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Differentiable programming made easy

Current AI revolution runs on large data, speed, and AD, but

AD algorithm (backprop) is complex and stateful.

Graph APIs are complex and semantically dubious.

Solutions in this paper:

AD: Simple, calculated, efficient, parallel-friendly, generalized.

API: derivative.
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What’s a derivative?

Number

Vector

Covector

Matrix

Higher derivatives

Chain rule for each.
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What’s a derivative?

D :: pa Ñ bq Ñ pa Ñ pa ( bqq

A local linear (affine) approximation:

lim
εÑ0

‖f pa ` εq ´ pf a `D f a εq‖
‖ε‖

“ 0

See Calculus on Manifolds by Michael Spivak.
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Composition

Sequential:

p˝q :: pb Ñ cq Ñ pa Ñ bq Ñ pa Ñ cq
pg ˝ f q a “ g pf aq

D pg ˝ f q a “ D g pf aq ˝D f a -- chain rule

Parallel:

pŸq :: pa Ñ cq Ñ pa Ñ dq Ñ pa Ñ c ˆ dq
pf Ÿ gq a “ pf a, g aq

D pf Ÿ gq a “ D f a Ÿ D g a
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Linear functions

Linear functions are their own derivatives everywhere.

D id a “ id
D fst a “ fst
D snd a “ snd

...
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Compositionality

Chain rule:

D pg ˝ f q a “ D g pf aq ˝D f a -- non-compositional

To fix, combine regular result with derivative:

D̂ :: pa Ñ bq Ñ pa Ñ pb ˆ pa ( bqqq

D̂ f “ f Ÿ D f -- specification

Often much work in common to f and D f .
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Abstract algebra for functions

class Category p;q where
id :: a ; a
p˝q :: pb ; cq Ñ pa ; bq Ñ pa ; cq

class Category p;q ñ Cartesian p;q where
exl :: pa ˆ bq; a
exr :: pa ˆ bq; b
pŸq :: pa ; cq Ñ pa ; dq Ñ pa ; pc ˆ dqq

Plus laws and classes for arithmetic etc.
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Automatic differentiation

newtype D a b “ D pa Ñ b ˆ pa ( bqq

D̂ :: pa Ñ bq Ñ D a b

D̂ f “ D pf Ÿ D f q -- not computable

Specification: D̂ preserves Category and Cartesian structure:

D̂ id “ id

D̂ pg ˝ f q “ D̂ g ˝ D̂ f

D̂ exl “ exl

D̂ exr “ exr

D̂ pf Ÿ gq “ D̂ f Ÿ D̂ g

The game: solve these equations for the RHS operations.
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Solution: simple automatic differentiation

newtype D a b “ D pa Ñ b ˆ pa ( bqq

linearD f “ D pλa Ñ pf a, f qq

instance Category D where
id “ linearD id
D g ˝D f “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g b u in pc, g 1 ˝ f 1qq

instance Cartesian D where
exl “ linearD exl
exr “ linearD exr
D f Ÿ D g “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g a u in ppb, cq, f 1 Ÿ g 1qq

instance NumCat D where
negate “ linearD negate
add “ linearD add
mul “ D pmul Ÿ pλpa, bq Ñ λpda, dbq Ñ b ˚ da ` a ˚ dbqq
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Running examples

sqr :: Num a ñ a Ñ a
sqr a “ a ˚ a

magSqr :: Num a ñ a ˆ a Ñ a
magSqr pa, bq “ sqr a ` sqr b

cosSinProd :: Floating a ñ a ˆ a Ñ a ˆ a
cosSinProd px , yq “ pcos z , sin z q where z “ x ˚ y

In categorical vocabulary:

sqr “ mul ˝ pid Ÿ idq

magSqr “ add ˝ pmul ˝ pexl Ÿ exlq Ÿ mul ˝ pexr Ÿ exrqq

cosSinProd “ pcos Ÿ sinq ˝mul
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Visualizing computations

magSqr pa, bq “ sqr a ` sqr b

magSqr “ add ˝ pmul ˝ pexl Ÿ exlq Ÿ mul ˝ pexr Ÿ exrqq

In
 
 

