Efficient automatic differentiation made easy

via elementary category theory

Conal Elliott

October 29, 2020

Conal Elliott October 29, 2020

1/ 44

http://conal.net
http://conal.net

What is differentiation? (Fréchet)

On Banach spaces a and b,

D:(a—b)— (a— (a—b))
f a+Df ae approximates f (a + ¢) for small .

@t —(Ga+Drao)

=0 el

See Calculus on Manifolds by Michael Spivak.

Conal Elliott Efficient automatic differentiation made easy October, 2020

2/ 44

https://archive.org/details/SpivakM.CalculusOnManifolds_201703
http://conal.net

What is automatic differentiation?

Differentiation of computable functions is not computable.

Instead, differentiate recipes: [D p] = D [p].

Conal Elliott Efficient automatic differentiation made easy October, 2020 3/ 44

http://conal.net

What is automatic differentiation?

Differentiation of computable functions is not computable.

Instead, differentiate recipes: [D p] = D [p].

Popular recipe forms: graphs, imperative programs, lambda calculus.

Differentiation composes messily in these forms

Conal Elliott Efficient automatic differentiation made easy October, 2020 3/ 44

http://conal.net

What is automatic differentiation?

Differentiation of computable functions is not computable.

Instead, differentiate recipes: [D p] = D [p].

Popular recipe forms: graphs, imperative programs, lambda calculus.
Differentiation composes messily in these forms,

but tidily in language of categories!

Conal Elliott Efficient automatic differentiation made easy October, 2020 3/ 44

http://conal.net

Composition

D(gof)a=Dg(fa)oD fa --chain rule

Conal Elliott

Efficient automatic differentiation made easy

October, 2020

4/ 44

http://conal.net

Composition

Sequential:

D(gof)a=Dg(fa)oD fa --chain rule

Parallel:

() (a—>c)—(a—d)—(a—cxd)
sg)a=(fa,ga)

D(fsg)a=DfasDga

Conal Elliott Efficient automatic differentiation made easy October, 2020

4/ 44

http://conal.net

Linear functions

Conal Elliott Efficient automatic differentiation made easy = October, 2020 5/ 44

http://conal.net

Linear functions

Linear functions are their own derivatives everywhere.

Did a=1id
D exl a = exl
D exr a = exr

Conal Elliott Efficient automatic differentiation made easy October, 2020 5/ 44

http://conal.net

Compositionality

Chain rule:

D(gof)a=Dg(fa)oDfa --non-compositional

Conal Elliott Efficient automatic differentiation made easy October, 2020 6/ 44

http://conal.net

Compositionality

Chain rule:

D(gof)a=Dg(fa)oDfa --non-compositional

To fix, combine regular result with derivative:

D:(a—b)— (a— (bx(a—b)))
Df=faDf - specification

so that Df:e:crof?f.

Conal Elliott Efficient automatic differentiation made easy October, 2020

6 / 44

http://conal.net

Abstract algebra for functions

class Category (~) where
id ta~a
(0):: (b~ ¢) = (a~b) = (a~ ¢)

class Category (~) = Cartesian (~) where
exl ::(a x b))~ a
exr::(a x b)~ b
() 2 (a0 €)= (a0 d) = (a~ (¢ x d))

Plus laws and classes for arithmetic etc.

Conal Elliott Efficient automatic differentiation made easy October, 2020

7/ 44

http://conal.net

Automatic differentiation (specification)

newtype D a b =D (a — b x (a — b))

~

D:(a—b)—>Dab
Df=D (faDf) -- not computable

Conal Elliott Efficient automatic differentiation made easy October, 2020 8 / 44

http://conal.net

Automatic differentiation (specification)

newtype D a b =D (a — b x (a — b))

D:(a—b)—>Dab
Df=D (faDf) -- not computable

Specification: D is a cartesian functor, i.e.,

. D ezl = exl
D id = id R
D exr = exr

Dlgof)=DgoDf D(fsg)=DfeDy

The game: solve these equations for the RHS operations.

