Folds and unfolds all around us

Conal Elliott

Tabula

Spring, 2013

Preliminaries

This talk is a literate Haskell program.
module FoldsAndUnfolds where
I'll use some non-standard (for Haskell) type notation:
type $1=()$
type $(+)=$ Either
type $(\times)=($,
infixl $7 \times$
infixl $6+$

Recursive functional programming

On numbers:

$$
\begin{aligned}
& \text { fact }_{0} 0=1 \\
& \text { fact }_{0} n=n \times \text { fact }_{0}(n-1)
\end{aligned}
$$

On lists:

$$
\begin{aligned}
& \operatorname{data}[a]=[] \mid a:[a] \\
& \operatorname{product}_{L}::[\text { Integer }] \rightarrow \text { Integer } \\
& \operatorname{product}_{L}[]=1 \\
& \operatorname{product}_{L}(a: \text { as })=a \times \text { product }_{L} \text { as } \\
& \text { range }_{L}:: \text { Integer } \rightarrow \text { Integer } \rightarrow[\text { Integer }] \\
& \text { range }_{L} l h \mid l>h=[] \\
& \\
& \qquad \text { otherwise }=l: \text { range }_{L}(\text { succ } l) h
\end{aligned}
$$

Recursive functional programming

On (binary leaf) trees:
data $T a=L a \mid B(T a)(T a)$ deriving Show

```
product \(_{T}:: T\) Integer \(\rightarrow\) Integer
\(\operatorname{product}_{T}\left(\begin{array}{ll}L & a\end{array}\right)=a\)
\(\operatorname{product}_{T}(B\) s \(t)=\operatorname{product}_{T} s \times \operatorname{product}_{T} t\)
```

$$
\text { where } m=(l+h)^{`} d i v^{‘} 2
$$

$$
\begin{aligned}
& \text { range }_{T}:: \text { Integer } \rightarrow \text { Integer } \rightarrow T \text { Integer } \\
& \text { range }_{T} l h \mid l \equiv h \quad=L l \\
& \mid \text { otherwise }=B\left(\text { range }_{T} l m\right)\left(\text { range }_{T}(m+1) h\right)
\end{aligned}
$$

Recursive functional programming?

Structured functional programming

... recursive equations are the "assembly language" of functional programming, and direct recursion the goto.

Jeremy Gibbons, Origami programming

A structured alternative:

- identify commonly useful patterns,
- determine their properties, and
- apply the patterns and properties.

Folds ("catamorphisms")

Contract a structure down to a single value.
For lists:

$$
\begin{aligned}
& \operatorname{fold}_{L}::(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow([a] \rightarrow b) \\
& \text { fold }_{L}-b[]=b \\
& \text { fold }_{L} f b(a: \text { as })=f a\left(\text { fold }_{L} f b a s\right) \\
& \\
& \text { sum }_{L}=\text { fold }_{L}(+) 0 \\
& \text { product }_{L}=\text { fold }_{L}(\times) 1 \\
& \operatorname{reverse}_{L}=\text { fold }_{L}(\lambda a r \rightarrow r+[a])[]
\end{aligned}
$$

For trees:

$$
\begin{aligned}
& \text { fold }_{T}::(b \rightarrow b \rightarrow b) \rightarrow(a \rightarrow b) \rightarrow(T a \rightarrow b) \\
& \text { fold }_{T}-l(L a)=l a \\
& \text { fold }_{T} b l(B s t)=b\left(\text { fold }_{T} b l s\right)\left(\text { fold }_{T} b l t\right) \\
& \text { product }_{T}=\text { fold }_{T}(\times) \text { id }
\end{aligned}
$$

Unfolds ("anamorphisms")

Expand a structure $u p$ from a single value.

Lists:

$$
\begin{aligned}
& \text { unfold }_{L}::(b \rightarrow \text { Maybe }(a \times b)) \rightarrow(b \rightarrow[a]) \\
& \text { unfold }_{L} f b=\text { case } f \text { of } \\
& \text { Just }\left(a, b^{\prime}\right) \rightarrow a: \text { unfold }_{L} f b^{\prime} \\
& \text { Nothing } \rightarrow[]
\end{aligned}
$$

$$
\begin{aligned}
& \text { range } L^{\prime}:: \text { Integer } \times \text { Integer } \rightarrow[\text { Integer }] \\
& {\text { range } L^{\prime}}^{\prime}=\text { unfold }_{L} g \\
& \text { where } \\
& \qquad \begin{aligned}
g(l, h) \mid l>h & =\operatorname{Nothing} \\
& \mid \text { otherwise }
\end{aligned}=\operatorname{Just}(l,(\text { succ } l, h))
\end{aligned}
$$

Unfolds ("anamorphisms")