 
 
×  

 
 
×  

 
 

+   Out

Auto-generated from Haskell code. See Compiling to categories.
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AD example

sqr a “ a ˚ a

sqr “ mul ˝ pid Ÿ idq

In  
 
 
×  

 
 
×  

 
 

Out
 
 

+   OutIn  
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AD example

magSqr pa, bq “ sqr a ` sqr b

magSqr “ add ˝ pmul ˝ pexl Ÿ exlq Ÿ mul ˝ pexr Ÿ exrqq

In
 
 

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 

+  

 
 

Out
 
 

+  

 
 

+  

 
 

+   Out

In
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AD example

cosSinProd px , yq “ pcos z , sin z q where z “ x ˚ y

cosSinProd “ pcos Ÿ sinq ˝mul

In
 
 

 
 
×  

 
 
×  

 
 
×  

 cos   sin  

 
 
×  

 
 
 

Out

 
 
×  

 
 

+   
 

Out

 negate  

In
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Generalizing AD

newtype D a b “ D pa Ñ b ˆ pa ( bqq

linearD f “ D pλa Ñ pf a, f qq

instance Category D where
id “ linearD id
D g ˝D f “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g b u in pc, g 1 ˝ f 1qq

instance Cartesian D where
exl “ linearD exl
exr “ linearD exr
D f Ÿ D g “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g a u in ppb, cq, f 1 Ÿ g 1qq

Each D operation just uses corresponding p(q operation.

Generalize from p(q to other cartesian categories.
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Generalized AD

newtype Dp;q a b “ D pa Ñ b ˆ pa ; bqq

linearD f f 1 “ D pλa Ñ pf a, f 1qq

instance Category p;q ñ Category Dp;q where

id “ linearD id id
D g ˝D f “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g b u in pc, g 1 ˝ f 1qq

instance Cartesian p;q ñ Cartesian Dp;q where

exl “ linearD exl exl
exr “ linearD exr exr
D f Ÿ D g “ D pλa Ñ let tpb, f 1q “ f a; pc, g 1q “ g a u in ppb, cq, f 1 Ÿ g 1qq

instance ...ñ NumCat D where
negate “ linearD negate negate
add “ linearD add add
mul “ ??
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Numeric operations

Specific to (linear) functions:

mul “ D pmul Ÿ pλpa, bq Ñ λpda, dbq Ñ b ˚ da ` a ˚ dbqq

Rephrase:

scale :: Multiplicative a ñ a Ñ pa ( aq
scale u “ λv Ñ u ˚ v

pŹq :: pa ( cq Ñ pb ( cq Ñ ppa ˆ bq( cq
f Ź g “ λpa, bq Ñ f a ` g b

Now

mul “ D pmul Ÿ pλpa, bq Ñ scale b Ź scale aqq
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Linear arrow (biproduct) vocabulary

class Category p;q where
id :: a ; a
p˝q :: pb ; cq Ñ pa ; bq Ñ pa ; cq

class Category p;q ñ Cartesian p;q where
exl :: pa ˆ bq; a
exr :: pa ˆ bq; b
pŸq :: pa ; cq Ñ pa ; dq Ñ pa ; pc ˆ dqq

class Category p;q ñ Cocartesian p;q where
inl :: a ; pa ˆ bq
inr :: b ; pa ˆ bq
pŹq :: pa ; cq Ñ pb ; cq Ñ ppa ˆ bq; cq

class ScalarCat p;q a where
scale :: a Ñ pa ; aq

Conal Elliott Simple essence of AD January/June 2018 19 / 51

http://conal.net


Linear transformations as functions

newtype a Ñ`b “ AddFun pa Ñ bq

instance Category pÑ`q where
id “ AddFun id
p˝q “ inNew2 p˝q

instance Cartesian pÑ`q where
exl “ AddFun exl
exr “ AddFun exr
pŸq “ inNew2 pŸq

instance Cocartesian pÑ`q where
inl “ AddFun p, 0q
inr “ AddFun p0, q
pŹq “ inNew2 pλf g px , yq Ñ f x ` g yq

instance Multiplicative s ñ ScalarCat pÑ`q s where
scale s “ AddFun ps ˚q
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Extracting a data representation

How to extract a matrix or gradient vector?

