
The essence and origins of FRP

or

How you could have invented

Functional Reactive Programming

Conal Elliott

LambdaJam 2015

Conal Elliott The essence and origins of FRP LambdaJam 2015 1 / 27

http://conal.net
http://conal.net


What is FRP?

Conal Elliott The essence and origins of FRP LambdaJam 2015 2 / 27

http://conal.net


FRP’s two fundamental properties

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

Deterministic, continuous “concurrency”.

Warning: most modern “FRP” systems have neither property.

Conal Elliott The essence and origins of FRP LambdaJam 2015 3 / 27

http://conal.net


FRP’s two fundamental properties

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

Deterministic, continuous “concurrency”.

Warning: most modern “FRP” systems have neither property.

Conal Elliott The essence and origins of FRP LambdaJam 2015 3 / 27

http://conal.net


FRP’s two fundamental properties

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

Deterministic, continuous “concurrency”.

Warning: most modern “FRP” systems have neither property.

Conal Elliott The essence and origins of FRP LambdaJam 2015 3 / 27

http://conal.net


FRP’s two fundamental properties

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

FRP is not about:

graphs,

updates and propagation,

streams,

doing

Conal Elliott The essence and origins of FRP LambdaJam 2015 4 / 27

http://conal.net


FRP’s two fundamental properties

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

FRP is not about:

graphs,

updates and propagation,

streams,

doing

Conal Elliott The essence and origins of FRP LambdaJam 2015 4 / 27

http://conal.net


Why (precise & simple) denotation?

Separates specification from implementation.

Simple so that we can reach conclusions.

Precise so that our conclusions will be true.

Denotations have elegant, functional-friendly style.

An API is a language for communicating about a domain.

It helps to (really) understand what we’re talking about.

Conal Elliott The essence and origins of FRP LambdaJam 2015 5 / 27

http://conal.net


Why (precise & simple) denotation?

Separates specification from implementation.

Simple so that we can reach conclusions.

Precise so that our conclusions will be true.

Denotations have elegant, functional-friendly style.

An API is a language for communicating about a domain.

It helps to (really) understand what we’re talking about.

Conal Elliott The essence and origins of FRP LambdaJam 2015 5 / 27

http://conal.net


Why (precise & simple) denotation?

Separates specification from implementation.

Simple so that we can reach conclusions.

Precise so that our conclusions will be true.

Denotations have elegant, functional-friendly style.

An API is a language for communicating about a domain.

It helps to (really) understand what we’re talking about.

Conal Elliott The essence and origins of FRP LambdaJam 2015 5 / 27

http://conal.net


Why continuous & infinite (vs discrete/finite) time?

Same benefits as for space (vector graphics):

Transformation flexibility with simple & precise semantics.

Modularity/reusability/composability:

Fewer assumptions, more uses (resolution-independence).

More info available for extraction.

Integration and differentiation: natural, accurate, efficient.

Quality/accuracy.

Efficiency (adapative).

Reconcile differing input sampling rates.

Principle: Approximations/prunings compose badly, so postpone.

See Why Functional Programming Matters.

Conal Elliott The essence and origins of FRP LambdaJam 2015 6 / 27

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net


Why continuous & infinite (vs discrete/finite) time?

Same benefits as for space (vector graphics):

Transformation flexibility with simple & precise semantics.

Modularity/reusability/composability:

Fewer assumptions, more uses (resolution-independence).

More info available for extraction.

Integration and differentiation: natural, accurate, efficient.

Quality/accuracy.

Efficiency (adapative).

Reconcile differing input sampling rates.

Principle: Approximations/prunings compose badly, so postpone.

See Why Functional Programming Matters.

Conal Elliott The essence and origins of FRP LambdaJam 2015 6 / 27

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net


Why continuous & infinite (vs discrete/finite) time?

Same benefits as for space (vector graphics):

Transformation flexibility with simple & precise semantics.

Modularity/reusability/composability:

Fewer assumptions, more uses (resolution-independence).

More info available for extraction.

Integration and differentiation: natural, accurate, efficient.

