
The simple essence of automatic differentiation

Conal Elliott

Target

January/June 2018

Conal Elliott January/June 2018 1 / 51

http://conal.net
http://conal.net

Differentiable programming made easy

Current AI revolution runs on large data, speed, and AD, but

AD algorithm (backprop) is complex and stateful.

Graph APIs are complex and semantically dubious.

Solutions in this paper:

AD: Simple, calculated, efficient, parallel-friendly, generalized.

API: derivative.

Conal Elliott Simple essence of AD January/June 2018 2 / 51

http://conal.net

What’s a derivative?

Number

Vector

Covector

Matrix

Higher derivatives

Chain rule for each.

Conal Elliott Simple essence of AD January/June 2018 3 / 51

http://conal.net

What’s a derivative?

D :: pa Ñ bq Ñ pa Ñ pa (bqq

A local linear (affine) approximation:

lim
εÑ0

‖f pa ` εq ´ pf a `D f a εq‖
‖ε‖

“ 0

See Calculus on Manifolds by Michael Spivak.

Conal Elliott Simple essence of AD January/June 2018 4 / 51

https://archive.org/details/SpivakM.CalculusOnManifolds_201703
http://conal.net

Composition

Sequential:

p˝q :: pb Ñ cq Ñ pa Ñ bq Ñ pa Ñ cq
pg ˝ f q a “ g pf aq

D pg ˝ f q a “ D g pf aq ˝D f a -- chain rule

Parallel:

pŸq :: pa Ñ cq Ñ pa Ñ dq Ñ pa Ñ c ˆ dq
pf Ÿ gq a “ pf a, g aq

D pf Ÿ gq a “ D f a Ÿ D g a

Conal Elliott Simple essence of AD January/June 2018 5 / 51

http://conal.net

Linear functions

Linear functions are their own derivatives everywhere.

D id a “ id
D fst a “ fst
D snd a “ snd

...

Conal Elliott Simple essence of AD January/June 2018 6 / 51

http://conal.net

Compositionality

Chain rule:

D pg ˝ f q a “ D g pf aq ˝D f a -- non-compositional

To fix, combine regular result with derivative:

D̂ :: pa Ñ bq Ñ pa Ñ pb ˆ pa (bqqq

D̂ f “ f Ÿ D f -- specification

Often much work in common to f and D f .

Conal Elliott Simple essence of AD January/June 2018 7 / 51

http://conal.net

Abstract algebra for functions

class Category p;q where
id :: a ; a
p˝q :: pb ; cq Ñ pa ; bq Ñ pa ; cq

class Category p;q ñ Cartesian p;q where
exl :: pa ˆ bq; a
exr :: pa ˆ bq; b
pŸq :: pa ; cq Ñ pa ; dq Ñ pa ; pc ˆ dqq

Plus laws and classes for arithmetic etc.

Conal Elliott Simple essence of AD January/June 2018 8 / 51

http://conal.net

Automatic differentiation

newtype D a b “ D pa Ñ b ˆ pa (bqq

D̂ :: pa Ñ bq Ñ D a b

D̂ f “ D pf Ÿ D f q -- not computable

Specification: D̂ preserves Category and Cartesian structure:

D̂ id “ id

D̂ pg ˝ f q “ D̂ g ˝ D̂ f

D̂ exl “ exl

D̂ exr “ exr

D̂ pf Ÿ gq “ D̂ f Ÿ D̂ g

The game: solve these equations for the RHS operations.

