Denotational Design

from meanings to programs

Conal Elliott

Tabula

July, 2014

Conal Elliott (Tabula) Denotational Design July, 2014

1/ 58

http://conal.net
http://tabula.com/
http://conal.net
http://tabula.com/

Abstraction

Conal Elliott (Tabula) Denotational Design July, 2014 2 /58

http://conal.net
http://tabula.com/

Abstraction

The purpose of abstraction is not to be vague,
but to create a new semantic level

wn which one can be absolutely precise.

- Edsger Dijkstra

Conal Elliott (Tabula) Denotational Design July, 2014

2 /58

http://conal.net
http://tabula.com/

Goals

o Abstractions: precise, elegant, reusable.

o Implementations: correct, efficient, maintainable.

o Documentation: clear, simple, accurate.

Conal Elliott (Tabula) Denotational Design July, 2014 3/ 58

http://conal.net
http://tabula.com/

Not even wrong

Conventional programming is precise only about how, not what.

Conal Elliott (Tabula) Denotational Design July, 2014 4 /58

http://conal.net
http://tabula.com/

Not even wrong

Conventional programming is precise only about how, not what.

It is mot only not right, it is not even wrong.

- Wolfgang Pauli

Conal Elliott (Tabula) Denotational Design July, 2014 4 /58

http://conal.net
http://tabula.com/

Not even wrong

Conventional programming is precise only about how, not what.

It is not only not right, it is not even wrong.

- Wolfgang Pauli

Everything is vague to a degree you do mot realize

till you have tried to make it precise.

- Bertrand Russell

Conal Elliott (Tabula) Denotational Design July, 2014

4/ 58

http://conal.net
http://tabula.com/

Not even wrong

Conventional programming is precise only about how, not what.

It is not only not right, it is not even wrong.

- Wolfgang Pauli

Everything is vague to a degree you do mot realize

till you have tried to make it precise.

- Bertrand Russell

What we wish, that we readily believe.

- Demosthenes

Conal Elliott (Tabula) Denotational Design July, 2014 4 /58

http://conal.net
http://tabula.com/

Denotative programming

Peter Landin recommended “denotative” to replace ill-defined

“functional” and “declarative”.

Properties:
o Nested expression structure.
e Each expression denotes something,

e depending only on denotations of subexpressions.

“...gives us a test for whether the notation is genuinely functional or

merely masquerading.” (The Next 700 Programming Languages, 1966)

Conal Elliott (Tabula) Denotational Design July, 2014 5/ 58

http://www.scribd.com/doc/12878059/The-Next-700-Programming-Languages
http://conal.net
http://tabula.com/

Denotational design

Design methodology for “genuinely functional” programming:
e Precise, simple, and compelling specification.

o Informs use and implementation without entangling them.

Standard algebraic abstractions.
@ Free of abstraction leaks.

Laws for free.

Principled construction of correct implementation.

Conal Elliott (Tabula) Denotational Design July, 2014 6/ 58

http://conal.net
http://tabula.com/

Overview

@ Broad outline:

e Example, informally

Pretty pictures

e Principles

More examples

Reflection

Conal Elliott (Tabula) Denotational Design July, 2014 7/ 58

http://conal.net
http://tabula.com/

Overview

@ Broad outline:

e Example, informally

Pretty pictures

e Principles

More examples

Reflection

e Discussion throughout

Conal Elliott (Tabula) Denotational Design July, 2014 7/ 58

http://conal.net
http://tabula.com/

Overview

@ Broad outline:

e Example, informally

Pretty pictures

e Principles

More examples

Reflection

e Discussion throughout
o Try it on.

Conal Elliott (Tabula) Denotational Design July, 2014 7/ 58

http://conal.net
http://tabula.com/

Example: image synthesis/manipulation

e How to start?

e What is success?

Conal Elliott (Tabula) Denotational Design July, 2014 8 / 58

http://conal.net
http://tabula.com/

Functionality

Conal Elliott (Tabula) Denotational Design July, 2014 9 /58

http://conal.net
http://tabula.com/

Functionality

Import & export

Spatial transformation:
o Affine: translate, scale, rotate

o Non-affine: swirls, lenses, inversions, ...
e Cropping

@ Monochrome

Overlay
e Blend
o Blur & sharpen

o Geometry, gradients,

Conal Elliott (Tabula) Denotational Design July, 2014 9/ 58

http://conal.net
http://tabula.com/

API first pass

Conal Elliott (Tabula) Denotational Design July, 2014 10 / 58

http://conal.net
http://tabula.com/

API first pass

type Image

over :: Image — Image — Image
transform :: Transform — Image — Image
crop it Region — Image — Image

monochrome :: Color — Image

-- shapes, gradients, etc.

fromBitmap :: Bitmap — Image

toBitmap :: Image — Bitmap

Conal Elliott (Tabula) Denotational Design July, 2014 10 / 58

http://conal.net
http://tabula.com/

How to implement?