Quality/accuracy.

Efficiency (adapative).

Reconcile differing input sampling rates.

Principle: Approximations/prunings compose badly, so postpone.

See Why Functional Programming Matters.

Conal Elliott The essence and origins of FRP LambdaJam 2015 6 / 27

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net


Why continuous & infinite (vs discrete/finite) time?

Same benefits as for space (vector graphics):

Transformation flexibility with simple & precise semantics.

Modularity/reusability/composability:

Fewer assumptions, more uses (resolution-independence).

More info available for extraction.

Integration and differentiation: natural, accurate, efficient.

Quality/accuracy.

Efficiency (adapative).

Reconcile differing input sampling rates.

Principle: Approximations/prunings compose badly, so postpone.

See Why Functional Programming Matters.

Conal Elliott The essence and origins of FRP LambdaJam 2015 6 / 27

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net


Why continuous & infinite (vs discrete/finite) time?

Same benefits as for space (vector graphics):

Transformation flexibility with simple & precise semantics.

Modularity/reusability/composability:

Fewer assumptions, more uses (resolution-independence).

More info available for extraction.

Integration and differentiation: natural, accurate, efficient.

Quality/accuracy.

Efficiency (adapative).

Reconcile differing input sampling rates.

Principle: Approximations/prunings compose badly, so postpone.

See Why Functional Programming Matters.

Conal Elliott The essence and origins of FRP LambdaJam 2015 6 / 27

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://conal.net


Semantics

Central abstract type: Behavior a — a “flow” of values.

Precise & simple semantics:

µ :: Behavior a Ñ pT Ñ aq

where T “ R (reals).

Much of API and its specification can follow from this one choice.

Conal Elliott The essence and origins of FRP LambdaJam 2015 7 / 27

http://conal.net


Semantics

Central abstract type: Behavior a — a “flow” of values.

Precise & simple semantics:

µ :: Behavior a Ñ pT Ñ aq

where T “ R (reals).

Much of API and its specification can follow from this one choice.

Conal Elliott The essence and origins of FRP LambdaJam 2015 7 / 27

http://conal.net


Semantics

Central abstract type: Behavior a — a “flow” of values.

Precise & simple semantics:

µ :: Behavior a Ñ pT Ñ aq

where T “ R (reals).

Much of API and its specification can follow from this one choice.

Conal Elliott The essence and origins of FRP LambdaJam 2015 7 / 27

http://conal.net


Original formulation

Conal Elliott The essence and origins of FRP LambdaJam 2015 8 / 27

http://conal.net


API

time :: Behavior T

lift0 :: a Ñ Behavior a

lift1 :: pa Ñ bq Ñ Behavior a Ñ Behavior b

lift2 :: pa Ñ b Ñ cq Ñ Behavior a Ñ Behavior b Ñ Behavior c

timeTrans :: Behavior a Ñ Behavior T Ñ Behavior a

integral :: VS a ñ Behavior a Ñ T Ñ Behavior a

...

instance Num a ñ Num pBehavior aq where ...

...

Reactivity later.

Conal Elliott The essence and origins of FRP LambdaJam 2015 9 / 27

http://conal.net


Semantics

µ time “ λt Ñ t

µ plift0 aq “ λt Ñ a

µ plift1 f xsq “ λt Ñ f pµ xs tq

µ plift2 f xs ysq “ λt Ñ f pµ xs tq pµ ys tq

µ ptimeTrans xs ttq “ λt Ñ µ xs pµ tt tq

instance Num a ñ Num pBehavior aq where

fromInteger “ lift0 ˝ fromInteger

p`q “ lift2 p`q

...

Conal Elliott The essence and origins of FRP LambdaJam 2015 10 / 27

http://conal.net


Semantics

µ time “ id

µ plift0 aq “ const a

µ plift1 f xsq “ f ˝ µ xs

µ plift2 f xs ysq “ liftA2 f pµ xsq pµ ysq

µ ptimeTrans xs ttq “ µ xs ˝ µ tt

instance Num a ñ Num pBehavior aq where

fromInteger “ lift0 ˝ fromInteger

p`q “ lift2 p`q

...