Conal Elliott Efficient automatic differentiation made easy October, 2020

8 / 44

http://conal.net

Automatic differentiation (solution)

newtype D a b =D (a — b x (a — b))

linearD f = D (Aa — (f a,f))

instance Category D where
id = linearD id
DgoD f=D(Aa—let{(b,f)=Ffa;(c.g)=gbtin(c,g of))

instance Cartesian D where
exl = linearD exl
exr = linearD exr

DfaDg=D(Xa—let{(b,f)=Fa;(c,g)=ga}in((bc)f g))

instance NumCat D where
negateC = linearD negateC
addC' = linearD addC
mulC = D (mulC & (A(a,b) — A(da, db) — b * da + a* db))

Conal Elliott Efficient automatic differentiation made easy October, 2020 9/ 44

http://conal.net

Generalizing AD

newtype D a b =D (a > b x (a — b))

linearD f = D (Aa — (f a,f))

instance Category D where
id = linearD id
DgoDf=DX\a—let{(bf)=fa;(c,g)=gb}in(c,g' of"))
instance Cartesian D where

exl = linearD exl
exr = linearD exr

DfaDg=D(Xa—let{(b,f)=Fa;(c,g)=ga}in((bc)f 2g))

Each D operation just uses corresponding (—o) operation.

Generalize from (—o) to other cartesian categories.

Conal Elliott Efficient automatic differentiation made easy October, 2020 10 / 44

http://conal.net

Generalized AD

newtype Dy a b= D (a — b x (a~ b))

linearD f f' = D (Aa — (f a,f"))

instance Category (~) = Category D,y where
id = linearD id id
DgoDf=DAa—let{(bf)=Ffai(c,g)=gb}in(c,g' of))

instance Cartesian (~) = Cartesian D,y where
exl = linearD exl exl
exr = linearD exr exr

DfaDg=D(Xa—let {(bf)=fa;(c,g")=ga}tin((b,c)f 2g))

instance ... = NumCat D where
negateC' = linearD negateC' negateC
addC = linearD addC addC
mulC = 77

Conal Elliott Efficient automatic differentiation made easy October, 2020 11 / 44

http://conal.net

Numeric operations

Specific to (linear) functions:

mulC = D (mulC 2 (A(a, b) — A(da,db) — b * da + a * db))

Conal Elliott Efficient automatic differentiation made easy October, 2020 12 / 44

http://conal.net

Numeric operations

Specific to (linear) functions:

mulC = D (mulC 2 (A(a, b) — A(da,db) — b * da + a * db))

Rephrase:

scale :: Multiplicative a = a — (a — a)
scale u = A\v — u*v

(v) :: Additive ¢ = (a — ¢) = (b —> ¢) — ((a x b) — ¢)
(fvg)(a,b)=fa+gb

Now

mulC = D (mulC 2 (A(a, b) — scale b v scale a))

Conal Elliott Efficient automatic differentiation made easy October, 2020

12 / 44

http://conal.net

New generalized vocabulary

class Category (~) = Cocartesiany (~) where
inl ::a~ (axDb)
inr:: b~ (axb)
(v) i (a~>¢c) > (b~ c) = ((a x b)~ c)

class ScalarCat (~) a where
scale :: a — (a~ a)

Differentiation:

D(fvyg)(a,b)=DfavDyghb

The rest are linear.

Conal Elliott Efficient automatic differentiation made easy October, 2020

13 / 44

http://conal.net

Linear maps as functions

newtype a — b = LFun (a — b) - linear

instance Category (—) where
td = LFun id
(o) = inNews (o)

instance Cartesian (—) where
exl = LFun exl
exr = LFun exr
(2) = inNewsy (2)

instance Cocartesiany (—) where
inl = LFun (Aa — (a,0))
inr = LFun (Ab — (0, b))
(v) = inNewa (Af g (a,b) > fa+gb)

instance Multiplicative s = ScalarCat (—) s where
scale s = LFun (s *)

Conal Elliott Efficient automatic differentiation made easy October, 2020

14 / 44

http://conal.net

Extracting a data representation

o Finally, extract a matrix or gradient vector.
@ Very inefficient for gradient-based optimization!

o Alternatively, represent as “generalized matrices” (M a b).
Then solve more homomorphisms.