Conal Elliott Simple essence of AD January/June 2018 9 / 51

http://conal.net

Solution: simple automatic differentiation

newtype D a b “ D pa Ñ b ˆ pa (bqq

linearD f “ D pλa Ñ pf a, f qq

instance Category D where
id “ linearD id
D g ˝D f “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g b u in pc, g 1 ˝ f 1qq

instance Cartesian D where
exl “ linearD exl
exr “ linearD exr
D f Ÿ D g “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g a u in ppb, cq, f 1 Ÿ g 1qq

instance NumCat D where
negate “ linearD negate
add “ linearD add
mul “ D pmul Ÿ pλpa, bq Ñ λpda, dbq Ñ b ˚ da ` a ˚ dbqq

Conal Elliott Simple essence of AD January/June 2018 10 / 51

http://conal.net

Running examples

sqr :: Num a ñ a Ñ a
sqr a “ a ˚ a

magSqr :: Num a ñ a ˆ a Ñ a
magSqr pa, bq “ sqr a ` sqr b

cosSinProd :: Floating a ñ a ˆ a Ñ a ˆ a
cosSinProd px , yq “ pcos z , sin z q where z “ x ˚ y

In categorical vocabulary:

sqr “ mul ˝ pid Ÿ idq

magSqr “ add ˝ pmul ˝ pexl Ÿ exlq Ÿ mul ˝ pexr Ÿ exrqq

cosSinProd “ pcos Ÿ sinq ˝mul

Conal Elliott Simple essence of AD January/June 2018 11 / 51

http://conal.net

Visualizing computations

magSqr pa, bq “ sqr a ` sqr b

magSqr “ add ˝ pmul ˝ pexl Ÿ exlq Ÿ mul ˝ pexr Ÿ exrqq

In

×

×

+ Out

Auto-generated from Haskell code. See Compiling to categories.

Conal Elliott Simple essence of AD January/June 2018 12 / 51

http://conal.net/papers/compiling-to-categories/
http://conal.net

AD example

sqr a “ a ˚ a

sqr “ mul ˝ pid Ÿ idq

In

×

×

Out

+ OutIn

Conal Elliott Simple essence of AD January/June 2018 13 / 51

In

× Out

http://conal.net

AD example

magSqr pa, bq “ sqr a ` sqr b

magSqr “ add ˝ pmul ˝ pexl Ÿ exlq Ÿ mul ˝ pexr Ÿ exrqq

In

×

×

×

×

+

Out

+

+

+ Out

In

Conal Elliott Simple essence of AD January/June 2018 14 / 51

In

×

×

+ Out

http://conal.net

AD example

cosSinProd px , yq “ pcos z , sin z q where z “ x ˚ y

cosSinProd “ pcos Ÿ sinq ˝mul

In

×

×

×

 cos sin

×

Out

×

+

Out

 negate

In

Conal Elliott Simple essence of AD January/June 2018 15 / 51

In

×

 cos

 sin

Out

http://conal.net

Generalizing AD

newtype D a b “ D pa Ñ b ˆ pa (bqq

linearD f “ D pλa Ñ pf a, f qq

instance Category D where
id “ linearD id
D g ˝D f “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g b u in pc, g 1 ˝ f 1qq

instance Cartesian D where
exl “ linearD exl
exr “ linearD exr
D f Ÿ D g “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g a u in ppb, cq, f 1 Ÿ g 1qq

Each D operation just uses corresponding p(q operation.

Generalize from p(q to other cartesian categories.

Conal Elliott Simple essence of AD January/June 2018 16 / 51

http://conal.net

Generalized AD

newtype Dp;q a b “ D pa Ñ b ˆ pa ; bqq

linearD f f 1 “ D pλa Ñ pf a, f 1qq

instance Category p;q ñ Category Dp;q where

id “ linearD id id
D g ˝D f “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g b u in pc, g 1 ˝ f 1qq

instance Cartesian p;q ñ Cartesian Dp;q where

exl “ linearD exl exl
exr “ linearD exr exr
D f Ÿ D g “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g a u in ppb, cq, f 1 Ÿ g 1qq

instance ...ñ NumCat D where
negate “ linearD negate negate
add “ linearD add add
mul “ ??

