Efficient automatic differentiation made easy via elementary category theory

Conal Elliott

October 29, 2020

Conal Elliott

October 29, 2020 1 / 44

On Banach spaces a and b,

$$\mathcal{D} :: (a \to b) \to (a \to (a \multimap b))$$

 $f \ a + \mathcal{D} f \ a \ \varepsilon$ approximates $f \ (a + \varepsilon)$ for small ε .

$$\lim_{\varepsilon \to 0} \frac{\|f(a+\varepsilon) - (fa+\mathcal{D}fa\varepsilon)\|}{\|\varepsilon\|} = 0$$

See Calculus on Manifolds by Michael Spivak.

Differentiation of computable functions is not computable.

Instead, differentiate recipes: $\llbracket \overline{\mathcal{D}} p \rrbracket = \mathcal{D} \llbracket p \rrbracket$.

Differentiation of computable functions is not computable.

Instead, differentiate *recipes*: $\llbracket \overline{\mathcal{D}} p \rrbracket = \mathcal{D} \llbracket p \rrbracket$.

Popular recipe forms: graphs, imperative programs, lambda calculus.

Differentiation composes messily in these forms

Differentiation of computable functions is not computable.

Instead, differentiate *recipes*: $\llbracket \overline{\mathcal{D}} p \rrbracket = \mathcal{D} \llbracket p \rrbracket$.

Popular recipe forms: graphs, imperative programs, lambda calculus.

Differentiation composes messily in these forms,

but tidily in language of categories!

Sequential:

$$\begin{array}{l} (\circ) :: (b \to c) \to (a \to b) \to (a \to c) \\ (g \circ f) \ a = g \ (f \ a) \end{array}$$

$$\mathcal{D}(g \circ f) \ a = \mathcal{D} \ g(f \ a) \circ \mathcal{D} \ f \ a$$
 -- chain rule

Sequential:

$$(\circ) :: (b \to c) \to (a \to b) \to (a \to c) (g \circ f) \ a = g \ (f \ a)$$

$$\mathcal{D}(g \circ f) \ a = \mathcal{D} \ g(f \ a) \circ \mathcal{D} \ f \ a$$
 -- chain rule

Parallel:

$$\mathcal{D}(f \land g) \ a = \mathcal{D}f \ a \land \mathcal{D}g \ a$$

Linear functions

Linear functions are their own derivatives everywhere.

 $\begin{array}{lll} \mathcal{D} \ id & a = id \\ \mathcal{D} \ exl & a = exl \\ \mathcal{D} \ exr \ a = exr \end{array}$

...

Chain rule:

$$\mathcal{D}(g \circ f) \ a = \mathcal{D} \ g \ (f \ a) \circ \mathcal{D} \ f \ a$$
 -- non-compositional

Chain rule:

$$\mathcal{D}(g \circ f) \ a = \mathcal{D} \ g(f \ a) \circ \mathcal{D} \ f \ a$$
 -- non-compositional

To fix, combine regular result with derivative:

$$\hat{\mathcal{D}} :: (a \to b) \to (a \to (b \times (a \multimap b))) \hat{\mathcal{D}} f = f \land \mathcal{D} f \quad \text{-- specification}$$

so that $\mathcal{D} f = exr \circ \hat{\mathcal{D}} f$.

class Category
$$(\rightsquigarrow)$$
 where
 $id :: a \rightsquigarrow a$
 $(\circ) :: (b \rightsquigarrow c) \rightarrow (a \rightsquigarrow b) \rightarrow (a \rightsquigarrow c)$

class Category
$$(\rightsquigarrow) \Rightarrow$$
 Cartesian (\rightsquigarrow) where
exl :: $(a \times b) \rightsquigarrow a$
exr :: $(a \times b) \rightsquigarrow b$
 $(\triangle) :: (a \rightsquigarrow c) \rightarrow (a \rightsquigarrow d) \rightarrow (a \rightsquigarrow (c \times d))$

Plus laws and classes for arithmetic etc.