Conal Elliott (Tabula) Denotational Design July, 2014 11 / 58

http://conal.net
http://tabula.com/

How to implement?

wrong first question

Conal Elliott (Tabula) Denotational Design July, 2014 11 / 58

http://conal.net
http://tabula.com/

What to implement?

Conal Elliott (Tabula) Denotational Design July, 2014 12 / 58

http://conal.net
http://tabula.com/

What to implement?

e What do these operations mean?

Conal Elliott (Tabula) Denotational Design July, 2014 12 / 58

http://conal.net
http://tabula.com/

What to implement?

e What do these operations mean?

@ More centrally: What do the types mean?

Conal Elliott (Tabula) Denotational Design July, 2014 12 / 58

http://conal.net
http://tabula.com/

What is an image?

Conal Elliott (Tabula) Denotational Design July, 2014 13 / 58

http://conal.net
http://tabula.com/

What is an image?

Specification goals:

Conal Elliott (Tabula) Denotational Design July, 2014 13 / 58

http://conal.net
http://tabula.com/

What is an image?

Specification goals:

o Adequate
e Simple

@ Precise

Conal Elliott (Tabula) Denotational Design July, 2014 13 / 58

http://conal.net
http://tabula.com/

What is an image?

Specification goals:

o Adequate
e Simple

@ Precise

Why these properties?

Conal Elliott (Tabula) Denotational Design

July, 2014

13 / 58

http://conal.net
http://tabula.com/

What is an image?

Conal Elliott (Tabula) Denotational Design July, 2014 14 / 58

http://conal.net
http://tabula.com/

What is an image?

My answer: assignment of colors to 2D locations.

Conal Elliott (Tabula) Denotational Design July, 2014 14 / 58

http://conal.net
http://tabula.com/

What is an image?

My answer: assignment of colors to 2D locations.

How to make precise?

type Image

Conal Elliott (Tabula) Denotational Design

July, 2014

14 / 58

http://conal.net
http://tabula.com/

What is an image?

My answer: assignment of colors to 2D locations.

How to make precise?
type Image

Model:

w :: Image — (Loc — Color)

Conal Elliott (Tabula) Denotational Design July, 2014 14 / 58

http://conal.net
http://tabula.com/

What is an image?

My answer: assignment of colors to 2D locations.

How to make precise?
type Image
Model:
w :: Image — (Loc — Color)

What about regions?

Conal Elliott (Tabula) Denotational Design July, 2014 14 / 58

http://conal.net
http://tabula.com/

What is an image?

My answer: assignment of colors to 2D locations.

How to make precise?

type Image
Model:

w :: Image — (Loc — Color)
What about regions?

i Region — (Loc — Bool)

Conal Elliott (Tabula) Denotational Design

July, 2014

14 / 58

http://conal.net
http://tabula.com/

Specifying Image operations

over top bot)

crop reg im)

p(
1 (
w (monochrome c)
1 (

transform tr im)

Conal Elliott (Tabula) Denotational Design July, 2014 15 / 58

http://conal.net
http://tabula.com/

Specifying Image operations

w (over top bot)
w (crop reg im)
w (monochrome c)
o

transform tr im)

= \p — overC (u top p) (u bot p)

= Ap — if p reg p then p im p else clear

Ap — ¢

-- coming up

overC :: Color — Color — Color

Conal Elliott (Tabula)

Denotational Design

July, 2014

16 / 58

http://conal.net
http://tabula.com/

Specifying Image operations

w (over top bot) = \p — overC (u top p) (u bot p)

w (crop reg im) = A\p — if p reg p then p im p else clear
w (monochrome ¢) = Ap — ¢

w (transform tr im) = -- coming up

overC :: Color — Color — Color

Note compositionality of u.

Conal Elliott (Tabula) Denotational Design July, 2014 16 / 58

http://conal.net
http://tabula.com/

Compositional semantics

Make more explicit:

w (over top bot) = overS (u top) (u bot)
w (crop reg im) = cropS (u reg) (pu im)

overS :: (Loc — Color) — (Loc — Color) — (Loc — Color)
overS f g = Ap — overC (f p) (g p)

cropS :: (Loc — Bool) — (Loc — Color) — (Loc — Color)
cropS f g = Ap — if f p then g p else clear

Conal Elliott (Tabula) Denotational Design July, 2014 17 / 58

http://conal.net
http://tabula.com/

Generalize and simplify

e What about transforming regions?

@ Other pointwise combinations (lerp, threshold)?

Conal Elliott (Tabula) Denotational Design July, 2014 18 / 58

http://conal.net
http://tabula.com/

Generalize and simplify

e What about transforming regions?

@ Other pointwise combinations (lerp, threshold)?

Generalize:

type Image a
type ImageC = Image Color
type Region = Image Bool

Now some operations become more general.