Sample over a domain basis (rows of identity matrix).

For n-dimensional domain,

Make n passes.

Each pass works on n-D sparse (“one-hot”) input.

Very inefficient.

For gradient-based optimization,

High-dimensional domain.

Very low-dimensional (1-D) codomain.
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Generalized matrices

newtype Ms a b “ L pVs b pVs a sqq

applyL :: Ms a b Ñ pa Ñ bq

Require applyL to preserve structure. Solve for methods.
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Core vocabulary

Sufficient to build arbitrary “matrices”:

scale :: a Ñ pa ; aq -- 1ˆ 1

pŹq :: pa ; cq Ñ pb ; cq Ñ ppa ˆ bq; cq -- horizontal juxt

pŸq :: pa ; cq Ñ pa ; dq Ñ pa ; pc ˆ dqq -- vertical juxt

Types guarantee rectangularity.
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Efficiency of composition

Arrow composition is associative.

Some associations are more efficient than others, so

Associate optimally.

Equivalent to matrix chain multiplication — Opn log nq.

Choice determined by types, i.e., compile-time information.

All-right: “forward mode AD” (FAD).

All-left: “reverse mode AD” (RAD).

RAD is much better for gradient-based optimization.
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Left-associating composition (RAD)

CPS-like category:

Represent a ; b by pb ; rq Ñ pa ; rq.

Meaning: f ÞÑ p˝ f q.

Results in left-composition.

Initialize with id :: r ; r .

Construct h ˝D f a directly, without D f a.
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Continuation category

newtype Contr
p;q a b “ Cont ppb ; rq Ñ pa ; rqq

cont :: Category p;q ñ pa ; bq Ñ Contr
p;q a b

cont f “ Cont p˝ f q

Require cont to preserve structure. Solve for methods.

We’ll use an isomorphism:

join :: Cocartesian p;q ñ pc ; aq ˆ pd ; aq Ñ ppc ˆ dq; aq
unjoin :: Cocartesian p;q ñ ppc ˆ dq; aq Ñ pc ; aq ˆ pd ; aq

join pf , gq “ f Ź g
unjoin h “ ph ˝ inl , h ˝ inrq
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Continuation category (solution)

instance Category p;q ñ Category Contr
p;q where

id “ Cont id
Cont g ˝ Cont f “ Cont pf ˝ gq

instance Cartesian p;q ñ Cartesian Contr
p;q where

exl “ Cont pjoin ˝ inlq
exr “ Cont pjoin ˝ inrq
pŸq “ inNew2 pλf g Ñ pf Ź gq ˝ unjoinq

instance Cocartesian p;q ñ Cocartesian Contr
p;q where

inl “ Cont pexl ˝ unjoinq
inr “ Cont pexr ˝ unjoinq
pŹq “ inNew2 pλf g Ñ join ˝ pf Ÿ gqq

instance ScalarCat p;q a ñ ScalarCat Contr
p;q a where

scale s “ Cont pscale sq
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Reverse-mode AD without tears

DContrMs
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Left-associating composition (RAD)

CPS-like category:

Represent a ; b by pb ; rq Ñ pa ; rq.

Meaning: f ÞÑ p˝ f q.

Results in left-composition.

Initialize with id :: r ; r .

Construct h ˝D f a directly, without D f a.

We’ve seen this trick before:

Transforming naive reverse from quadratic to linear.

List generalizes to monoids, and monoids to categories.
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One of my favorite papers

Continuation-Based Program Transformation Strategies
Mitch Wand, 1980, JACM.

Introduce a continuation argument, e.g., ra s Ñ ra s.

Notice the continuations that arise, e.g., p`̀ asq.

Find a data representation, e.g., as :: ra s

Identify associative operation that represents composition,
e.g., p`̀ q , since p`̀ bsq ˝ p`̀ asq “ p`̀ pas `̀ bsqq.
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Duality

Vector space dual: u ( s, with u a vector space over s.

If u has finite dimension, then u ( s – u.

