The simple essence of automatic differentiation

Differentiable programming made easy

Conal Elliott

Target

November 2018

Conal Elliott November 2018 1/29


http://conal.net
http://conal.net

Differentiable programming made easy

Current Al revolution runs on large data, speed, and AD.

Conal Elliott Simple essence of AD November 2018 2/ 29


http://conal.net

Differentiable programming made easy

Current Al revolution runs on large data, speed, and AD, but

e AD algorithm (backprop) is complex and stateful.

e Complex graph APIs.

Conal Elliott Simple essence of AD November 2018 2/29


http://conal.net

Differentiable programming made easy

Current Al revolution runs on large data, speed, and AD, but

e AD algorithm (backprop) is complex and stateful.

e Complex graph APIs.

Solutions:
e AD: Simple, calculated, efficient, parallel-friendly, generalized.

o API: deriwative.

Conal Elliott Simple essence of AD November 2018 2/29


http://conal.net

What’s a derivative?

Conal Elliott Simple essence of AD November 2018 3/ 29


http://conal.net

What’s a derivative?

Number

Vector

Covector

Matrix

Higher derivatives

Conal Elliott Simple essence of AD November 2018 3/ 29


http://conal.net

What’s a derivative?

Number

Vector

Covector

Matrix

Higher derivatives

Chain rule for each.

Conal Elliott Simple essence of AD November 2018 3/ 29


http://conal.net

Derivatives as linear maps (Fréchet)

D:(a—b)— (a— (a—ob))

D f a is a local linear approximation to f at a.

Conal Elliott Simple essence of AD November 2018 4 /29


http://conal.net

Derivatives as linear maps (Fréchet)

D:(a—b)— (a— (a—ob))

D f a is a local linear approximation to f at a:

ol @+e) = a+Dfas)

=0
=0 el

Conal Elliott Simple essence of AD November 2018

4/29


http://conal.net

Composition

Sequential:

D(gof)a=Dg(fa)oD fa --chain rule

Conal Elliott Simple essence of AD November 2018 5/ 29


http://conal.net

Composition

D(gof)a=Dg(fa)oD fa --chain rule

Parallel:
(2):i(a—c¢)—> (a—d)— (a— cxd)
fag)a=(fa,ga)

Conal Elliott Simple essence of AD November 2018

5/ 29


http://conal.net

Linear functions

Conal Elliott Simple essence of AD November 2018 6 /29


http://conal.net

Linear functions

Linear functions are their own derivatives everywhere.

Did a=1d
D fst a= fst
D snd a = snd

Conal Elliott Simple essence of AD November 2018 6 /29


http://conal.net

Compositionality

Chain rule:

D(gof)a=Dg(fa)oDfa --non-compositional

Conal Elliott Simple essence of AD November 2018 7/ 29


http://conal.net

Compositionality

Chain rule:

D(gof)a=Dg(fa)oDfa --non-compositional

To fix, combine regular result with derivative:

D:(a—b)— (a— (bx(a—b)))
Df=faDf - specification

Often much work in common to f and D f.
November 2018

Conal Elliott Simple essence of AD

7/ 29


http://conal.net

Abstract algebra for functions

class Category (~) where
id ta~a
(0):: (b~ ¢) = (a~b) = (a~ ¢)

class Category (~) = Cartesian (~) where
exl ::(a x b))~ a
exr::(a x b)~ b
() 2 (a0 €)= (a0 d) = (a~ (¢ x d))

Plus laws and classes for arithmetic etc.

Conal Elliott Simple essence of AD November 2018

8 /29


http://conal.net

Compiling to categories

sqgra=axa
magSqr (a,b) = sqr a + sqr b

cosSinProd (z,y) = (cos z,sin z) where z = z % y

Conal Elliott Simple essence of AD November 2018 9/ 29


http://conal.net/papers/compiling-to-categories/
http://conal.net

Compiling to categories

sqra=axa
magSqr (a,b) = sqr a + sqr b
cosSinProd (z,y) = (cos z,sin z) where z = z % y
In categorical vocabulary:

sqr = mul o (id » id)
magSqr = add o ((sqr o exl) & (sqr o exr))

cosSinProd = (cos » sin) o mul

Automated translation & generalization. See ICFP 2017 paper.

Conal Elliott Simple essence of AD November 2018

9 /29


http://conal.net/papers/compiling-to-categories/
http://conal.net

Automatic differentiation (specification)

newtype D a b =D (a — b x (a — b))

~

D:(a—b)—>Dab
Df=D (faDf) -- not computable

Conal Elliott Simple essence of AD November 2018 10 / 29


http://conal.net

Automatic differentiation (specification)

newtype D a b =D (a — b x (a — b))

Di(a—b)—>Dab
Df=D (faDf) -- not computable

Specification: D preserves Category and Cartesian structure:

. D ezl = exl
D id = id

~ N N 256337":61'7”
D(gof)=DgoDf

A~

D(feg)=DfsDy
The game: solve these equations for the RHS operations.