Conal Elliott (Tabula) Denotational Design July, 2014

18 / 58

http://conal.net
http://tabula.com/

Generalize and simplify

transform :: Transform — Image a — Image a

cond i Image Bool — Image a — Image a — Image a

Conal Elliott (Tabula) Denotational Design July, 2014 19 / 58

http://conal.net
http://tabula.com/

Generalize and simplify

transform :: Transform — Image a — Image a

cond i Image Bool — Image a — Image a — Image a

lifty :: a — Image a
lift; :: (a — b) — (Image a — Image b)

lifts :: (a — b — ¢) — (Image a — Image b — Image c)

Conal Elliott (Tabula) Denotational Design July, 2014 19 / 58

http://conal.net
http://tabula.com/

Generalize and simplify

transform :: Transform — Image a — Image a

cond :: Image Bool — Image a — Image a — Image a

lifty :: a — Image a
lift; :: (a — b) — (Image a — Image b)

lifts :: (a — b — ¢) — (Image a — Image b — Image c)

Specializing,

monochrome = lifty

over = lifty overC
crop rim = cond r im emptylm
cond = lifts if ThenElse

Conal Elliott (Tabula) Denotational Design July, 2014 19 / 58

http://conal.net
http://tabula.com/

Spatial transformation

w:: Transform — 77

p (transform tr im) = 77

Conal Elliott (Tabula) Denotational Design July, 2014 20 / 58

http://conal.net
http://tabula.com/

Spatial transformation

w:: Transform — 77

w (transform tr im) = transformS (p tr) (p im)
where

transformS :: 77 — (Loc — Color) — (Loc — Color)

Conal Elliott (Tabula) Denotational Design

July, 2014

21 / 58

http://conal.net
http://tabula.com/

Spatial transformation

i Transform — (Loc — Loc)

p (transform tr im) = transformsS (p tr) (p im)
where

transformsS :: (Loc — Loc) — (Loc — Color) — (Loc — Color)

Conal Elliott (Tabula) Denotational Design July, 2014 22 / 58

http://conal.net
http://tabula.com/

Spatial transformation

i Transform — (Loc — Loc)

w (transform tr im) = transformS (p tr) (p im)
where

transformsS :: (Loc — Loc) — (Loc — Color) — (Loc — Color)
transformS h f = Ap — f (h p)

Subtle implications.

Conal Elliott (Tabula) Denotational Design July, 2014 22 / 58

http://conal.net
http://tabula.com/

Spatial transformation

i Transform — (Loc — Loc)

w (transform tr im) = transformS (p tr) (p im)
where

transformsS :: (Loc — Loc) — (Loc — Color) — (Loc — Color)
transformS h f = Ap — f (h p)

Subtle implications.

What is Loc?

Conal Elliott (Tabula) Denotational Design July, 2014 22 / 58

http://conal.net
http://tabula.com/

Spatial transformation

i Transform — (Loc — Loc)

w (transform tr im) = transformS (p tr) (p im)
where

transformsS :: (Loc — Loc) — (Loc — Color) — (Loc — Color)
transformS h f = Ap — f (h p)

Subtle implications.

What is Loc? My answer: continuous, infinite 2D space.
type Loc = R?

Conal Elliott (Tabula) Denotational Design July, 2014 22 / 58

http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) space?

Conal Elliott (Tabula) Denotational Design July, 2014 23 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) space?

e Flexible transformation with simple & precise semantics

Conal Elliott (Tabula) Denotational Design July, 2014 23 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) space?

e Flexible transformation with simple & precise semantics

e Efficiency (adaptive)

Conal Elliott (Tabula) Denotational Design July, 2014 23 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) space?

e Flexible transformation with simple & precise semantics
e Efficiency (adaptive)

e Quality/accuracy

Conal Elliott (Tabula) Denotational Design July, 2014 23 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) space?

Flexible transformation with simple & precise semantics

Efficiency (adaptive)

Quality/accuracy

Modularity /composability

Conal Elliott (Tabula) Denotational Design July, 2014 23 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) space?

Flexible transformation with simple & precise semantics

Efficiency (adaptive)

Quality/accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).
e More information available for extraction.

e Same benefits as pure, non-strict functional programming.

See Why Functional Programming Matters.

Conal Elliott (Tabula) Denotational Design July, 2014 23 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) space?

Flexible transformation with simple & precise semantics

Efficiency (adaptive)

Quality/accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).

e More information available for extraction.

e Same benefits as pure, non-strict functional programming.
See Why Functional Programming Matters.

Approximations/prunings compose badly, so postpone.

Conal Elliott (Tabula) Denotational Design July, 2014 23 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Examples

Pan gallery

Conal Elliott (Tabula) Denotational Design July, 2014 24 / 58

http://conal.net/Pan/Gallery/
http://conal.net
http://tabula.com/

Using standard vocabulary

Conal Elliott (Tabula) Denotational Design July, 2014 25 / 58

http://conal.net
http://tabula.com/

Using standard vocabulary

e We've created a domain-specific vocabulary.

o Can we reuse standard vocabularies instead?

e Why would we want to?

