only not right, it is not even wrong.

- Wolfgang Pauli

Everything is vague to a degree you do mot realize

till you have tried to make it precise.

- Bertrand Russell

What we wish, that we readily believe.

- Demosthenes
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Denotative programming

Peter Landin recommended “denotative” to replace ill-defined

“functional” and “declarative”.

Properties:
o Nested expression structure.
e Each expression denotes something,

e depending only on denotations of subexpressions.

“...gives us a test for whether the notation is genuinely functional or

merely masquerading.” (The Next 700 Programming Languages, 1966)

Conal Elliott (Tabula) Denotational Design July, 2014 5/ 58


http://www.scribd.com/doc/12878059/The-Next-700-Programming-Languages
http://conal.net
http://tabula.com/

Denotational design

Design methodology for “genuinely functional” programming:
e Precise, simple, and compelling specification.

o Informs use and implementation without entangling them.

Standard algebraic abstractions.
@ Free of abstraction leaks.

Laws for free.

Principled construction of correct implementation.
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Overview

@ Broad outline:

e Example, informally

Pretty pictures

e Principles

More examples

Reflection
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e Example, informally

Pretty pictures

e Principles

More examples

Reflection
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Overview

@ Broad outline:

e Example, informally

Pretty pictures

e Principles

More examples

Reflection

e Discussion throughout
o Try it on.
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Example: image synthesis/manipulation

e How to start?

e What is success?
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Functionality
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Functionality

Import & export

Spatial transformation:
o Affine: translate, scale, rotate

o Non-affine: swirls, lenses, inversions, ...
e Cropping

@ Monochrome

Overlay
e Blend
o Blur & sharpen

o Geometry, gradients, ....

Conal Elliott (Tabula) Denotational Design July, 2014 9/ 58


http://conal.net
http://tabula.com/

API first pass
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API first pass

type Image

over :: Image — Image — Image
transform  :: Transform — Image — Image
crop it Region — Image — Image

monochrome :: Color — Image

-- shapes, gradients, etc.

fromBitmap :: Bitmap — Image

toBitmap  :: Image — Bitmap
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How to implement?
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How to implement?

wrong first question
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What to implement?
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What to implement?

e What do these operations mean?
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What to implement?

e What do these operations mean?

@ More centrally: What do the types mean?
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What is an image?
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What is an image?

Specification goals:
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What is an image?

Specification goals:

o Adequate
e Simple

@ Precise
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What is an image?

Specification goals:

o Adequate
e Simple

@ Precise

Why these properties?

Conal Elliott (Tabula) Denotational Design

July, 2014

13 / 58


http://conal.net
http://tabula.com/

What is an image?
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What is an image?

My answer: assignment of colors to 2D locations.
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What is an image?

My answer: assignment of colors to 2D locations.

How to make precise?

type Image
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What is an image?

My answer: assignment of colors to 2D locations.

How to make precise?
type Image

Model:

w :: Image — (Loc — Color)
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What is an image?

My answer: assignment of colors to 2D locations.

How to make precise?
type Image
Model:
w :: Image — (Loc — Color)

What about regions?
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What is an image?

My answer: assignment of colors to 2D locations.

How to make precise?

type Image
Model:

w :: Image — (Loc — Color)
What about regions?

i Region — (Loc — Bool)
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Specifying Image operations

over top bot)

crop reg im)

p(
1 (
w (monochrome c)
1 (

transform tr im)
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Specifying Image operations

w (over top bot)
w (crop reg im)
w (monochrome c)
o

transform tr im)

= \p — overC (u top p) (u bot p)

= Ap — if p reg p then p im p else clear

Ap — ¢

-- coming up

overC :: Color — Color — Color
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Specifying Image operations

w (over top bot) = \p — overC (u top p) (u bot p)

w (crop reg im) = A\p — if p reg p then p im p else clear
w (monochrome ¢) = Ap — ¢

w (transform tr im) = -- coming up

overC :: Color — Color — Color

Note compositionality of u.
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Compositional semantics

Make more explicit:

w (over top bot) = overS (u top) (u bot)
w (crop reg im) = cropS (u reg) (pu im)

overS :: (Loc — Color) — (Loc — Color) — (Loc — Color)
overS f g = Ap — overC (f p) (g p)

cropS :: (Loc — Bool) — (Loc — Color) — (Loc — Color)
cropS f g = Ap — if f p then g p else clear
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Generalize and simplify

e What about transforming regions?