Conal Elliott Simple essence of AD November 2018

10 / 29


http://conal.net

Automatic differentiation (solution)

newtype D a b =D (a — b x (a — b))

linearD f = D (Aa — (f a,f))

instance Category D where
id = linearD id
DgoD f=D(Aa—let{(b,f)=Ffa;(c.g)=gbtin(c,g of))

instance Cartesian D where
exl = linearD exl
exr = linearD exr

DfaDg=D(Xa—let{(b,f)=Fa;(c,g)=ga}in((bc)f g))

instance NumCat D where
negate = linearD negate
add = linearD add
mul = D (mul » (A(a, b) — A(da, db) — b * da + a * db))

Conal Elliott Simple essence of AD November 2018 11 /29


http://conal.net

Generalizing AD

newtype D a b =D (a > b x (a — b))

linearD f = D (Aa — (f a,f))

instance Category D where
id = linearD id
DgoDf=DX\a—let{(bf)=fa;(c,g)=gb}in(c,g' of"))
instance Cartesian D where

exl = linearD exl
exr = linearD exr

DfaDg=D(Xa—let{(b,f)=Fa;(c,g)=ga}in((bc)f 2g))

Each D operation just uses corresponding (—o) operation.

Generalize from (—o) to other cartesian categories.

Conal Elliott Simple essence of AD November 2018 12 / 29


http://conal.net

Generalized AD

newtype Dy a b= D (a — b x (a~ b))

linearD f f' = D (Aa — (f a,f"))

instance Category (~) = Category D,y where
id = linearD id id
DgoDf=DAa—let{(bf)=Ffai(c,g)=gb}in(c,g' of))

instance Cartesian (~) = Cartesian D,y where
exl = linearD exl exl
exr = linearD exr exr

DfaDg=D(Xa—let {(bf)=fa;(c,g")=ga}tin((b,c)f 2g))

instance ... = NumCat D where
negate = linearD negate negate
add = linearD add add
mul = 77

Conal Elliott Simple essence of AD November 2018 13 / 29


http://conal.net

Numeric operations

Specific to (linear) functions:

mul = D (mul » (A(a,b) — A(da, db) — b= da + a * db))

Conal Elliott Simple essence of AD November 2018 14 / 29


http://conal.net

Numeric operations

Specific to (linear) functions:

mul = D (mul » (A(a,b) — A(da, db) — b= da + a * db))

Rephrase:

scale :: Multiplicative a = a — (a — a)
scale u = A\v — u*v

(v):(a—c)—>(b—¢c)— ((axb) > c)
(fvg)(a,b)=fa+gb

Now

mul = D (mul » (A(a,b) — scale b v scale a))

Conal Elliott Simple essence of AD November 2018

14 / 29


http://conal.net

New generalized vocabulary

class Category (~) = Cocartesian (~) where
inl ::a~ (axDb)
inr:: b~ (axb)
(v) i (a~¢c) > (b~ c) —> ((a x b)~ c)

class ScalarCat (~) a where
scale :: a — (a~ a)

Differentiation:

D(fvyg)(a,b)=DfavDghb

The rest are linear.

Conal Elliott Simple essence of AD November 2018

15 / 29


http://conal.net

Linear transformations as functions

newtype a —" b = AddFun (a — b)

instance Category (—") where
id = AddFun id
(o) = inNews (o)

instance Cartesian (—") where
exl = AddFun exl
exr = AddFun exr
(2) = inNewsy (2)

instance Cocartesian (—') where
inl = AddFun (Aa — (a,0))
inr = AddFun (A\b — (0, b))
(v) = inNewa (Af g (a,b) > fa+gb)

instance Multiplicative s = ScalarCat (—") s where
scale s = AddFun (s *)

Conal Elliott Simple essence of AD November 2018

16 / 29


http://conal.net

Extracting a data representation

o Finally, extract a matrix or gradient vector.
@ Very inefficient for gradient-based optimization!

o Alternatively, represent as “generalized matrices” (M a b).
Then solve more homomorphisms.

Conal Elliott Simple essence of AD November 2018 17 / 29


http://conal.net

Efficiency of composition

e Composition is associative.

@ Some associations are more efficient than others, so

o Associate optimally.
o Equivalent to matriz chain multiplication — O(nlogn).

o Choice determined by types, i.e., compile-time information.

Conal Elliott Simple essence of AD November 2018 18 / 29


http://conal.net

Efficiency of composition

Composition is associative.

@ Some associations are more efficient than others, so
o Associate optimally.

o Equivalent to matriz chain multiplication — O(nlogn).

o Choice determined by types, i.e., compile-time information.

All right: “forward mode AD” (FAD).

All left: “reverse mode AD” (RAD).

@ RAD is much better for gradient-based optimization.

Conal Elliott Simple essence of AD November 2018 18 / 29


http://conal.net

Left-associating composition (RAD)

CPS-like category:
e Represent a ~ b by (b~ 1) = (a~> 7).
e Meaning: f' — (Ah — hof').
e Construct h oD f a directly, without D f a.

Old technique (Cayley 1854), vastly generalized by Yoneda.

Conal Elliott Simple essence of AD November 2018

19 / 29


http://conal.net

Continuation category (specification)

r

newtype Cont(_,y a b= Cont ((b~ 1) = (a~ 1))

cont :: Category (~) = (a~> b) — Cont(_ ab
cont f = Cont (o f)

Require cont to preserve structure. Solve for methods.