Conal Elliott (Tabula) Denotational Design July, 2014 25 / 58

http://conal.net
http://tabula.com/

Using standard vocabulary

e We've created a domain-specific vocabulary.

e Can we reuse standard vocabularies instead?
e Why would we want to?

e User knowledge.

o Ecosystem support (multiplicative power).

e Laws as sanity check.

Tao check.

Specification and laws for free, as we’ll see.

Conal Elliott (Tabula) Denotational Design July, 2014 25 / 58

http://conal.net
http://tabula.com/

Using standard vocabulary

e We've created a domain-specific vocabulary.

o Can we reuse standard vocabularies instead?
e Why would we want to?

e User knowledge.

o Ecosystem support (multiplicative power).
e Laws as sanity check.

e Tao check.

e Specification and laws for free, as we’ll see.
o In Haskell, standard type classes.

Conal Elliott (Tabula) Denotational Design July, 2014 25 / 58

http://conal.net
http://tabula.com/

Monoid

Interface:

class Monoid m where
e um -- “mempty”

(@®)::m —>m—>m -- “mappend”

Conal Elliott (Tabula) Denotational Design July, 2014 26 / 58

http://conal.net
http://tabula.com/

Monoid

Interface:

class Monoid m where

e um - “mempty”
(@®)::m —>m—>m -- “mappend”
Laws:
a®Pe =aq
e@b =)

a®(b®c)=(a®b)Dc

Conal Elliott (Tabula) Denotational Design July, 2014

26 / 58

http://conal.net
http://tabula.com/

Monoid

Interface:

class Monoid m where

e um - “mempty”
(@®)::m —>m—>m -- “mappend”
Laws:
a®Pe =aq
e@b =)

a®(b®c)=(a®b)Dc

Why do laws matter?

Conal Elliott (Tabula) Denotational Design

July, 2014

26 / 58

http://conal.net
http://tabula.com/

Monoid

Interface:

class Monoid m where

e um - “mempty”
(@®)::m —>m—>m -- “mappend”
Laws:
a®Pe =aq
e@b =)

a®bDc)=(a®b)Dc

Why do laws matter? Compositional (modular) reasoning.

Conal Elliott (Tabula) Denotational Design July, 2014

26 / 58

http://conal.net
http://tabula.com/

Monoid

Interface:

class Monoid m where

e um - “mempty”
(@®)::m —>m—>m -- “mappend”
Laws:
a®e =a
e@b =)

a®bDc)=(a®b)Dc

Why do laws matter? Compositional (modular) reasoning.

What monoids have we seen today?

Conal Elliott (Tabula) Denotational Design July, 2014

26 / 58

http://conal.net
http://tabula.com/

Image monoid

Conal Elliott (Tabula) Denotational Design July, 2014 27 / 58

http://conal.net
http://tabula.com/

Image monoid

instance Monoid ImageC where
e = lifty clear
(®) = over

Conal Elliott (Tabula) Denotational Design

July, 2014

27 / 58

http://conal.net
http://tabula.com/

Image monoid

instance Monoid ImageC where
e = lifty clear
(®) = over

Is there a more general form on Image a?

Conal Elliott (Tabula) Denotational Design

July, 2014

27 / 58

http://conal.net
http://tabula.com/

Image monoid

instance Monoid ImageC where
e = lifty clear
(®) = over

Is there a more general form on Image a?

instance Monoid a = Monoid (Image a) where
e =liftpe
(®) = lifts (@)

Conal Elliott (Tabula) Denotational Design

July, 2014

27 / 58

http://conal.net
http://tabula.com/

Image monoid

instance Monoid ImageC where
e = lfty clear
(®) = over

Is there a more general form on Image a?

instance Monoid a = Monoid (Image a) where
£ = lifto &
(@) = liftz (®)

Do these instances satisfy the Monoid laws?

Conal Elliott (Tabula) Denotational Design

July, 2014

27 / 58

http://conal.net
http://tabula.com/

Functor

class Functor f where

($) (e =)= (fa—[D)

Conal Elliott (Tabula) Denotational Design July, 2014 28 / 58

http://conal.net
http://tabula.com/

Functor

class Functor f where

($) (e =)= (fa—[D)

For images?

Conal Elliott (Tabula) Denotational Design

July, 2014

28 / 58

http://conal.net
http://tabula.com/

Functor

class Functor f where

(F>)(a—=b) = (fa—fb)

For images?

instance Functor Image where

(<8>) = bt

Conal Elliott (Tabula) Denotational Design

July, 2014

28 / 58

http://conal.net
http://tabula.com/

Functor

class Functor f where

(F>)(a—=b) = (fa—fb)

For images?

instance Functor Image where

(<8>) = bt

Laws?

Conal Elliott (Tabula) Denotational Design

July, 2014

28 / 58

http://conal.net
http://tabula.com/

Applicative

class Functor f = Applicative f where
pure ::a — f a

(<)uf(a—>b)—>fa—fb

Conal Elliott (Tabula) Denotational Design

July, 2014

29 / 58

http://conal.net
http://tabula.com/

Applicative

class Functor f = Applicative f where
pure ::a — f a
(<)uf(a—>b)—>fa—fb

For images?