Conal Elliott Simple essence of AD January/June 2018 17 / 51

http://conal.net

Numeric operations

Specific to (linear) functions:

mul “ D pmul Ÿ pλpa, bq Ñ λpda, dbq Ñ b ˚ da ` a ˚ dbqq

Rephrase:

scale :: Multiplicative a ñ a Ñ pa (aq
scale u “ λv Ñ u ˚ v

pŹq :: pa (cq Ñ pb (cq Ñ ppa ˆ bq(cq
f Ź g “ λpa, bq Ñ f a ` g b

Now

mul “ D pmul Ÿ pλpa, bq Ñ scale b Ź scale aqq

Conal Elliott Simple essence of AD January/June 2018 18 / 51

http://conal.net

Linear arrow (biproduct) vocabulary

class Category p;q where
id :: a ; a
p˝q :: pb ; cq Ñ pa ; bq Ñ pa ; cq

class Category p;q ñ Cartesian p;q where
exl :: pa ˆ bq; a
exr :: pa ˆ bq; b
pŸq :: pa ; cq Ñ pa ; dq Ñ pa ; pc ˆ dqq

class Category p;q ñ Cocartesian p;q where
inl :: a ; pa ˆ bq
inr :: b ; pa ˆ bq
pŹq :: pa ; cq Ñ pb ; cq Ñ ppa ˆ bq; cq

class ScalarCat p;q a where
scale :: a Ñ pa ; aq

Conal Elliott Simple essence of AD January/June 2018 19 / 51

http://conal.net

Linear transformations as functions

newtype a Ñ`b “ AddFun pa Ñ bq

instance Category pÑ`q where
id “ AddFun id
p˝q “ inNew2 p˝q

instance Cartesian pÑ`q where
exl “ AddFun exl
exr “ AddFun exr
pŸq “ inNew2 pŸq

instance Cocartesian pÑ`q where
inl “ AddFun p, 0q
inr “ AddFun p0, q
pŹq “ inNew2 pλf g px , yq Ñ f x ` g yq

instance Multiplicative s ñ ScalarCat pÑ`q s where
scale s “ AddFun ps ˚q

Conal Elliott Simple essence of AD January/June 2018 20 / 51

http://conal.net

Extracting a data representation

How to extract a matrix or gradient vector?

Sample over a domain basis (rows of identity matrix).

For n-dimensional domain,

Make n passes.

Each pass works on n-D sparse (“one-hot”) input.

Very inefficient.

For gradient-based optimization,

High-dimensional domain.

Very low-dimensional (1-D) codomain.

Conal Elliott Simple essence of AD January/June 2018 21 / 51

http://conal.net

Generalized matrices

newtype Ms a b “ L pVs b pVs a sqq

applyL :: Ms a b Ñ pa Ñ bq

Require applyL to preserve structure. Solve for methods.

Conal Elliott Simple essence of AD January/June 2018 22 / 51

http://conal.net

Core vocabulary

Sufficient to build arbitrary “matrices”:

scale :: a Ñ pa ; aq -- 1ˆ 1

pŹq :: pa ; cq Ñ pb ; cq Ñ ppa ˆ bq; cq -- horizontal juxt

pŸq :: pa ; cq Ñ pa ; dq Ñ pa ; pc ˆ dqq -- vertical juxt

Types guarantee rectangularity.

Conal Elliott Simple essence of AD January/June 2018 23 / 51

http://conal.net

Efficiency of composition

Arrow composition is associative.

Some associations are more efficient than others, so

Associate optimally.

Equivalent to matrix chain multiplication — Opn log nq.

Choice determined by types, i.e., compile-time information.

All-right: “forward mode AD” (FAD).

All-left: “reverse mode AD” (RAD).

RAD is much better for gradient-based optimization.

Conal Elliott Simple essence of AD January/June 2018 24 / 51

http://conal.net

Left-associating composition (RAD)

CPS-like category:

Represent a ; b by pb ; rq Ñ pa ; rq.

Meaning: f ÞÑ p˝ f q.

Results in left-composition.

Initialize with id :: r ; r .

Construct h ˝D f a directly, without D f a.

Conal Elliott Simple essence of AD January/June 2018 25 / 51

http://conal.net

Continuation category

newtype Contr
p;q a b “ Cont ppb ; rq Ñ pa ; rqq

cont :: Category p;q ñ pa ; bq Ñ Contr
p;q a b

cont f “ Cont p˝ f q

Require cont to preserve structure. Solve for methods.