Conal Elliott Simple essence of AD November 2018

20 / 29


http://conal.net

Continuation category (solution)

instance Category (~) = Category C’ont(rw) where

id = Cont id
Cont g o Cont f = Cont (f o g)

instance Cartesian (~) = Cartesian Cont(_,) where
exl = Cont (join o inl)

exr = Cont (join o inr)

(2) = inNewa (Af g — (f v g) o unjoin)

instance Cocartesian (~) = Cocartesian Cont(_,) where

inl = Cont (exl o unjoin)
inr = Cont (exr o unjoin)
(v) = inNews (Af g — join o (f = g))
instance ScalarCat (~) a = ScalarCat Cont(_,y a where

scale s = Cont (scale s)

Conal Elliott Simple essence of AD November 2018

21 / 29


http://conal.net

Reverse-mode AD without tears

D C’omﬁﬁ,‘,5

Conal Elliott Simple essence of AD November 2018 22 /29


http://conal.net

Duality

Vector space dual: u —o s, with u a vector space over s.

o If u has finite dimension, then u — s =~ wu.

Represent a — b by (b — s) — (a — s) by b — a.

Ideal for extracting gradient vector. Just apply to 1 (id).

Conal Elliott Simple essence of AD November 2018 23 /29


http://conal.net

Duality (specification)

newtype Dual(y a b = Dual (b~ a)

asDual :: Cont{_,y a b — Dual.y a b
asDual (Cont f) = Dual (dot™! o f o dot)

where

dot :u— (u—os)
dot™::(u—os) > u

Require asDual to preserve structure. Solve for methods.

Conal Elliott Simple essence of AD November 2018

24 / 29


http://conal.net

Duality (solution)

newtype Dual(y a b = Dual (b~ a)

instance Category (~) = Category Dual(.,) where
td = Dual id
(o) = inNewy (flip (o))

instance Cocartesian (~) = Cartesian Dual(..) where
exl = Dual inl

exr = Dual inr
(2) = inNewsy (v)

instance Cartesian (~) = Cocartesian Dual(..) where
inl = Dual exl

inr = Dual exr
(v) = inNews (»)

instance ScalarCat (~) s = ScalarCat Dual(.,) s where

scale s = Dual (scale s)
Conal Elliott Simple essence of AD November 2018

25 / 29


http://conal.net

Backpropagation

Conal Elliott Simple essence of AD November 2018 26 / 29


http://conal.net

Backpropagation

Dpyai s+

Conal Elliott Simple essence of AD November 2018 26 / 29


http://conal.net

Conclusions

Simple AD algorithm, specializing to forward, reverse, mixed.

No graphs, tapes, tags, partial derivatives, or mutation.

e Parallel-friendly and low memory use.

e Calculated from simple, regular algebra problems.

o Generalizes to derivative categories other than linear maps.

e Differentiate regular Haskell code (via plugin).

ICFP 2018 paper: pictures, proofs, incremental computation.

Conal Elliott Simple essence of AD November 2018 27 /29


http://conal.net/papers/essence-of-ad/
http://conal.net

Reflections: recipe for success

Conal Elliott Simple essence of AD November 2018 28 / 29


http://conal.net/papers/compiling-to-categories
http://conal.net

Reflections: recipe for success

Key principles:
e Capture main concepts as first-class values.

e Focus on abstract notions, not specific representations.

o Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Conal Elliott Simple essence of AD November 2018

28 / 29


http://conal.net/papers/compiling-to-categories
http://conal.net

Reflections: recipe for success

Key principles:
e Capture main concepts as first-class values.
e Focus on abstract notions, not specific representations.
o Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Quandary: Most programming languages poor for function-like things.

Conal Elliott Simple essence of AD November 2018 28 / 29


http://conal.net/papers/compiling-to-categories
http://conal.net

Reflections: recipe for success

Key principles:
e Capture main concepts as first-class values.
e Focus on abstract notions, not specific representations.
o Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Quandary: Most programming languages poor for function-like things.

Solution: Compiling to categories.

Conal Elliott Simple essence of AD November 2018 28 / 29


http://conal.net/papers/compiling-to-categories
http://conal.net

Symbolic vs automatic differentiation

Often described as opposing techniques:

e Symbolic:
o Apply differentiation rules symbolically.

e Can duplicate much work.

e Needs algebraic manipulation.

e Automatic:
e FAD: easy to implement but often inefficient.

o RAD: efficient but tricky to implement.

Conal Elliott Simple essence of AD November 2018

29 / 29


http://conal.net

Symbolic vs automatic differentiation

Often described as opposing techniques:

e Symbolic:
o Apply differentiation rules symbolically.

e Can duplicate much work.

e Needs algebraic manipulation.

e Automatic:
e FAD: easy to implement but often inefficient.

o RAD: efficient but tricky to implement.

My view: AD is SD done by a compiler.

Compilers already work symbolically and preserve sharing.

Conal Elliott Simple essence of AD November 2018

29 / 29


http://conal.net