Conal Elliott (Tabula) Denotational Design

July, 2014

29 / 58

http://conal.net
http://tabula.com/

Applicative

class Functor f = Applicative f where
pure ::a — f a
(<>)f(a—>b)>fa—fb
For images?
instance Applicative Image where
pure = lifty
(<) = lifts ($)

From Applicative,

liftAs fpqg =f<&p<egq
LftAs fpqr=f<&p<esqg<er
-- etc

Conal Elliott (Tabula) Denotational Design

July, 2014

29 / 58

http://conal.net
http://tabula.com/

Applicative

class Functor f = Applicative f where
pure ::a — f a
(<>)f(a—>b)>fa—fb
For images?
instance Applicative Image where
pure = lifty
(<) = lifts (5)
From Applicative,

liftAs fpqg =f<&p<egq
liftAs fpagr=f<&p<w g

- etc

Laws?
Conal Elliott (Tabula) Denotational Design

July, 2014

29 / 58

http://conal.net
http://tabula.com/

Instance semantics

Conal Elliott (Tabula) Denotational Design July, 2014 30 / 58

http://conal.net
http://tabula.com/

Instance semantics

Monoid:
e =Ap—¢
w (top @ bot) = A\p — p top p @ p bot p

Conal Elliott (Tabula) Denotational Design

July, 2014

30 / 58

http://conal.net
http://tabula.com/

Instance semantics

Monoid:
e =Ap—¢
w (top @ bot) = A\p — p top p @ p bot p

Functor:

p (f <8 im) = Ap — f (im p)

=foim

Conal Elliott (Tabula) Denotational Design

July, 2014

30 / 58

http://conal.net
http://tabula.com/

Instance semantics

Monoid:
e =Ap—¢
w (top @ bot) = A\p — p top p @ p bot p

Functor:
p (f <8 im)=Ap — f (im p)
=foim
Applicative:
w (pure a) =\p—>a

w (imf < imz) = Ap — (imf p) (imz p)

Conal Elliott (Tabula) Denotational Design July, 2014

30 / 58

http://conal.net
http://tabula.com/

Monad and Comonad

class Monad f where
return::a — f a

join =f(fa)—>fa

class Functor f = Comonad f where

coreturn :: f a — a

cojoin ::f a— f (f a)

Conal Elliott (Tabula) Denotational Design July, 2014

31 /58

http://conal.net
http://tabula.com/

Monoid specification, revisited

Image monoid specification:
e =Ap—¢
w (top @ bot) = Ap — p top p @ p bot p

Conal Elliott (Tabula) Denotational Design July, 2014

32 /58

http://conal.net
http://tabula.com/

Monoid specification, revisited

Image monoid specification:
e =Ap—¢
w (top @ bot) = Ap — p top p @ p bot p

Instance for the semantic model:

instance Monoid v = Monoid (u — v) where
€ =u —¢

fRg= u—>fu®gu

Conal Elliott (Tabula) Denotational Design July, 2014

32 /58

http://conal.net
http://tabula.com/

Monoid specification, revisited

Image monoid specification:
e =Ap—¢
w (top @ bot) = Ap — p top p @ p bot p

Instance for the semantic model:

instance Monoid v = Monoid (u — v) where
€ =u —¢

fRg= u—>fu®gu

Refactoring,

pe =c
w (top @ bot) = p top @ p bot

Conal Elliott (Tabula) Denotational Design July, 2014

32 /58

http://conal.net
http://tabula.com/

Monoid specification, revisited

Image monoid specification:
e =Ap —¢
w (top @ bot) = Ap — p top p @ p bot p

Instance for the semantic model:

instance Monoid v = Monoid (u — v) where
€ =u —¢

f@®g= u—>fu®gu

Refactoring,
e =¢

w (top @ bot) = p top @ p bot

So p distributes over monoid operations

Conal Elliott (Tabula) Denotational Design

July, 2014

32 /58

http://conal.net
http://tabula.com/

Monoid specification, revisited

Image monoid specification:

e =Ap —¢

w (top @ bot) = Ap — p top p @ p bot p

Instance for the semantic model:

instance Monoid v = Monoid (u — v) where

€ =) \u—¢

f@®g= u—>fu®gu

Refactoring,

e =c
w (top @ bot) = p top @ p bot

So u distributes over monoid operations, i.e., a monoid homomorphism.

Conal Elliott (Tabula) Denotational Design

July, 2014 32 /58

http://conal.net
http://tabula.com/

Functor specification, revisited

Functor specification:

p(f <8 im) = fopim

Conal Elliott (Tabula) Denotational Design July, 2014 33 /58

http://conal.net
http://tabula.com/

Functor specification, revisited

Functor specification:

p(f <8 im) = fopim

Instance for the semantic model:

instance Functor ((—) u) where

<& h=foh

Refactoring,

1 (f <8 im) =f < pim

So p is a functor homomorphism.