@ Other pointwise combinations (lerp, threshold)?
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Generalize and simplify

e What about transforming regions?

@ Other pointwise combinations (lerp, threshold)?

Generalize:

type Image a
type ImageC = Image Color
type Region = Image Bool

Now some operations become more general.
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Generalize and simplify

transform :: Transform — Image a — Image a

cond i Image Bool — Image a — Image a — Image a

Conal Elliott (Tabula) Denotational Design July, 2014 19 / 58


http://conal.net
http://tabula.com/

Generalize and simplify

transform :: Transform — Image a — Image a

cond i Image Bool — Image a — Image a — Image a

lifty :: a — Image a
lift; :: (a — b) — (Image a — Image b)

lifts :: (a — b — ¢) — (Image a — Image b — Image c)
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Generalize and simplify

transform :: Transform — Image a — Image a

cond :: Image Bool — Image a — Image a — Image a

lifty :: a — Image a
lift; :: (a — b) — (Image a — Image b)

lifts :: (a — b — ¢) — (Image a — Image b — Image c)

Specializing,

monochrome = lifty

over = lifty overC
crop rim = cond r im emptylm
cond = lifts if ThenElse
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Spatial transformation

w:: Transform — 77

p (transform tr im) = 77
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Spatial transformation

w:: Transform — 77

w (transform tr im) = transformS (p tr) (p im)
where

transformS :: 77 — (Loc — Color) — (Loc — Color)
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Spatial transformation

i Transform — (Loc — Loc)

p (transform tr im) = transformsS (p tr) (p im)
where

transformsS :: (Loc — Loc) — (Loc — Color) — (Loc — Color)
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Spatial transformation

i Transform — (Loc — Loc)

w (transform tr im) = transformS (p tr) (p im)
where

transformsS :: (Loc — Loc) — (Loc — Color) — (Loc — Color)
transformS h f = Ap — f (h p)

Subtle implications.
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Spatial transformation

i Transform — (Loc — Loc)

w (transform tr im) = transformS (p tr) (p im)
where

transformsS :: (Loc — Loc) — (Loc — Color) — (Loc — Color)
transformS h f = Ap — f (h p)

Subtle implications.

What is Loc?
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Spatial transformation

i Transform — (Loc — Loc)

w (transform tr im) = transformS (p tr) (p im)
where

transformsS :: (Loc — Loc) — (Loc — Color) — (Loc — Color)
transformS h f = Ap — f (h p)

Subtle implications.

What is Loc? My answer: continuous, infinite 2D space.
type Loc = R?
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Why continuous & infinite (vs discrete/finite) space?
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Why continuous & infinite (vs discrete/finite) space?

e Flexible transformation with simple & precise semantics
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Why continuous & infinite (vs discrete/finite) space?

e Flexible transformation with simple & precise semantics

e Efficiency (adaptive)
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Why continuous & infinite (vs discrete/finite) space?

e Flexible transformation with simple & precise semantics
e Efficiency (adaptive)

e Quality/accuracy
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Why continuous & infinite (vs discrete/finite) space?

Flexible transformation with simple & precise semantics

Efficiency (adaptive)

Quality/accuracy

Modularity /composability
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Why continuous & infinite (vs discrete/finite) space?

Flexible transformation with simple & precise semantics

Efficiency (adaptive)

Quality/accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).
e More information available for extraction.

e Same benefits as pure, non-strict functional programming.

See Why Functional Programming Matters.
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Why continuous & infinite (vs discrete/finite) space?

Flexible transformation with simple & precise semantics

Efficiency (adaptive)

Quality/accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).

e More information available for extraction.

e Same benefits as pure, non-strict functional programming.
See Why Functional Programming Matters.

Approximations/prunings compose badly, so postpone.
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Examples

Pan gallery
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Using standard vocabulary
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Using standard vocabulary

e We've created a domain-specific vocabulary.

o Can we reuse standard vocabularies instead?

e Why would we want to?
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Using standard vocabulary

e We've created a domain-specific vocabulary.

e Can we reuse standard vocabularies instead?
e Why would we want to?

e User knowledge.

o Ecosystem support (multiplicative power).

e Laws as sanity check.