newtype
$$D \ a \ b = D \ (a \to b \times (a \multimap b))$$

 $\hat{D} :: (a \to b) \to D \ a \ b$
 $\hat{D} \ f = D \ (f \land D \ f)$ -- not computable

Automatic differentiation (specification)

newtype
$$D \ a \ b = D \ (a \rightarrow b \times (a \multimap b))$$

 $\hat{D} :: (a \rightarrow b) \rightarrow D \ a \ b$
 $\hat{D} \ f = D \ (f \land D \ f) \quad \text{-- not computable}$

Specification: $\hat{\mathcal{D}}$ is a cartesian functor, i.e.,

The game: solve these equations for the RHS operations.

Conal Elliott

Efficient automatic differentiation made easy October, 2020 8 / 44

Automatic differentiation (solution)

newtype
$$D \ a \ b = D \ (a \rightarrow b \times (a \multimap b))$$

$$linearD f = D (\lambda a \to (f a, f))$$

- instance Category D where $id = linearD \ id$ $D \ g \circ D \ f = D \ (\lambda a \rightarrow let \ \{(b, f') = f \ a; (c, g') = g \ b\} \ in \ (c, g' \circ f'))$
- instance Cartesian D where $exl = linearD \ exl$ $exr = linearD \ exr$ $D \ f \land D \ g = D \ (\lambda a \rightarrow let \ \{(b, f') = f \ a; (c, g') = g \ a \} \ in \ ((b, c), f' \land g'))$
- **instance** NumCat D **where** negateC = linearD negateC addC = linearD addC mulC = D (mulC $\land (\lambda(a, b) \rightarrow \lambda(da, db) \rightarrow b * da + a * db))$

Generalizing AD

newtype
$$D \ a \ b = D \ (a \rightarrow b \times (a \multimap b))$$

$$linearD f = D (\lambda a \to (f a, f))$$

- instance Category D where $id = linearD \ id$ $D \ g \circ D \ f = D \ (\lambda a \rightarrow let \ \{(b, f') = f \ a; (c, g') = g \ b\} \ in \ (c, g' \circ f'))$
- instance Cartesian D where $exl = linearD \ exl$ $exr = linearD \ exr$ $D \ f \land D \ g = D \ (\lambda a \rightarrow let \ \{(b, f') = f \ a; (c, g') = g \ a\} \ in \ ((b, c), f' \land g'))$

Each D operation just uses corresponding $(-\circ)$ operation.

Generalize from $(-\infty)$ to other cartesian categories.

Generalized AD

$$\mathbf{newtype} \ D_{(\leadsto)} \ a \ b = D \ (a \to b \times (a \rightsquigarrow b))$$

linearD $f f' = D (\lambda a \rightarrow (f a, f'))$

instance Category $(\rightsquigarrow) \Rightarrow$ Category $D_{(\rightsquigarrow)}$ where $id = linearD \ id \ id$ $D \ g \circ D \ f = D \ (\lambda a \rightarrow let \ \{(b, f') = f \ a; (c, g') = g \ b\} \ in \ (c, g' \circ f'))$

instance Cartesian $(\rightsquigarrow) \Rightarrow$ Cartesian $D_{(\rightsquigarrow)}$ where $exl = linearD \ exl \ exl$ $exr = linearD \ exr \ exr$ $D \ f \land D \ g = D \ (\lambda a \rightarrow let \ \{(b, f') = f \ a; (c, g') = g \ a\} \ in \ ((b, c), f' \land g'))$

instance ... \Rightarrow NumCat D where negateC = linearD negateC negateC addC = linearD addC addC mulC = ??