Conal Elliott The essence and origins of FRP LambdaJam 2015 11 / 27

http://conal.net


Events

Secondary type:

µ :: Event a Ñ rpT , aqs -- non-decreasing times

never :: Event a

once :: T Ñ a Ñ Event a

p.|.q :: Event a Ñ Event a Ñ Event a

pùñq :: Event a Ñ pa Ñ bq Ñ Event b

predicate :: Behavior Bool Ñ Event pq

snapshot :: Event a Ñ Behavior b Ñ Event pa, bq

Exercise: define semantics of these operations.

Conal Elliott The essence and origins of FRP LambdaJam 2015 12 / 27

http://conal.net


Reactivity

Reactive behaviors are defined piecewise, via events.

:

switcher :: Behavior a Ñ Event pBehavior aq Ñ Behavior a

Semantics:

µ pb0 ‘switcher ‘ eq t “ µ plast pb0 : before t pµ eqqq t

before :: T Ñ rpT , aqs Ñ ra s

before t os “ ra | pta, aq Ð os, ta ă t s

Important: ta ă t , rather than ta ď t .

Conal Elliott The essence and origins of FRP LambdaJam 2015 13 / 27

http://conal.net


Reactivity

Reactive behaviors are defined piecewise, via events.:

switcher :: Behavior a Ñ Event pBehavior aq Ñ Behavior a

Semantics:

µ pb0 ‘switcher ‘ eq t “ µ plast pb0 : before t pµ eqqq t

before :: T Ñ rpT , aqs Ñ ra s

before t os “ ra | pta, aq Ð os, ta ă t s

Important: ta ă t , rather than ta ď t .

Conal Elliott The essence and origins of FRP LambdaJam 2015 13 / 27

http://conal.net


Reactivity

Reactive behaviors are defined piecewise, via events.:

switcher :: Behavior a Ñ Event pBehavior aq Ñ Behavior a

Semantics:

µ pb0 ‘switcher ‘ eq t “ µ plast pb0 : before t pµ eqqq t

before :: T Ñ rpT , aqs Ñ ra s

before t os “ ra | pta, aq Ð os, ta ă t s

Important: ta ă t , rather than ta ď t .

Conal Elliott The essence and origins of FRP LambdaJam 2015 13 / 27

http://conal.net


A more elegant specification

for FRP (teaser)

Conal Elliott The essence and origins of FRP LambdaJam 2015 14 / 27

http://conal.net


API

Replace operations with standard abstractions where possible:

instance Functor Behavior where ...

instance Applicative Behavior where ...

instance Monoid a ñ Monoid pBehavior aq where ...

instance Functor Event where ...

instance Monoid a ñ Monoid pEvent aq where ...

Why?

Less learning, more leverage.

Specifications and laws for free.

Conal Elliott The essence and origins of FRP LambdaJam 2015 15 / 27

http://conal.net


API

Replace operations with standard abstractions where possible:

instance Functor Behavior where ...

instance Applicative Behavior where ...

instance Monoid a ñ Monoid pBehavior aq where ...

instance Functor Event where ...

instance Monoid a ñ Monoid pEvent aq where ...

Why?

Less learning, more leverage.

Specifications and laws for free.

Conal Elliott The essence and origins of FRP LambdaJam 2015 15 / 27

http://conal.net


Specifications for free

The instance’s meaning follows the meaning’s instance:

µ pfmap f asq ” fmap f pµ asq

µ ppure aq ” pure a

µ pfs ă̊ą xsq ” µ fs ă̊ą µ xs

µ ε ” ε

µ ptop ˛ botq ” µ top ˛ µ bot

Corresponds exactly to the original FRP denotation.

Follows inevitably from a domain-independent principle.

Laws hold for free.

Conal Elliott The essence and origins of FRP LambdaJam 2015 16 / 27

http://conal.net


Specifications for free

The instance’s meaning follows the meaning’s instance:

µ pfmap f asq ” fmap f pµ asq

µ ppure aq ” pure a

µ pfs ă̊ą xsq ” µ fs ă̊ą µ xs

µ ε ” ε

µ ptop ˛ botq ” µ top ˛ µ bot

Corresponds exactly to the original FRP denotation.