Conal Elliott (Tabula) Denotational Design July, 2014

33 /58

http://conal.net
http://tabula.com/

Applicative specification, revisited

Applicative specification:
w (pure a) =\p > a
p (imf <> imz) = Ap — (imf p) (u imz p)

Conal Elliott (Tabula) Denotational Design

July, 2014

34 / 58

http://conal.net
http://tabula.com/

Applicative specification, revisited

Applicative specification:

w (pure a) =\p > a

p (imf <> imz) = Ap — (imf p) (u imz p)
Instance for the semantic model:

instance Applicative ((—) u) where
pure a = Au— a

fs <> xs = Au — (fs u) (s u)

Refactoring,
w (pure a) = pure a

w (imf < imzx) = poimf < poimx

So w is an applicative homomorphism.

Conal Elliott (Tabula) Denotational Design

July, 2014

34 / 58

http://conal.net
http://tabula.com/

Specifications for free

Semantic type class morphism (TCM) principle:

The instance’s meaning follows the meaning’s instance.

That is, the type acts like its meaning.
Every TCM failure is an abstraction leak.
Strong design principle.

Class laws necessarily hold, as we’ll see.

Conal Elliott (Tabula) Denotational Design July, 2014

35 / 58

http://conal.net
http://tabula.com/

Laws for free

WE =¢
pa@b)=pa®pb

where equality is semantic.

a@e
e@b
a®(b®c)

Il
S

=(a®b)@c

Conal Elliott (Tabula) Denotational Design

July, 2014

36 / 58

http://conal.net
http://tabula.com/

Laws for free

ne =
p(a®b) =

e
pa®pb

a@e
edDb

=a
=0

a®(b@c)=(a®b)Dc

where equality is semantic. Proofs:

p(a®e)
=pad®pec
=pa@e
=ua

p(e®b)
=pe®ubd
=c®Pub
=ub

n(a® (e c))
=pa®pb@®pc)
=pa®pb)®puc
=p((e®b)®c)

Works for other classes as well.

Conal Elliott (Tabula)

Denotational Design

July, 2014

36 / 58

http://conal.net
http://tabula.com/

Example — linear transformations

Assignment:

@ Represent linear transformations

e Implement identity and composition

Conal Elliott (Tabula) Denotational Design

July, 2014

37 / 58

http://conal.net
http://tabula.com/

Example — linear transformations

Assignment:

@ Represent linear transformations

e Implement identity and composition

Plan:

o Interface
@ Denotation
o Representation

e Calculation (implementation)

Conal Elliott (Tabula) Denotational Design July, 2014

37 / 58

http://conal.net
http://tabula.com/

Interface and denotation

type (—o) Uk —> %k —> %
scale :: Num s = (s:—o s)
Interface: id a—a

(6) =(bi—c¢)—>(a:—ob) > (a:—c)

Conal Elliott (Tabula) Denotational Design July, 2014 38 / 58

http://conal.net
http://tabula.com/

Interface and

denotation

type (:—o) 1% — % — x

scale :: Num s = (s:—o s)

Interface: id tai—a
(6) u(b:i—oc)—>(a:—b) — (a:—oc)
type a —o b -- Linear subset of ¢ — b
Model:

i (a:—b) — (a—ob)

Conal Elliott (Tabula)

Denotational Design

July, 2014

38 / 58

http://conal.net
http://tabula.com/

Interface and denotation

type (:—o) 1% — % — x

scale :: Num s = (s:—o s)

Interface: id tai—a
(6) u(b:i—oc)—>(a:—b) — (a:—oc)
type a —o b -- Linear subset of ¢ — b
Model:

i (a:—b) — (a—ob)

W (scale s) = x — s x x
ui’(\l = id

Specification: .
p(gef) =pgonf

Conal Elliott (Tabula) Denotational Design

July, 2014

38 / 58

http://conal.net
http://tabula.com/

Representation

Start with 1D. Recall partial specification:
p (scale s) =X — s x x
Try a direct data type representation:

data (:—) :: * —> % — * where

Scale :: Num s = s — (s:—os) - ...

p(a:—b) — (a —b)
i (Scale s) = Az — s x x

Spec trivially satisfied by scale = Scale.

Others are more interesting.

Conal Elliott (Tabula) Denotational Design

July, 2014

39 / 58

http://conal.net
http://tabula.com/

Calculate an implementation

Specification:
pid = id p(gof)=pgonf
Calculation:
id w (Scale s) o p (Scale s')
=\t >z =M —>sxz)o(At/ - s x)
=Xz —>1xz =\’ — s x (¢ x 1)
= 4 (Scale 1) =\’ — ((s x §') x z’)
= (Scale (s x §))
Sufficient definitions:
id = Scale 1 Scale s 6 Scale s = Scale (s x s')

Conal Elliott (Tabula) Denotational Design July, 2014 40 / 58

http://conal.net
http://tabula.com/

Algebraic abstraction

In general,

@ Replace ad hoc vocabulary with a standard abstraction.
@ Recast semantics as homomorphism.