Tao check.

Specification and laws for free, as we’ll see.
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Using standard vocabulary

e We've created a domain-specific vocabulary.

o Can we reuse standard vocabularies instead?
e Why would we want to?

e User knowledge.

o Ecosystem support (multiplicative power).
e Laws as sanity check.

e Tao check.

e Specification and laws for free, as we’ll see.
o In Haskell, standard type classes.
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Monoid

Interface:

class Monoid m where
e um -- “mempty”

(@®)::m —>m—>m -- “mappend”

Conal Elliott (Tabula) Denotational Design July, 2014 26 / 58


http://conal.net
http://tabula.com/

Monoid

Interface:

class Monoid m where

e um - “mempty”
(@®)::m —>m—>m -- “mappend”
Laws:
a®Pe =aq
e@b =)

a®(b®c)=(a®b)Dc
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Monoid

Interface:

class Monoid m where

e um - “mempty”
(@®)::m —>m—>m -- “mappend”
Laws:
a®Pe =aq
e@b =)

a®(b®c)=(a®b)Dc

Why do laws matter?
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Monoid

Interface:

class Monoid m where

e um - “mempty”
(@®)::m —>m—>m -- “mappend”
Laws:
a®Pe =aq
e@b =)

a®bDc)=(a®b)Dc

Why do laws matter? Compositional (modular) reasoning.
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Monoid

Interface:

class Monoid m where

e um - “mempty”
(@®)::m —>m—>m -- “mappend”
Laws:
a®e =a
e@b =)

a®bDc)=(a®b)Dc

Why do laws matter? Compositional (modular) reasoning.

What monoids have we seen today?
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Image monoid
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Image monoid

instance Monoid ImageC where
e = lifty clear
(®) = over
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Image monoid

instance Monoid ImageC where
e = lifty clear
(®) = over

Is there a more general form on Image a?
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Image monoid

instance Monoid ImageC where
e = lifty clear
(®) = over

Is there a more general form on Image a?

instance Monoid a = Monoid (Image a) where
e =liftpe
(®) = lifts (@)
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Image monoid

instance Monoid ImageC where
e = lfty clear
(®) = over

Is there a more general form on Image a?

instance Monoid a = Monoid (Image a) where
£ = lifto &
(@) = liftz (®)

Do these instances satisfy the Monoid laws?
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Functor

class Functor f where

($) (e =)= (fa—[D)
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Functor

class Functor f where

($) (e =)= (fa—[D)

For images?
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Functor

class Functor f where

(F>)(a—=b) = (fa—fb)

For images?

instance Functor Image where

(<8>) = bt
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Functor

class Functor f where

(F>)(a—=b) = (fa—fb)

For images?

instance Functor Image where

(<8>) = bt

Laws?
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Applicative

class Functor f = Applicative f where
pure ::a — f a

(<)uf(a—>b)—>fa—fb
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Applicative

class Functor f = Applicative f where
pure ::a — f a
(<)uf(a—>b)—>fa—fb

For images?
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Applicative

class Functor f = Applicative f where
pure ::a — f a
(<>)f(a—>b)>fa—fb
For images?
instance Applicative Image where
pure = lifty
(<) = lifts ($)

From Applicative,

liftAs fpqg =f<&p<egq
LftAs fpqr=f<&p<esqg<er
-- etc
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Applicative

class Functor f = Applicative f where
pure ::a — f a
(<>)f(a—>b)>fa—fb
For images?
instance Applicative Image where
pure = lifty
(<) = lifts (5)
From Applicative,

liftAs fpqg =f<&p<egq
liftAs fpagr=f<&p<w g

- etc

Laws?
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Instance semantics
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Instance semantics

Monoid:
e =Ap—¢
w (top @ bot) = A\p — p top p @ p bot p
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Instance semantics

Monoid:
e =Ap—¢
w (top @ bot) = A\p — p top p @ p bot p

Functor:

p (f <8 im) = Ap — f (im p)