Numeric operations

Specific to (linear) *functions*:

$$mulC = D \ (mulC \land (\lambda(a, b) \to \lambda(da, db) \to b * da + a * db))$$

Numeric operations

Specific to (linear) *functions*:

$$mulC = D \ (mulC \land (\lambda(a, b) \to \lambda(da, db) \to b * da + a * db))$$

Rephrase:

$$\begin{aligned} scale :: Multiplicative \ a \Rightarrow a \to (a \to a) \\ scale \ u &= \lambda v \to u * v \\ (\lor) :: Additive \ c \Rightarrow (a \to c) \to (b \to c) \to ((a \times b) \to c) \\ (f \lor g) \ (a, b) &= f \ a + g \ b \end{aligned}$$

Now

$$mulC = D \ (mulC \land (\lambda(a, b) \rightarrow scale \ b \lor scale \ a))$$

class Category
$$(\rightsquigarrow) \Rightarrow Cocartesian_{\times} (\rightsquigarrow)$$
 where
 $inl :: a \rightsquigarrow (a \times b)$
 $inr :: b \rightsquigarrow (a \times b)$
 $(\triangledown) :: (a \rightsquigarrow c) \rightarrow (b \rightsquigarrow c) \rightarrow ((a \times b) \rightsquigarrow c)$

class ScalarCat (
$$\rightsquigarrow$$
) a where
scale :: $a \rightarrow (a \rightsquigarrow a)$

Differentiation:

$$\mathcal{D}(f \lor g)(a, b) = \mathcal{D}f a \lor \mathcal{D}g b$$

The rest are linear.

Linear maps as functions

newtype $a \rightarrow b = LFun \ (a \rightarrow b)$ -- linear

instance Category
$$(\rightarrow)$$
 where
 $id = LFun \ id$
 $(\circ) = inNew_2 \ (\circ)$

instance Cartesian
$$(\rightarrow)$$
 where
 $exl = LFun \ exl$
 $exr = LFun \ exr$
 $(\triangle) = inNew_2 \ (\triangle)$

instance $Cocartesian_{\times} (\rightarrow)$ where $inl = LFun (\lambda a \rightarrow (a, 0))$ $inr = LFun (\lambda b \rightarrow (0, b))$ $(\neg) = inNew_2 (\lambda f g (a, b) \rightarrow f a + g b)$

instance Multiplicative $s \Rightarrow ScalarCat (\rightarrow) s$ where scale s = LFun (s *)

- Finally, extract a matrix or gradient vector.
- Very inefficient for gradient-based optimization!
- Alternatively, represent as "generalized matrices" $(M_s \ a \ b)$. Then solve more homomorphisms.

- Composition is associative.
- Some associations are more efficient than others, so
 - Associate optimally.
 - Equivalent to matrix chain multiplication $O(n \log n)$.
 - Choice determined by *types*, i.e., compile-time information.

- Composition is associative.
- Some associations are more efficient than others, so
 - Associate optimally.
 - Equivalent to matrix chain multiplication $O(n \log n)$.
 - Choice determined by *types*, i.e., compile-time information.
- All right: "forward mode AD" (FAD).
- All left: "reverse mode AD" (RAD).
- RAD is *much* better for gradient-based optimization.

CPS-like category:

- Represent $a \rightsquigarrow b$ by $(b \rightsquigarrow r) \rightarrow (a \rightsquigarrow r)$.
- Meaning: $f' \mapsto (\lambda h \to h \circ f')$.
- Construct $h \circ \mathcal{D} f$ a directly, without $\mathcal{D} f$ a.

Old technique (Cayley 1854), vastly generalized by Yoneda.

Continuation category (specification)

$$\mathbf{newtype} \ ContC \ (\leadsto) \ r \ a \ b = Cont \ ((b \rightsquigarrow r) \rightarrow (a \rightsquigarrow r))$$

$$\begin{array}{l} cont :: Category \ (\leadsto) \Rightarrow (a \leadsto b) \rightarrow ContC \ (\leadsto) \ r \ a \ b \\ cont \ f = Cont \ (\circ f) \end{array}$$

Specification: *cont* is a cartesian functor.

Continuation category (specification)

newtype ContC (
$$\rightsquigarrow$$
) r a b = Cont ((b \rightsquigarrow r) \rightarrow (a \rightsquigarrow r))

$$\begin{array}{l} cont :: Category \ (\leadsto) \Rightarrow (a \leadsto b) \rightarrow ContC \ (\leadsto) \ r \ a \ b \\ cont \ f = Cont \ (\circ f) \end{array}$$

Specification: *cont* is a cartesian functor.