@ Note that laws hold.

What standard abstraction to use for (:—)?

Conal Elliott (Tabula) Denotational Design July, 2014

41 / 58

http://conal.net
http://tabula.com/

Category

Interface:

class Category k where
id kaa
(0):kbc—okab—okac

Laws:

idof =f
goid =
(hog)of=ho(gof)

Conal Elliott (Tabula) Denotational Design

July, 2014

42 / 58

http://conal.net
http://tabula.com/

Linear transformation category

Linear map semantics:

p:(a:—b) — (a —b)

p(Scale) = Az — s x x

Specification as homomorphism (no abstraction leak):
W id = id
plgef)=pmgopf

Correct-by-construction implementation:

instance Category (:—) where
id = Scale 1

Scale s o Scale s = Scale (s x s')

Conal Elliott (Tabula) Denotational Design July, 2014 43 / 58

http://conal.net
http://tabula.com/

Laws for free

W id =id = ;dooi{l i];
plgof)=pmgonf (hog)of=ho(gof)

where equality is semantic.

Conal Elliott (Tabula) Denotational Design July, 2014 44 / 58

http://conal.net
http://tabula.com/

Laws for free

wid =

id

plgof)=pgonf

ido f
goid

Il
o =

(hog)of=ho(gof)

where equality is semantic. Proofs:

p (id o f) f (g oid) p((hog)of)
=pidopf =pgopid =(phopg)opnf
=idopf =pgoid =pho(ugopuf)
=uf =pg =p(ho(gof))

Works for other classes as well.
Conal Elliott (Tabula) Denotational Design July, 2014

44 / 58

http://conal.net
http://tabula.com/

Higher dimensions

Interface:

(8)::(a:—c¢c) > (a:—od) > (a:—oc x d)

(v)ii(a:—c¢) > (bi—oc) - (ax b:—oc)

Semantics:

p(fag)=Xra—(faga)
p(fvg)=XMa,b) > fa+ghb

Conal Elliott (Tabula) Denotational Design July, 2014

45 / 58

http://conal.net
http://tabula.com/

Products and coproducts

class Category k = ProductCat k where
type a x; b
exl :k (ax,b)a
exr::k (axpb)b
(a) ikac—kad—kal(cxyd)

class Category k = CoproductCat k where
type a+; b
inl ik a(a+yb)
inr kb (a+;b)
(v) ikac—>kbec —k(a+pb)c

Similar to Arrow and ArrowChoice classes.

Conal Elliott (Tabula) Denotational Design July, 2014

46 / 58

http://conal.net
http://tabula.com/

Semantic morphisms

wexl = ezl woinl = inl

uexr = exr wanr =nr

p(feg)=pfapg n(fvg)=nfvng
For a — b,

typeax_b=axb typea -+ b=axb

exl (a,b) = a inl a = (a,0)

exr (a,b) =b inr b = (0,b)

feg=Xxa—(fa,ga) fvg=Na,b)>fat+ghb

For calculation, see blog post Reimagining matrices.

Conal Elliott (Tabula) Denotational Design July, 2014 47 / 58

http://conal.net/blog/posts/reimagining-matrices
http://conal.net
http://tabula.com/

Full representation and denotation

data (:—) :: * — * — % where
Scale :: Num s = s — (s :—o s)
(:a)(a:—c) > (a:—d) > (a:—ocxd)

(:v)i(ai—c¢) > (b:—oc) > (ax b:—c)

p::(a:—b) — (a—ob)

w (Scale s) = Az — s x x
p(f:ag) =ra—(fayga)
p(fivg) =Mab)—>fatgb

Conal Elliott (Tabula) Denotational Design July, 2014

48 / 58

http://conal.net
http://tabula.com/

Functional reactive programming

Conal Elliott (Tabula) Denotational Design July, 2014 49 / 58

http://conal.net
http://tabula.com/

Functional reactive programming

Two essential properties:

e Continuous time! (Natural & composable.)

e Denotational design. (Elegant & rigorous.)

Conal Elliott (Tabula) Denotational Design

July, 2014

49 / 58

http://conal.net
http://tabula.com/

Functional reactive programming

Two essential properties:

e Continuous time! (Natural & composable.)

e Denotational design. (Elegant & rigorous.)

Deterministic, continuous “concurrency”.

More aptly, “Denotative continuous-time programming” (DCTP).

Warning: many modern “FRP” systems have neither property.

Conal Elliott (Tabula) Denotational Design July, 2014

49 / 58

http://conal.net
http://tabula.com/

Denotational design

Central type:
type Behavior a
Model:

2 Behavior a — (R — a)

Conal Elliott (Tabula) Denotational Design

July, 2014

50 / 58

http://conal.net
http://tabula.com/

Denotational design

Central type:
type Behavior a
Model:

2 Behavior a — (R — a)

Suggests API and semantics (via morphisms).

What standard algebraic abstractions does the model inhabit?