=foim
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Instance semantics

Monoid:
e =Ap—¢
w (top @ bot) = A\p — p top p @ p bot p

Functor:
p (f <8 im)=Ap — f (im p)
=foim
Applicative:
w (pure a) =\p—>a

w (imf < imz) = Ap — (imf p) (imz p)
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Monad and Comonad

class Monad f where
return::a — f a

join  =f(fa)—>fa

class Functor f = Comonad f where

coreturn :: f a — a

cojoin  ::f a— f (f a)
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Monoid specification, revisited

Image monoid specification:
e =Ap—¢
w (top @ bot) = Ap — p top p @ p bot p
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Monoid specification, revisited

Image monoid specification:
e =Ap—¢
w (top @ bot) = Ap — p top p @ p bot p

Instance for the semantic model:

instance Monoid v = Monoid (u — v) where
€ =u —¢

fRg= u—>fu®gu
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Monoid specification, revisited

Image monoid specification:
e =Ap—¢
w (top @ bot) = Ap — p top p @ p bot p

Instance for the semantic model:

instance Monoid v = Monoid (u — v) where
€ =u —¢

fRg= u—>fu®gu

Refactoring,

pe =c
w (top @ bot) = p top @ p bot
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Monoid specification, revisited

Image monoid specification:
e =Ap —¢
w (top @ bot) = Ap — p top p @ p bot p

Instance for the semantic model:

instance Monoid v = Monoid (u — v) where
€ =u —¢

f@®g= u—>fu®gu

Refactoring,
e =¢

w (top @ bot) = p top @ p bot

So p distributes over monoid operations
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Monoid specification, revisited

Image monoid specification:

e =Ap —¢

w (top @ bot) = Ap — p top p @ p bot p

Instance for the semantic model:

instance Monoid v = Monoid (u — v) where

€ =) \u—¢

f@®g= u—>fu®gu

Refactoring,

e =c
w (top @ bot) = p top @ p bot

So u distributes over monoid operations, i.e., a monoid homomorphism.
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Functor specification, revisited

Functor specification:

p(f <8 im) = fopim
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Functor specification, revisited

Functor specification:

p(f <8 im) = fopim

Instance for the semantic model:

instance Functor ((—) u) where

<& h=foh

Refactoring,

1 (f <8 im) =f < pim

So p is a functor homomorphism.
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Applicative specification, revisited

Applicative specification:
w (pure a) =\p > a
p (imf <> imz) = Ap — ( imf p) (u imz p)
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Applicative specification, revisited

Applicative specification:

w (pure a) =\p > a

p (imf <> imz) = Ap — ( imf p) (u imz p)
Instance for the semantic model:

instance Applicative ((—) u) where
pure a = Au— a

fs <> xs = Au — (fs u) (s u)

Refactoring,
w (pure a) = pure a

w (imf < imzx) = poimf < poimx

So w is an applicative homomorphism.
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Specifications for free

Semantic type class morphism (TCM) principle:

The instance’s meaning follows the meaning’s instance.

That is, the type acts like its meaning.
Every TCM failure is an abstraction leak.
Strong design principle.

Class laws necessarily hold, as we’ll see.
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Laws for free

WE =¢
pa@b)=pa®pb

where equality is semantic.

a@e
e@b
a®(b®c)

Il
S

=(a®b)@c
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Laws for free

ne =
p(a®b) =

e
pa®pb

a@e
edDb

=a
=0

a®(b@c)=(a®b)Dc

where equality is semantic. Proofs:

p(a®e)
=pad®pec
=pa@e
=ua

p(e®b)
=pe®ubd
=c®Pub
=ub

n(a® (e c))
=pa®pb@®pc)
=pa®pb)®puc
=p((e®b)®c)

Works for other classes as well.
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Example — linear transformations

Assignment:

@ Represent linear transformations

e Implement identity and composition
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Example — linear transformations

Assignment:

@ Represent linear transformations

e Implement identity and composition

Plan:

o Interface
@ Denotation
o Representation

e Calculation (implementation)

Conal Elliott (Tabula) Denotational Design July, 2014

37 / 58


http://conal.net
http://tabula.com/

Interface and denotation

type (—o) Uk —> %k —> %
scale :: Num s = (s:—o s)
Interface: id a—a

(6) =(bi—c¢)—>(a:—ob) > (a:—c)