Trees:

$$
\begin{aligned}
& \text { unfold }_{T}::(b \rightarrow a+b \times b) \rightarrow(b \rightarrow T a) \\
& \text { unfold }_{T} g x= \\
& \quad \text { case } g x \text { of } \\
& \\
& \quad \text { Left } a \quad \rightarrow L a \\
& \text { Right }(c, d)
\end{aligned} \rightarrow B\left(\text { unfold }_{T} g c\right)\left(\text { unfold }_{T} g d\right)
$$

range $_{T P}::$ Integer \times Integer $\rightarrow T$ Integer

range $_{T P}=$ unfold $_{T} g$

where

$$
\begin{gathered}
g(l, h) \mid l \equiv h \quad=\operatorname{Left} l \\
\mid \text { otherwise }=\operatorname{Right}((l, m),(m+1, h)) \\
\text { where } m=(l+h)^{`} \text { div }^{`} 2
\end{gathered}
$$

Factorial again

Assembly language:

$$
\begin{aligned}
& \text { fact }_{0} 0=1 \\
& \text { fact }_{0} n=n \times \text { fact }_{0}(n-1)
\end{aligned}
$$

You may have seen this Haskelly definition:

$$
\text { fact }_{1} n=\operatorname{product}[1 \ldots n]
$$

Theme: replace control structures by data structures and standard combining forms.

Carry this theme further.

Combining unfold and fold

Equivalently,

$$
\text { fact }_{1}=\text { product }_{L} \circ \text { range }_{L} 1
$$

Note: composition of unfold $\left(\right.$ range $\left._{L}\right)$ and fold product $_{L}$.
More explicit:

$$
\begin{aligned}
& \text { fact }_{2}=\text { fold }_{L}(\times) 1 \circ \text { unfold }_{L} g \\
& \text { where } \\
& \quad g 0=\text { Nothing } \\
& g n=\text { Just }(n, n-1)
\end{aligned}
$$

This combination of unfold and fold is called a "hylomorphism".

Fibonacci

Assembly language:

$$
\begin{aligned}
& f i b_{0} 0=0 \\
& f i b_{0} 1=1 \\
& \text { fib } n=f i b_{0}(n-1)+f i b_{0}(n-2)
\end{aligned}
$$

Via trees:

```
\(\mathrm{fib}_{T}::\) Integer \(\rightarrow T\) Integer
\(f i b_{T} 0=L 0\)
\(\mathrm{fib}_{T} 1=L 1\)
\(f i b_{T} n=B\left(f i b_{T}(n-1)\right)\left(f i b_{T}(n-2)\right)\)
    sum \(_{T}:: T\) Integer \(\rightarrow\) Integer
    \(\operatorname{sum}_{T}=\) fold \(_{T}(+) i d\)
    fib \(b_{1}::\) Integer \(\rightarrow\) Integer
    \(f i b_{1}=s u m_{T} \circ f i b_{T}\)
```


Fibonacci

More explicitly hylomorphic:

$$
\begin{aligned}
& \text { unfold }_{T}::(b \rightarrow a+b \times b) \rightarrow(b \rightarrow T a) \\
& \text { fib }_{2}:: \text { Integer } \rightarrow \text { Integer } \\
& \text { fib }_{2}=\text { fold }_{T}(+) \text { id } \circ \text { unfold }_{T} g \\
& \quad \text { where } \\
& \quad g 0=\text { Left } 0 \\
& \quad g 1=\text { Left } 1 \\
& \quad g n=\operatorname{Right}(n-1, n-2)
\end{aligned}
$$

Generalizing folds and unfolds

Summary of fold and unfold:

$$
\begin{array}{ll}
\text { fold }_{L} & ::(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow([a] \rightarrow b) \\
\text { unfold }_{L} & ::(b \rightarrow \text { Maybe }(a \times b)) \rightarrow(b \rightarrow[a]) \\
\text { fold }_{T} & ::(b \rightarrow b \rightarrow b) \rightarrow(a \rightarrow b) \rightarrow(T a \rightarrow b) \\
\text { unfold }_{T} & ::(b \rightarrow a+b \times b) \rightarrow(b \rightarrow T a)
\end{array}
$$

Why the asymmetry?