We'll use an isomorphism:

$$\begin{array}{ll} join & :: Cocartesian \ (\leadsto) \Rightarrow (c \rightsquigarrow a) \times (d \rightsquigarrow a) \rightarrow ((c \times d) \rightsquigarrow a) \\ unjoin :: Cocartesian \ (\leadsto) \Rightarrow ((c \times d) \rightsquigarrow a) \rightarrow (c \rightsquigarrow a) \times (d \rightsquigarrow a) \\ join \ (f,g) = f \lor g \\ unjoin \ h & = (h \circ inl, h \circ inr) \end{array}$$

Continuation category (solution)

instance Category
$$(\rightsquigarrow) \Rightarrow$$
 Category $(ContC (\rightsquigarrow) r)$ where
 $id = Cont \ id$
 $Cont \ g \circ Cont \ f = Cont \ (f \circ g)$

instance Cartesian (
$$\rightsquigarrow$$
) \Rightarrow Cartesian (ContC (\rightsquigarrow) r) where
 $exl = Cont (join \circ inl)$
 $exr = Cont (join \circ inr)$
(\triangle) = inNew₂ ($\lambda f \ g \rightarrow (f \lor g) \circ unjoin$)

instance $Cocartesian_{\times} (\rightsquigarrow) \Rightarrow Cocartesian_{\times} (ContC (\rightsquigarrow) r)$ where $inl = Cont (exl \circ unjoin)$ $inr = Cont (exr \circ unjoin)$ $(\triangledown) = inNew_2 (\lambda f \ g \rightarrow join \circ (f \land g))$

instance $ScalarCat (\rightsquigarrow) a \Rightarrow ScalarCat (ContC (\rightsquigarrow) r) a$ where $scale \ s = Cont (scale \ s)$

$D_{ContC\ M_s\ r}$

- Vector space dual: $u^* = u \multimap s$, with u a vector space over s.
- If u has finite dimension, then $u^* \cong u$.
- Represent $a \multimap b$ by $b^* \to a^*$ by $b \to a$.
- *Ideal* for extracting gradient vector. Just apply to 1 (*id*).

newtype
$$Dual_{(\sim)}$$
 $a \ b = Dual \ (b \sim) a$
 $asDual :: ContC \ (\sim) \ s \ a \ b \rightarrow Dual_{(\sim)} \ a \ b$
 $asDual \ (Cont \ f) = Dual \ (dot^{-1} \circ f \circ dot)$

where

$$dot :: u \to (u \multimap s)$$
$$dot^{-1} :: (u \multimap s) \to u$$

Specification: *asDual* is a cartesian functor.

Duality (solution)

newtype
$$Dual_{(\sim)}$$
 $a \ b = Dual \ (b \rightsquigarrow a)$

instance Category
$$(\rightsquigarrow) \Rightarrow$$
 Category $Dual_{(\rightsquigarrow)}$ where
 $id = Dual \ id$
 $(\circ) = inNew_2 \ (flip \ (\circ))$

instance $Cocartesian_{\times} (\rightsquigarrow) \Rightarrow Cartesian Dual_{(\rightsquigarrow)}$ where

$$exl = Dual inl exr = Dual inr (\triangle) = inNew_2 (\nabla)$$

instance Cartesian $(\rightsquigarrow) \Rightarrow Cocartesian_{\times} Dual_{(\rightsquigarrow)}$ where $inl = Dual \ exl$ $inr = Dual \ exr$ $(\lor) = inNew_2 \ (\vartriangle)$

instance $ScalarCat (\rightsquigarrow) s \Rightarrow ScalarCat Dual_{(\rightsquigarrow)} s$ where $scale \ s = Dual \ (scale \ s)$

Backpropagation

Backpropagation

$D_{Dual} \rightarrow$

- Simple AD algorithm, specializing to forward, reverse, mixed.
- No graphs, tapes, tags, partial derivatives, or mutation.
- Parallel-friendly and possibly low memory use.
- Calculated from simple, regular algebra problems.
- Generalizes to derivative categories other than linear maps.
- Differentiate regular Haskell code (via plugin).
- ICFP 2018 paper: pictures, proofs, incremental computation.