Conal Elliott (Tabula) Denotational Design July, 2014 38 / 58


http://conal.net
http://tabula.com/

Interface and

denotation

type (:—o) 1% — % — x

scale :: Num s = (s:—o s)

Interface: id tai—a
(6) u(b:i—oc)—>(a:—b) — (a:—oc)
type a —o b -- Linear subset of ¢ — b
Model:

i (a:—b) — (a—ob)
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Interface and denotation

type (:—o) 1% — % — x

scale :: Num s = (s:—o s)

Interface: id tai—a
(6) u(b:i—oc)—>(a:—b) — (a:—oc)
type a —o b -- Linear subset of ¢ — b
Model:

i (a:—b) — (a—ob)

W (scale s) = x — s x x
ui’(\l = id

Specification: .
p(gef) =pgonf
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Representation

Start with 1D. Recall partial specification:
p (scale s) =X — s x x
Try a direct data type representation:

data (:—) :: * —> % — * where

Scale :: Num s = s — (s:—os) - ...

p(a:—b) — (a —b)
i (Scale s) = Az — s x x

Spec trivially satisfied by scale = Scale.

Others are more interesting.
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Calculate an implementation

Specification:
pid = id p(gof)=pgonf
Calculation:
id w (Scale s) o p (Scale s')
=\t >z =M —>sxz)o(At/ - s x )
=Xz —>1xz =\’ — s x (¢ x 1)
= 4 (Scale 1) =\’ — ((s x §') x z’)
= (Scale (s x §))
Sufficient definitions:
id = Scale 1 Scale s 6 Scale s = Scale (s x s')
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Algebraic abstraction

In general,

@ Replace ad hoc vocabulary with a standard abstraction.
@ Recast semantics as homomorphism.

@ Note that laws hold.

What standard abstraction to use for (:—)?
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Category

Interface:

class Category k where
id kaa
(0):kbc—okab—okac

Laws:

idof =f
goid =
(hog)of=ho(gof)
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Linear transformation category

Linear map semantics:

p:(a:—b) — (a —b)

p(Scale ) = Az — s x x

Specification as homomorphism (no abstraction leak):
W id = id
plgef)=pmgopf

Correct-by-construction implementation:

instance Category (:—) where
id = Scale 1

Scale s o Scale s = Scale (s x s')
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Laws for free

W id =id = ;dooi{l i];
plgof)=pmgonf (hog)of=ho(gof)

where equality is semantic.
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Laws for free

wid =

id

plgof)=pgonf

ido f
goid

Il
o =

(hog)of=ho(gof)

where equality is semantic. Proofs:

p (id o f) f (g oid) p((hog)of)
=pidopf =pgopid =(phopg)opnf
=idopf =pgoid =pho(ugopuf)
=uf =pg =p(ho(gof))

Works for other classes as well.
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Higher dimensions

Interface:

(8)::(a:—c¢c) > (a:—od) > (a:—oc x d)

(v)ii(a:—c¢) > (bi—oc) - (ax b:—oc)

Semantics:

p(fag)=Xra—(faga)
p(fvg)=XMa,b) > fa+ghb
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Products and coproducts

class Category k = ProductCat k where
type a x; b
exl :k (ax,b)a
exr::k (axpb)b
(a) ikac—kad—kal(cxyd)

class Category k = CoproductCat k where
type a+; b
inl ik a(a+yb)
inr kb (a+;b)
(v) ikac—>kbec —k(a+pb)c

Similar to Arrow and ArrowChoice classes.
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Semantic morphisms

wexl = ezl woinl = inl

uexr = exr wanr =nr

p(feg)=pfapg n(fvg)=nfvng
For a — b,

typeax_b=axb typea -+ b=axb

exl (a,b) = a inl a = (a,0)

exr (a,b) =b inr b = (0,b)

feg=Xxa—(fa,ga) fvg=Na,b)>fat+ghb

For calculation, see blog post Reimagining matrices.
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Full representation and denotation

data (:—) :: * — * — % where
Scale :: Num s = s — (s :—o s)
(:a)(a:—c) > (a:—d) > (a:—ocxd)

(:v)i(ai—c¢) > (b:—oc) > (ax b:—c)

p::(a:—b) — (a—ob)

w (Scale s) = Az — s x x
p(f:ag) =ra—(fayga)
p(fivg) =Mab)—>fatgb
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Functional reactive programming
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Functional reactive programming

Two essential properties:

e Continuous time! (Natural & composable.)

e Denotational design. (Elegant & rigorous.)
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Functional reactive programming

Two essential properties:

e Continuous time! (Natural & composable.)

e Denotational design. (Elegant & rigorous.)