Conal Elliott Efficient automatic differentiation made easy October, 2020 15 / 44

http://conal.net

Efficiency of composition

e Composition is associative.

@ Some associations are more efficient than others, so

o Associate optimally.
o Equivalent to matriz chain multiplication — O(nlogn).

o Choice determined by types, i.e., compile-time information.

Conal Elliott Efficient automatic differentiation made easy October, 2020 16 / 44

http://conal.net

Efficiency of composition

Composition is associative.

@ Some associations are more efficient than others, so
o Associate optimally.

o Equivalent to matriz chain multiplication — O(nlogn).

o Choice determined by types, i.e., compile-time information.

All right: “forward mode AD” (FAD).

All left: “reverse mode AD” (RAD).

@ RAD is much better for gradient-based optimization.

Conal Elliott Efficient automatic differentiation made easy October, 2020 16 / 44

http://conal.net

Left-associating composition (RAD)

CPS-like category:
e Represent a ~ b by (b~ 1) = (a~> 7).
e Meaning: f' — (Ah — hof').
e Construct h oD f a directly, without D f a.

Old technique (Cayley 1854), vastly generalized by Yoneda.

Conal Elliott Efficient automatic differentiation made easy October, 2020

17 / 44

http://conal.net

Continuation category (specification)

newtype ContC (~) r a b= Cont (b~ 1) — (a~ 1))

cont :: Category (~) = (a~ b) = ContC (~) r ab
cont f = Cont (o f)

Specification: cont is a cartesian functor.

Conal Elliott Efficient automatic differentiation made easy October, 2020

18 / 44

http://conal.net

Continuation category (specification)

newtype ContC (~) r a b= Cont (b~ 1) — (a~ 1))

cont :: Category (~) = (a~ b) = ContC (~) r ab
cont f = Cont (o f)

Specification: cont is a cartesian functor.

We'll use an isomorphism:

join :: Cocartesian (~) = (¢~ a) X (d~ a) = ((¢ x d) ~ a)
unjoin :: Cocartesian (~) = ((¢ x d) ~ a) > (¢~ a) x (d ~ a)
join (f,9) =fvg

ungoin h = (hoinl, hoinr)

Conal Elliott Efficient automatic differentiation made easy October, 2020 18 / 44

http://conal.net

Continuation category (solution)

instance Category (~) = Category (ContC (~) r) where
id = Cont id
Cont g o Cont f = Cont (f o g)

instance Cartesian (~) = Cartesian (ContC (~) r) where
exl = Cont (join o inl)
exr = Cont (join o inr)
(2) = inNewg (Af g — (f v g) o unjoin)

instance Cocartesiany (~) = Cocartesiany (ContC (~) r) where
inl = Cont (exl o unjoin)
inr = Cont (exr o unjoin)
(v) = inNews (Af g — join o (f = g))

instance ScalarCat (~) a = ScalarCat (ContC (~) r) a where
scale s = Cont (scale s)

Conal Elliott Efficient automatic differentiation made easy October, 2020 19 / 44

http://conal.net

Reverse-mode AD without tears

DContC’ M r

Conal Elliott Efficient automatic differentiation made easy October, 2020 20 / 44

http://conal.net

Duality

@ Vector space dual: u* = u —o s, with u a vector space over s.
o If u has finite dimension, then u* >~ u.
@ Represent a — b by b* — a* by b — a.

o Ideal for extracting gradient vector. Just apply to 1 (id).

Conal Elliott Efficient automatic differentiation made easy October, 2020 21 / 44

http://conal.net

Duality (specification)

newtype Dual(y a b = Dual (b~ a)

asDual :: ContC (~) s a b — Dual(y a b
asDual (Cont f) = Dual (dot™! o f o dot)

where

dot :u— (u—os)
dot™ 1 (u—os) > u

Specification: asDual is a cartesian functor.