We’ll use an isomorphism:

join :: Cocartesian p;q ñ pc ; aq ˆ pd ; aq Ñ ppc ˆ dq; aq
unjoin :: Cocartesian p;q ñ ppc ˆ dq; aq Ñ pc ; aq ˆ pd ; aq

join pf , gq “ f Ź g
unjoin h “ ph ˝ inl , h ˝ inrq

Conal Elliott Simple essence of AD January/June 2018 26 / 51

http://conal.net

Continuation category (solution)

instance Category p;q ñ Category Contr
p;q where

id “ Cont id
Cont g ˝ Cont f “ Cont pf ˝ gq

instance Cartesian p;q ñ Cartesian Contr
p;q where

exl “ Cont pjoin ˝ inlq
exr “ Cont pjoin ˝ inrq
pŸq “ inNew2 pλf g Ñ pf Ź gq ˝ unjoinq

instance Cocartesian p;q ñ Cocartesian Contr
p;q where

inl “ Cont pexl ˝ unjoinq
inr “ Cont pexr ˝ unjoinq
pŹq “ inNew2 pλf g Ñ join ˝ pf Ÿ gqq

instance ScalarCat p;q a ñ ScalarCat Contr
p;q a where

scale s “ Cont pscale sq

Conal Elliott Simple essence of AD January/June 2018 27 / 51

http://conal.net

Reverse-mode AD without tears

DContrMs

Conal Elliott Simple essence of AD January/June 2018 28 / 51

http://conal.net

Left-associating composition (RAD)

CPS-like category:

Represent a ; b by pb ; rq Ñ pa ; rq.

Meaning: f ÞÑ p˝ f q.

Results in left-composition.

Initialize with id :: r ; r .

Construct h ˝D f a directly, without D f a.

We’ve seen this trick before:

Transforming naive reverse from quadratic to linear.

List generalizes to monoids, and monoids to categories.

Conal Elliott Simple essence of AD January/June 2018 29 / 51

http://conal.net

One of my favorite papers

Continuation-Based Program Transformation Strategies
Mitch Wand, 1980, JACM.

Introduce a continuation argument, e.g., ra s Ñ ra s.

Notice the continuations that arise, e.g., p`̀ asq.

Find a data representation, e.g., as :: ra s

Identify associative operation that represents composition,
e.g., p`̀ q , since p`̀ bsq ˝ p`̀ asq “ p`̀ pas `̀ bsqq.

Conal Elliott Simple essence of AD January/June 2018 30 / 51

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.8567
http://conal.net

Duality

Vector space dual: u (s, with u a vector space over s.

If u has finite dimension, then u (s – u.

For f :: u (s, f “ dot v for some v :: u.

Gradients are derivatives of functions with scalar codomain.

Represent a (b by pb (sq Ñ pa (sq by b Ñ a.

Ideal for extracting gradient vector. Just apply to 1 (id).

Conal Elliott Simple essence of AD January/June 2018 31 / 51

http://conal.net

Duality

newtype Dual p;q a b “ Dual pb ; aq

asDual :: Conts
p;q a b Ñ Dual p;q a b

asDual pCont f q “ Dual pdot´1 ˝ f ˝ dotq

where

dot :: u Ñ pu (sq

dot´1 :: pu (sq Ñ u

Require asDual to preserve structure. Solve for methods.