Deterministic, continuous “concurrency”.

More aptly, “Denotative continuous-time programming” (DCTP).

Warning: many modern “FRP” systems have neither property.
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Denotational design

Central type:
type Behavior a
Model:

2 Behavior a — (R — a)
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Denotational design

Central type:
type Behavior a
Model:

2 Behavior a — (R — a)

Suggests API and semantics (via morphisms).

What standard algebraic abstractions does the model inhabit?
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Denotational design

Central type:
type Behavior a
Model:

2 Behavior a — (R — a)

Suggests API and semantics (via morphisms).
What standard algebraic abstractions does the model inhabit?

Monoid, Functor, Applicative, Monad, Comonad.
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Functor

instance Functor ((—) t) where

f<&h=foh
Morphism:
p(f <8 b)
=f<®ubd
=foubd
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Applicative

instance Applicative ((—) t) where

pure a = At — a
g<s>h=A—(gt)(ht)

Morphisms:
w (pure a) p (fs <> xs)
= pure a = fs <> s
=\ —>a =\ — (ufst)(uast)

Corresponds exactly to the original FRP denotation.
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Monad

instance Monad ((—) t) where
join ff = At > ff tt

Morphism:

w (join bb)
= join (p <& p bb)

= join (o p bb)
=\t —> (uopubb) tt
=AM —opu(pbbt)t
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Comonad

class Comonad w where
coreturn :: w a — a

cojoin ::w a — w (w a)
Functions:

instance Monoid t = Comonad ((—) t) where
coreturn :: (t — a) — a
coreturn f = f €
cojoin f =Xt t' — f (t®t)

Suggest a relative time model.
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Why continuous & infinite (vs discrete/finite) time?
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Why continuous & infinite (vs discrete/finite) time?

o Transformation flexibility with simple & precise semantics

Efficiency (adapative)

Quality /accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).
e More info available for extraction.
e Same benefits as pure, non-strict functional programming.

See Why Functional Programming Matters.
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Why continuous & infinite (vs discrete/finite) time?

o Transformation flexibility with simple & precise semantics

Efficiency (adapative)

Quality /accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).
e More info available for extraction.
e Same benefits as pure, non-strict functional programming.

See Why Functional Programming Matters.

Integration and differentiation: natural, accurate, efficient.
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Why continuous & infinite (vs discrete/finite) time?

o Transformation flexibility with simple & precise semantics

Efficiency (adapative)

Quality /accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).
e More info available for extraction.
e Same benefits as pure, non-strict functional programming.

See Why Functional Programming Matters.

Integration and differentiation: natural, accurate, efficient.

e Reconcile differing input sampling rates.
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Why continuous & infinite (vs discrete/finite) time?

o Transformation flexibility with simple & precise semantics

Efficiency (adapative)

Quality /accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).
e More info available for extraction.
e Same benefits as pure, non-strict functional programming.

See Why Functional Programming Matters.

Integration and differentiation: natural, accurate, efficient.

e Reconcile differing input sampling rates.

Approximations/prunings compose badly, so postpone.
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Memo tries

type a — b

p:(a—b)— (a—b)

This time, p has an inverse.

Exploit inverses to calculate instances. Example:

Wid = id
=id=p""id

plgof)=pgonf
sgof=pt(pgopf)
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Denotational design
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Denotational design

Design methodology for typed, purely functional programming:
o Precise, simple, and compelling specification.

o Informs use and implementation without entangling.

Standard algebraic abstractions.
@ Free of abstraction leaks.

Laws for free.

Principled construction of correct implementation.
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References

Denotational design with type class morphisms

Push-pull functional reactive programming

e Functional images (Pan) page with pictures & papers.

Posts on type class morphisms

e This talk
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