Conal Elliott Efficient automatic differentiation made easy October, 2020

22 / 44

http://conal.net

Duality (solution)

newtype Dual(y a b = Dual (b~ a)

instance Category (~) = Category Dual(.,) where
td = Dual id
(o) = inNewy (flip (o))

instance Cocartesiany (~) = Cartesian Dual(v) where
exl = Dual inl

exr = Dual inr
(2) = inNewsy (v)

instance Cartesian (~) = Cocartesiany Dual .,y where
il = Dual exl

inr = Dual exr
(v) = inNews (»)

instance ScalarCat (~) s = ScalarCat Dual(.,) s where
scale s = Dual (scale s)

Conal Elliott Efficient automatic differentiation made easy October, 2020

23 / 44

http://conal.net

Backpropagation

Conal Elliott Efficient automatic differentiation made easy October, 2020 24 / 44

http://conal.net

Backpropagation

D Dual_,

Conal Elliott Efficient automatic differentiation made easy October, 2020 24 / 44

http://conal.net

Conclusions

Simple AD algorithm, specializing to forward, reverse, mixed.

No graphs, tapes, tags, partial derivatives, or mutation.

e Parallel-friendly and possibly low memory use.

e Calculated from simple, regular algebra problems.

o Generalizes to derivative categories other than linear maps.

e Differentiate regular Haskell code (via plugin).

ICFP 2018 paper: pictures, proofs, incremental computation.

Conal Elliott Efficient automatic differentiation made easy October, 2020 25 / 44

http://conal.net/papers/essence-of-ad/
http://conal.net

Running examples

sqr:: Num a = a — a
sqra=ax*a

magSqr :: Num a = a X a — a
magSqr (a,b) = sqr a + sqr b

cosSinProd :: Floating a = a X a — a X a
cosSinProd (z,y) = (cos z,sin z) where z = z % y

Conal Elliott Efficient automatic differentiation made easy October, 2020 26 / 44

http://conal.net

Running examples

sqr:: Num a = a — a
sqra=ax*a

magSqr :: Num a = a X a — a
magSqr (a,b) = sqr a + sqr b

cosSinProd :: Floating a = a X a — a X a
cosSinProd (z,y) = (cos z,sin z) where z = z % y

In categorical vocabulary:

sqr = mulC o (id » id)
magSqr = addC o ((sqr o exl) » (sqr o exr))
cosSinProd = (cosC » sinC) o mulC

Conal Elliott Efficient automatic differentiation made easy October, 2020 26 / 44

http://conal.net

Visualizing computations

magSqr (a,b) = sqr a + sqr b

magSqr = addC o ((sqr o exl) » (sqr o exr))

X
J
In — + Out
I
X
/

Auto-generated from Haskell code. See Compiling to categories.

Conal Elliott Efficient automatic differentiation made easy October, 2020 27 / 44

http://conal.net/papers/compiling-to-categories/
http://conal.net

AD example

sSqr a = a * a

sqr = mulC o (id » id)

Conal Elliott Efficient automatic differentiation made easy October, 2020 28 / 44

http://conal.net

AD example

sSqr a = a * a

sqr = mulC o (id » id)

@ x
D<A

Conal Elliott Efficient automatic differentiation made easy October, 2020 28 / 44

Out

http://conal.net

AD example

* .

magSqr (a,b) = sqr a + sqr b

magSqr = addC o ((sqr o exl) » (sqr o exr))

Conal Elliott Efficient automatic differentiation made easy October, 2020 29 / 44

http://conal.net

AD example

B)T

NoH ~

magSqr (a,b) = sqr a + sqr b

magSqr = addC o ((sqr o exl) » (sqr o exr))

In X

Out

}/’C Out

LAY

In X

Conal Elliott Efficient automatic differentiation made easy October, 2020 29 / 44

http://conal.net

AD example

cosSinProd (z,y) = (cos z, sin z) where z = z * y

cosSinProd = (cosC & sinC) o mulC

Conal Elliott Efficient automatic differentiation made easy October, 2020 30 / 44

http://conal.net

AD example

cosSinProd (z,y) = (cos z, sin z) where z = z * y

cosSinProd = (cosC & sinC) o mulC

(Blam
o

Conal Elliott Efficient automatic differentiation made easy October, 2020 30 / 44

sin

http://conal.net

RAD example (dual function)