Conal Elliott Simple essence of AD January/June 2018 32 / 51

http://conal.net

Duality (solution)

newtype Dual p;q a b “ Dual pb ; aq

instance Category p;q ñ Category Dual p;q where

id “ Dual id
p˝q “ inNew2 pflip p˝qq

instance Cocartesian p;q ñ Cartesian Dual p;q where

exl “ Dual inl
exr “ Dual inr
pŸq “ inNew2 pŹq

instance Cartesian p;q ñ Cocartesian Dual p;q where

inl “ Dual exl
inr “ Dual exr
pŹq “ inNew2 pŸq

instance ScalarCat p;q s ñ ScalarCat Dual p;q s where

scale s “ Dual pscale sq
Conal Elliott Simple essence of AD January/June 2018 33 / 51

http://conal.net

Backpropagation

DDual
Ñ̀

Conal Elliott Simple essence of AD January/June 2018 34 / 51

http://conal.net

RAD example (dual function)

In

+

Out

In

Out

Conal Elliott Simple essence of AD January/June 2018 35 / 51

In

+ Out

http://conal.net

RAD example (dual vector)

In

+

Out
1.0

Conal Elliott Simple essence of AD January/June 2018 36 / 51

In

+ Out

http://conal.net

RAD example (dual function)

In

Out

+ OutIn

Conal Elliott Simple essence of AD January/June 2018 37 / 51

In

Out

http://conal.net

RAD example (vector)

In

Out

1.0

Conal Elliott Simple essence of AD January/June 2018 38 / 51

In

Out

http://conal.net

RAD example (dual function)

In

Out

0.0

Out
In

Conal Elliott Simple essence of AD January/June 2018 39 / 51

In

 Out

http://conal.net

RAD example (dual vector)

In

Out1.0

0.0

Conal Elliott Simple essence of AD January/June 2018 40 / 51

In

 Out

http://conal.net

RAD example (dual function)

In

×

×

Out

+ OutIn

Conal Elliott Simple essence of AD January/June 2018 41 / 51

In

× Out

http://conal.net

RAD example (dual vector)

In

×

+

Out

Conal Elliott Simple essence of AD January/June 2018 42 / 51

In

× Out

http://conal.net

RAD example (dual function)

In

×

×

×

×

+

Out

+

+

Out

In

Conal Elliott Simple essence of AD January/June 2018 43 / 51

In

×

×

+ Out

http://conal.net

RAD example (dual vector)

In

×

×

+

+

+

Out

Conal Elliott Simple essence of AD January/June 2018 44 / 51

In

×

×

+ Out

http://conal.net

RAD example (dual function)

In

×

×

×

 cos

 sin

 cos

 sin

Out

Out

×

−

×

In

Conal Elliott Simple essence of AD January/June 2018 45 / 51

In

×

 cos

 sin

Out

http://conal.net

RAD example (matrix)

In

×

×

×

×

×

 cos

 sin

Out

 negate

 negate

Conal Elliott Simple essence of AD January/June 2018 46 / 51

In

×

 cos

 sin

Out

http://conal.net

Incremental evaluation

In

×

×

×

×

+

+

+

Out

if

if

if

if

×

×

if

if

+

In

∨

Out

Conal Elliott Simple essence of AD January/June 2018 47 / 51

In

×

×

+ Out

http://conal.net

Conclusions

Simple AD algorithm, specializing to forward, reverse, mixed.

No graphs, tapes, tags, partial derivatives, or mutation.

Parallel-friendly and low memory use.

Calculated from simple, regular algebra problems.

Generalizes to derivative categories other than linear maps.

Differentiate regular Haskell code (via plugin).

More details in my ICFP 2018 paper.

Conal Elliott Simple essence of AD January/June 2018 48 / 51

http://conal.net/papers/essence-of-ad/
http://conal.net

Reflections: recipe for success

Key principles:

Capture main concepts as first-class values.

Focus on abstract notions, not specific representations.

Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Quandary: Most programming languages poor for function-like things.

Solution: Compiling to categories.

Conal Elliott Simple essence of AD January/June 2018 49 / 51

http://conal.net/papers/compiling-to-categories
http://conal.net

Symbolic vs automatic differentiation

Often described as opposing techniques:

Symbolic:

Apply differentiation rules symbolically.

Can duplicate much work.

Needs algebraic manipulation.

Automatic:

FAD: easy to implement but often inefficient.

RAD: efficient but tricky to implement.

My view: AD is SD done by a compiler.

Compilers already work symbolically and preserve sharing.

Conal Elliott Simple essence of AD January/June 2018 50 / 51

http://conal.net