Follows inevitably from a domain-independent principle.

Laws hold for free.

Conal Elliott The essence and origins of FRP LambdaJam 2015 16 / 27

http://conal.net


History

Conal Elliott The essence and origins of FRP LambdaJam 2015 17 / 27

http://conal.net


1983–1989 at CMU

I went for graphics.

Did program transformation, FP, type theory.

Class in denotational semantics.

Conal Elliott The essence and origins of FRP LambdaJam 2015 18 / 27

http://conal.net


1989 at CMU

Kavi Arya’s visit:

Functional animation

Streams of pictures

Elegant

, mostly

John Reynolds’s insightful remark:

“You can think of streams as functions from the natural numbers.

Have you thought about functions from the reals instead?

Doing so might help with the awkwardness of interpolation.”

Continuous time!

I finished my dissertation anyway.

Conal Elliott The essence and origins of FRP LambdaJam 2015 19 / 27

http://conal.net


1989 at CMU

Kavi Arya’s visit:

Functional animation

Streams of pictures

Elegant, mostly

John Reynolds’s insightful remark:

“You can think of streams as functions from the natural numbers.

Have you thought about functions from the reals instead?

Doing so might help with the awkwardness of interpolation.”

Continuous time!

I finished my dissertation anyway.

Conal Elliott The essence and origins of FRP LambdaJam 2015 19 / 27

http://conal.net


1989 at CMU

Kavi Arya’s visit:

Functional animation

Streams of pictures

Elegant, mostly

John Reynolds’s insightful remark:

“You can think of streams as functions from the natural numbers.

Have you thought about functions from the reals instead?

Doing so might help with the awkwardness of interpolation.”

Continuous time!

I finished my dissertation anyway.

Conal Elliott The essence and origins of FRP LambdaJam 2015 19 / 27

http://conal.net


1989 at CMU

Kavi Arya’s visit:

Functional animation

Streams of pictures

Elegant, mostly

John Reynolds’s insightful remark:

“You can think of streams as functions from the natural numbers.

Have you thought about functions from the reals instead?

Doing so might help with the awkwardness of interpolation.”

Continuous time!

I finished my dissertation anyway.

Conal Elliott The essence and origins of FRP LambdaJam 2015 19 / 27

http://conal.net


1990–93 at Sun: TBAG

3D geometry etc as first-class immutable values.

Animation as immutable functions of continuous time.

Multi-way constraints on time-functions.

Off-the-shelf constraint solvers (DeltaBlue & SkyBlue from UW).

Differentiation, integration and ODEs specified via derivative.

Adaptive Runge-Kutta-5 solver (fast & accurate).

Reactivity via assert/retract (high-level but imperative).

Optimizing compiler via partial evaluation.

In Common Lisp, C++, Scheme.

Efficient multi-user distributed execution for free.

Conal Elliott The essence and origins of FRP LambdaJam 2015 20 / 27

http://conal.net/tbag/
http://conal.net


1990–93 at Sun: TBAG

3D geometry etc as first-class immutable values.

Animation as immutable functions of continuous time.

Multi-way constraints on time-functions.

Off-the-shelf constraint solvers (DeltaBlue & SkyBlue from UW).

Differentiation, integration and ODEs specified via derivative.

Adaptive Runge-Kutta-5 solver (fast & accurate).

Reactivity via assert/retract (high-level but imperative).

Optimizing compiler via partial evaluation.

In Common Lisp, C++, Scheme.

Efficient multi-user distributed execution for free.

Conal Elliott The essence and origins of FRP LambdaJam 2015 20 / 27

http://conal.net/tbag/
http://conal.net


1990–93 at Sun: TBAG

3D geometry etc as first-class immutable values.

Animation as immutable functions of continuous time.

Multi-way constraints on time-functions.

Off-the-shelf constraint solvers (DeltaBlue & SkyBlue from UW).