B

:
&

Out

In Out

Conal Elliott Efficient automatic differentiation made easy October, 2020 31 / 44

http://conal.net

RAD example (dual vector)

B

:
&

In +

| 1.0 |

Conal Elliott Efficient automatic differentiation made easy October, 2020 32 / 44

Out

http://conal.net

RAD example (dual function)

In Out

In
| O
In + Out
|/

Conal Elliott Efficient automatic differentiation made easy October, 2020 33/ 44

Out

http://conal.net

RAD example (vector)

In Out

In

Out

1.0

L/

Conal Elliott Efficient automatic differentiation made easy October, 2020 34 / 44

http://conal.net

RAD example (dual function)

In

Out

Out

0.0

Conal Elliott Efficient automatic differentiation made easy October, 2020 35 / 44

http://conal.net

RAD example (dual vector)

Eﬂ out
E
(10 Out
(00

Conal Elliott Efficient automatic differentiation made easy October, 2020 36 / 44

http://conal.net

RAD example (dual function)

(D<H

Out

<G

Out

Conal Elliott

Out

Efficient automatic differentiation made easy October, 2020

37 / 44

http://conal.net

RAD example (dual vector)

]

In Out

Conal Elliott Efficient automatic differentiation made easy October, 2020 38 / 44

http://conal.net

RAD example (dual function)

S
B D

)
Gl
=<

(]

Conal Elliott Efficient automatic differentiation made easy October, 2020 39 / 44

http://conal.net

RAD example (dual vector)

B RO

~
X
%
+
~
+
/ Out
In —
S
X
%
N
+
%

Conal Elliott Efficient automatic differentiation made easy October, 2020 40 / 44

http://conal.net

RAD example (dual function)

Conal Elliott Efficient automatic differentiation made easy October, 2020 41 / 44

http://conal.net

RAD example (matrix)

negate

negate

Conal Elliott Efficient automatic differentiation made easy October, 2020 42 / 44

http://conal.net

Reflections: recipe for success

Conal Elliott Efficient automatic differentiation made easy October, 2020 43 / 44

http://conal.net/papers/compiling-to-categories
http://conal.net

Reflections: recipe for success

Key principles:
e Capture main concepts as first-class values.

e Focus on abstract notions, not specific representations.

o Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Conal Elliott Efficient automatic differentiation made easy October, 2020

43 / 44

http://conal.net/papers/compiling-to-categories
http://conal.net

Reflections: recipe for success

Key principles:
e Capture main concepts as first-class values.
e Focus on abstract notions, not specific representations.
o Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Quandary: Most programming languages poor for function-like things.

Conal Elliott Efficient automatic differentiation made easy October, 2020 43 / 44

http://conal.net/papers/compiling-to-categories
http://conal.net

Reflections: recipe for success

Key principles:
e Capture main concepts as first-class values.
e Focus on abstract notions, not specific representations.
o Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Quandary: Most programming languages poor for function-like things.

Solution: Compiling to categories.

Conal Elliott Efficient automatic differentiation made easy October, 2020 43 / 44

http://conal.net/papers/compiling-to-categories
http://conal.net

Symbolic vs automatic differentiation

Often described as opposing techniques:

e Symbolic:
o Apply differentiation rules symbolically.

e Can duplicate much work.

e Needs algebraic manipulation.

e Automatic:
e FAD: easy to implement but often inefficient.

o RAD: efficient but tricky to implement.

Conal Elliott Efficient automatic differentiation made easy October, 2020

44 / 44

http://conal.net

Symbolic vs automatic differentiation

Often described as opposing techniques:

e Symbolic:
o Apply differentiation rules symbolically.

e Can duplicate much work.

e Needs algebraic manipulation.

e Automatic:
e FAD: easy to implement but often inefficient.

o RAD: efficient but tricky to implement.

My view: AD is SD done by a compiler.

Compilers already work symbolically and preserve sharing.

Conal Elliott Efficient automatic differentiation made easy October, 2020

44 / 44

http://conal.net