For f :: u ( s, f “ dot v for some v :: u.

Gradients are derivatives of functions with scalar codomain.

Represent a ( b by pb ( sq Ñ pa ( sq by b Ñ a.

Ideal for extracting gradient vector. Just apply to 1 (id).
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Duality

newtype Dual p;q a b “ Dual pb ; aq

asDual :: Conts
p;q a b Ñ Dual p;q a b

asDual pCont f q “ Dual pdot´1 ˝ f ˝ dotq

where

dot :: u Ñ pu ( sq

dot´1 :: pu ( sq Ñ u

Require asDual to preserve structure. Solve for methods.
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Duality (solution)

newtype Dual p;q a b “ Dual pb ; aq

instance Category p;q ñ Category Dual p;q where

id “ Dual id
p˝q “ inNew2 pflip p˝qq

instance Cocartesian p;q ñ Cartesian Dual p;q where

exl “ Dual inl
exr “ Dual inr
pŸq “ inNew2 pŹq

instance Cartesian p;q ñ Cocartesian Dual p;q where

inl “ Dual exl
inr “ Dual exr
pŹq “ inNew2 pŸq

instance ScalarCat p;q s ñ ScalarCat Dual p;q s where

scale s “ Dual pscale sq
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Backpropagation

DDual
Ñ̀
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RAD example (dual function)

In
 
 

 
 

+  
 
 

Out

In  
 
 

Out
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RAD example (dual vector)

In
 
 

 
 

+  
 
 
 

Out
1.0  
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RAD example (dual function)

In   
 
 

Out

 
 

+   OutIn
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RAD example (vector)

In   
 
 
 

Out

1.0  
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RAD example (dual function)

In
 
  

 
Out

0.0  

 
 

Out
In  
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RAD example (dual vector)

In
 
 

 
 
 

Out1.0  

0.0  
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RAD example (dual function)

In  
 
 
×  

 
 
×  

 
 

Out
 
 

+   OutIn  
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RAD example (dual vector)

In  

 
 
×  

 
 

+  

 
 

Out
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RAD example (dual function)

In
 
 

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 

+  

 
 

Out
 
 

+  

 
 

+  

 
 

Out

In  
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RAD example (dual vector)

In
 
  

 
×  

 
 
×  

 
 

+  

 
 

+  

 
 

+  

 
 
 

Out
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RAD example (dual function)

In
 
 

 
 
×  

 
 
×  

 
 
×  

 cos  

 sin  

 cos  

 sin  

 
 
 

Out

 
 

Out

 
 
×  

 
 
−  

 
 
×  

In
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RAD example (matrix)

In
 
 

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 cos  

 sin  

 
 
 
 
 
 

Out

 negate  

 negate  
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Incremental evaluation

In
 
 

 
 
×  

 
 
×  

 
 
×  

 
 
×  

 
 

+  

 
 

+  

 
 

+  

 
 

Out

 
 
 

if  
 
 
 

if  

 
 
 

if  
 
 
 

if  

 
 
×  

 
 
×  

 
 
 

if  
 
 
 

if  
 
 

+  

In

 
 
 
 

 
 

∨  

 
 

Out
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Conclusions

Simple AD algorithm, specializing to forward, reverse, mixed.

No graphs, tapes, tags, partial derivatives, or mutation.

Parallel-friendly and low memory use.

Calculated from simple, regular algebra problems.

Generalizes to derivative categories other than linear maps.

Differentiate regular Haskell code (via plugin).

More details in my ICFP 2018 paper.
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Reflections: recipe for success

Key principles:

Capture main concepts as first-class values.

Focus on abstract notions, not specific representations.

Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Quandary: Most programming languages poor for function-like things.

Solution: Compiling to categories.
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Symbolic vs automatic differentiation

Often described as opposing techniques:

Symbolic:

Apply differentiation rules symbolically.

Can duplicate much work.

Needs algebraic manipulation.

Automatic:

FAD: easy to implement but often inefficient.

RAD: efficient but tricky to implement.

My view: AD is SD done by a compiler.

Compilers already work symbolically and preserve sharing.
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