Differentiation, integration and ODEs specified via derivative.

Adaptive Runge-Kutta-5 solver (fast & accurate).

Reactivity via assert/retract (high-level but imperative).

Optimizing compiler via partial evaluation.

In Common Lisp, C++, Scheme.

Efficient multi-user distributed execution for free.

Conal Elliott The essence and origins of FRP LambdaJam 2015 20 / 27

http://conal.net/tbag/
http://conal.net


1994–1996 at Microsoft Research: RBML/ActiveVRML

Programming model & fast implementation for new 3D hardware.

TBAG + denotative/functional reactivity.

Add event algebra to behavior algebra.

Reactivity via behavior-valued events.

Drop multi-way constraints “at first”.

Started in ML as “RBML”.

Rebranded to “ActiveVRML”, then “DirectAnimation”.

Conal Elliott The essence and origins of FRP LambdaJam 2015 21 / 27

http://conal.net/papers/ActiveVRML/
http://www.sworks.com/keng/da.html
http://conal.net


1994–1996 at Microsoft Research: RBML/ActiveVRML

Programming model & fast implementation for new 3D hardware.

TBAG + denotative/functional reactivity.

Add event algebra to behavior algebra.

Reactivity via behavior-valued events.

Drop multi-way constraints “at first”.

Started in ML as “RBML”.

Rebranded to “ActiveVRML”, then “DirectAnimation”.

Conal Elliott The essence and origins of FRP LambdaJam 2015 21 / 27

http://conal.net/papers/ActiveVRML/
http://www.sworks.com/keng/da.html
http://conal.net


1994–1996 at Microsoft Research: RBML/ActiveVRML

Programming model & fast implementation for new 3D hardware.

TBAG + denotative/functional reactivity.

Add event algebra to behavior algebra.

Reactivity via behavior-valued events.

Drop multi-way constraints “at first”.

Started in ML as “RBML”.

Rebranded to “ActiveVRML”, then “DirectAnimation”.

Conal Elliott The essence and origins of FRP LambdaJam 2015 21 / 27

http://conal.net/papers/ActiveVRML/
http://www.sworks.com/keng/da.html
http://conal.net


1995–1999 at MSR: RBMH/Fran

Found Haskell: reborn as “RBMH” (research vehicle).

Very fast implementation via sprite engine.

John Hughes suggested using Arrow .

Conal Elliott The essence and origins of FRP LambdaJam 2015 22 / 27

http://conal.net/papers/padl99/
http://conal.net


1999 at MSR: first try at push-based implementation

Algebra of imperative event listeners.

Challenges:

Garbage collection & dependency reversal.

Determinacy of timing & simultaneity.

I doubt anyone has gotten correct.

Conal Elliott The essence and origins of FRP LambdaJam 2015 23 / 27

http://conal.net/papers/new-fran-draft.pdf
http://conal.net


2009: Push-pull FRP

Minimal computation, low latency, provably correct.

Push for reactivity and pull for continuous phases.

“Push” is really blocked pull.

More elegant API:

Standard abstractions.

Semantics as homomorphisms.

Laws for free.

Reactive normal form, via equational properties (denotation!).

Uses lub (basis of PL semantics).

Implementation subtleties & GHC RTS bugs. Didn’t quite work.

Conal Elliott The essence and origins of FRP LambdaJam 2015 24 / 27

http://conal.net/papers/push-pull-frp/
http://conal.net


1996–2014: Paul Hudak / Yale

Paul Hudak visited MSR in 1996 or

so and saw RBMH.

Encouraged publishing, and suggested

collaboration.

Proposed names “Fran” & “FRP”.

Many FRP-based papers and theses.

July 15, 1952 – April 29, 2015

Conal Elliott The essence and origins of FRP LambdaJam 2015 25 / 27

http://conal.net


Questions

Conal Elliott The essence and origins of FRP LambdaJam 2015 26 / 27

http://conal.net


“But computers are discrete, ...”

Conal Elliott The essence and origins of FRP LambdaJam 2015 27 / 27

http://conal.net