Running examples

$$sqr :: Num \ a \Rightarrow a \rightarrow a$$
$$sqr \ a = a * a$$

 $magSqr :: Num \ a \Rightarrow a \times a \rightarrow a$ $magSqr \ (a, b) = sqr \ a + sqr \ b$

 $cosSinProd :: Floating \ a \Rightarrow a \times a \rightarrow a \times a$ $cosSinProd \ (x, y) = (cos \ z, sin \ z)$ where z = x * y

Running examples

$$sqr :: Num \ a \Rightarrow a \rightarrow a$$

$$sqr \ a = a * a$$

$$magSqr :: Num \ a \Rightarrow a \times a \rightarrow a$$

$$magSqr \ (a, b) = sqr \ a + sqr \ b$$

$$cosSinProd :: Floating \ a \Rightarrow a \times a \rightarrow a \times a$$

$$cosSinProd \ (x, y) = (cos \ z, sin \ z) \text{ where } z = x * y$$

In categorical vocabulary:

$$\begin{split} sqr &= mulC \circ (id \land id) \\ magSqr &= addC \circ ((sqr \circ exl) \land (sqr \circ exr)) \\ cosSinProd &= (cosC \land sinC) \circ mulC \end{split}$$

$$magSqr(a, b) = sqr a + sqr b$$

 $magSqr = addC \circ ((sqr \circ exl) \land (sqr \circ exr))$

Auto-generated from Haskell code. See Compiling to categories.

 $sqr \ a = a * a$

 $sqr = mulC \circ (id \land id)$

$$sqr \ a = a * a$$

$$sqr = mulC \circ (id \land id)$$

magSqr(a, b) = sqr a + sqr b

 $magSqr = addC \circ ((sqr \circ exl) \land (sqr \circ exr))$

magSqr(a, b) = sqr a + sqr b

 $magSqr = addC \circ ((sqr \circ exl) \land (sqr \circ exr))$

 $cosSinProd (x, y) = (cos \ z, sin \ z)$ where z = x * y $cosSinProd = (cosC \land sinC) \circ mulC$

 $cosSinProd (x, y) = (cos \ z, sin \ z)$ where z = x * y $cosSinProd = (cosC riangle sinC) \circ mulC$

RAD example (dual function)

RAD example (dual vector)

RAD example (dual function)

RAD example (vector)

RAD example (dual function)

RAD example (dual function)

RAD example (dual vector)

RAD example (dual function)

RAD example (dual vector)

RAD example (dual function)

RAD example (matrix)

Reflections: recipe for success

Key principles:

- Capture main concepts as first-class values.
- Focus on abstract notions, not specific representations.
- Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Key principles:

- Capture main concepts as first-class values.
- Focus on abstract notions, not specific representations.
- Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Quandary: Most programming languages poor for function-like things.

Key principles:

- Capture main concepts as first-class values.
- Focus on abstract notions, not specific representations.
- Calculate efficient implementation from simple specification.

Not previously applied to AD (afaik).

Quandary: Most programming languages poor for function-like things.

Solution: Compiling to categories.

Often described as opposing techniques:

- Symbolic:
 - Apply differentiation rules symbolically.
 - Can duplicate much work.
 - Needs algebraic manipulation.
- Automatic:
 - FAD: easy to implement but often inefficient.
 - RAD: efficient but tricky to implement.

Often described as opposing techniques:

- Symbolic:
 - Apply differentiation rules symbolically.
 - Can duplicate much work.
 - Needs algebraic manipulation.
- Automatic:
 - FAD: easy to implement but often inefficient.
 - RAD: efficient but tricky to implement.

My view: AD is SD done by a compiler.

Compilers already work symbolically and preserve sharing.