Conal Elliott (Tabula) Denotational Design July, 2014 50 / 58

http://conal.net
http://tabula.com/

Denotational design

Central type:
type Behavior a
Model:

2 Behavior a — (R — a)

Suggests API and semantics (via morphisms).
What standard algebraic abstractions does the model inhabit?

Monoid, Functor, Applicative, Monad, Comonad.

Conal Elliott (Tabula) Denotational Design July, 2014

50 / 58

http://conal.net
http://tabula.com/

Functor

instance Functor ((—) t) where

f<&h=foh
Morphism:
p(f <8 b)
=f<®ubd
=foubd

Conal Elliott (Tabula) Denotational Design

July, 2014

51 / 58

http://conal.net
http://tabula.com/

Applicative

instance Applicative ((—) t) where

pure a = At — a
g<s>h=A—(gt)(ht)

Morphisms:
w (pure a) p (fs <> xs)
= pure a = fs <> s
=\ —>a =\ — (ufst)(uast)

Corresponds exactly to the original FRP denotation.

Conal Elliott (Tabula)

Denotational Design July, 2014

52 / 58

http://conal.net
http://tabula.com/

Monad

instance Monad ((—) t) where
join ff = At > ff tt

Morphism:

w (join bb)
= join (p <& p bb)

= join (o p bb)
=\t —> (uopubb) tt
=AM —opu(pbbt)t

Conal Elliott (Tabula) Denotational Design July, 2014 53 / 58

http://conal.net
http://tabula.com/

Comonad

class Comonad w where
coreturn :: w a — a

cojoin ::w a — w (w a)
Functions:

instance Monoid t = Comonad ((—) t) where
coreturn :: (t — a) — a
coreturn f = f €
cojoin f =Xt t' — f (t®t)

Suggest a relative time model.

Conal Elliott (Tabula) Denotational Design July, 2014

54 / 58

http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) time?

Conal Elliott (Tabula) Denotational Design July, 2014 55 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) time?

o Transformation flexibility with simple & precise semantics

Efficiency (adapative)

Quality /accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).
e More info available for extraction.
e Same benefits as pure, non-strict functional programming.

See Why Functional Programming Matters.

Conal Elliott (Tabula) Denotational Design July, 2014 55 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) time?

o Transformation flexibility with simple & precise semantics

Efficiency (adapative)

Quality /accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).
e More info available for extraction.
e Same benefits as pure, non-strict functional programming.

See Why Functional Programming Matters.

Integration and differentiation: natural, accurate, efficient.

Conal Elliott (Tabula) Denotational Design July, 2014 55 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) time?

o Transformation flexibility with simple & precise semantics

Efficiency (adapative)

Quality /accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).
e More info available for extraction.
e Same benefits as pure, non-strict functional programming.

See Why Functional Programming Matters.

Integration and differentiation: natural, accurate, efficient.

e Reconcile differing input sampling rates.

Conal Elliott (Tabula) Denotational Design July, 2014 55 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Why continuous & infinite (vs discrete/finite) time?

o Transformation flexibility with simple & precise semantics

Efficiency (adapative)

Quality /accuracy

Modularity /composability:

o Fewer assumptions, more uses (resolution-independence).
e More info available for extraction.
e Same benefits as pure, non-strict functional programming.

See Why Functional Programming Matters.

Integration and differentiation: natural, accurate, efficient.

e Reconcile differing input sampling rates.

Approximations/prunings compose badly, so postpone.

Conal Elliott (Tabula) Denotational Design July, 2014 55 / 58

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net
http://tabula.com/

Memo tries

type a — b

p:(a—b)— (a—b)

This time, p has an inverse.

Exploit inverses to calculate instances. Example:

Wid = id
=id=p""id

plgof)=pgonf
sgof=pt(pgopf)

Conal Elliott (Tabula)

Denotational Design July, 2014

56 / 58

http://conal.net
http://tabula.com/

Denotational design

Conal Elliott (Tabula) Denotational Design July, 2014 57 / 58

http://conal.net
http://tabula.com/

Denotational design

Design methodology for typed, purely functional programming:
o Precise, simple, and compelling specification.

o Informs use and implementation without entangling.

Standard algebraic abstractions.
@ Free of abstraction leaks.

Laws for free.

Principled construction of correct implementation.

Conal Elliott (Tabula) Denotational Design July, 2014 57 / 58

http://conal.net
http://tabula.com/

References

Denotational design with type class morphisms

Push-pull functional reactive programming

e Functional images (Pan) page with pictures & papers.

Posts on type class morphisms

e This talk

Conal Elliott (Tabula) Denotational Design July, 2014 58 / 58

http://conal.net/papers/type-class-morphisms/
http://conal.net/papers/push-pull-frp/
http://conal.net/Pan
http://conal.net/blog/tag/http://conal.net/blog/tag/type-class-morphism/
https://github.com/conal/talk-2014-lambdajam-denotational-design
http://conal.net
http://tabula.com/