Playing with type isomorphisms

$$
\begin{array}{rlrl}
\text { fold }_{L}::(a \rightarrow b \rightarrow b) \rightarrow b & & \rightarrow([a] \rightarrow b) \\
& \simeq(a \times b \rightarrow b) \rightarrow b & & \rightarrow([a] \rightarrow b) \\
& \simeq(a \times b \rightarrow b) \rightarrow(\mathbf{1} \rightarrow b) & \rightarrow([a] \rightarrow b) \\
& \simeq(a \times b \rightarrow b) \times(\mathbf{1} \rightarrow b) & \rightarrow([a] \rightarrow b) \\
& \simeq((a \times b+\mathbf{1}) \rightarrow b) & & \rightarrow([a] \rightarrow b) \\
& \simeq(\text { Maybe }(a \times b) \rightarrow b) & & \rightarrow([a] \rightarrow b)
\end{array}
$$

Why Maybe $(a \times b)$?
Because

$$
\begin{aligned}
{[a] } & \simeq \text { Maybe }(a \times(\text { Maybe }(a \times(\text { Maybe }(a \times(\ldots)))))) \\
& \simeq \text { Fix }(\Lambda b \rightarrow \text { Maybe }(a \times b))
\end{aligned}
$$

Regularizing

Recall:

$$
\text { fold }_{L}::(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow([a] \rightarrow b)
$$

A more standard interface:

$$
\begin{aligned}
& \text { fold }_{L F}::\left(\text { Maybe }^{(a \times b) \rightarrow b) \rightarrow([a] \rightarrow b)}\right. \\
& \text { fold }_{L F} h=\text { fold }_{L}\left(\text { curry }\left(h \circ \text { Just }^{2}\right)\right)(h \text { Nothing })
\end{aligned}
$$

Now the duality emerges:

$$
\begin{aligned}
& \text { unfold }_{L}::(b \rightarrow \text { Maybe }(a \times b)) \rightarrow(b \rightarrow[a]) \\
& \text { fold }_{L F}::(\text { Maybe }(a \times b) \rightarrow b) \rightarrow([a] \rightarrow b)
\end{aligned}
$$

Similarly for tree fold and unfold.

List and tree unfold and fold - pictures

$$
a+b \times b
$$

$$
T a \xrightarrow[\text { fold }_{T} h]{ } \stackrel{\downarrow^{h}}{b}
$$

General regular algebraic data types - pictures

Build up from "base functor" F to fixpoint μF :

General regular algebraic data types - Haskell

Build up from "base functor" f :

$$
\begin{aligned}
& \text { newtype Fix } f=\text { Roll }\{\text { unRoll }:: f(\text { Fix } f)\} \\
& \text { fold }:: \text { Functor } f \Rightarrow(f b \rightarrow b) \rightarrow(\text { Fix } f \rightarrow b) \\
& \text { fold } h=h \circ \text { fmap }(\text { fold } h) \circ \text { unRoll } \\
& \text { unfold }:: \text { Functor } f \Rightarrow(a \rightarrow f a) \rightarrow(a \rightarrow \text { Fix } f) \\
& \text { unfold } g=\text { Roll } \circ \text { fmap }(\text { unfold } g) \circ g \\
& \text { hylo }:: \text { Functor } f \Rightarrow(f b \rightarrow b) \rightarrow(a \rightarrow f a) \rightarrow(a \rightarrow b) \\
& \text { hylo } h g=\text { fold } h \circ \text { unfold } g
\end{aligned}
$$

Let's revisit our examples.

Factorial via list hylo

data LF a $t=$ NilF \mid ConsF a t deriving Functor type $L^{\prime} a=F i x\left(\begin{array}{ll}L F & a\end{array}\right)$
fact $_{3}::$ Integer \rightarrow Integer
fact $_{3}=$ hylo $h g$

where

$$
\begin{aligned}
& g:: \text { Integer } \rightarrow \text { LF Integer Integer } \\
& g 0=\text { NilF } \\
& g n=\text { ConsF } n(n-1) \\
& h:: \text { LF Integer Integer } \rightarrow \text { Integer } \\
& h \text { NilF } \quad=1 \\
& h(\text { ConsF } n u)=n \times u
\end{aligned}
$$

Fibonacci via tree hylo

data TF a $t=L F a \mid B F t t$ deriving Functor type $T^{\prime} a=$ Fix ($T F a$)
$\mathrm{fib}_{3}::$ Integer \rightarrow Integer
$\mathrm{fib}_{3}=$ hylo $h \mathrm{~g}$

where

$$
\begin{aligned}
& g:: \text { Integer } \rightarrow \text { TF Integer Integer } \\
& g 0=L F 0 \\
& g 1=L F 1 \\
& g n=B F(n-1)(n-2) \\
& h:: \text { TF Integer Integer } \rightarrow \text { Integer } \\
& h(L F n)=n \\
& h(B F u v)=u+v
\end{aligned}
$$

Factorial via tree hylo

$$
\begin{aligned}
& \text { type } \text { Range }=\text { Integer } \times \text { Integer } \\
& \text { fact }_{4}:: \text { Integer } \rightarrow \text { Integer } \\
& \text { fact }_{4} n=\text { hylo } h g(1, n) \\
& \text { where } \\
& \quad g:: \text { Range } \rightarrow \text { TF Integer Range } \\
& g(\text { lo, hi })=\text { case lo'compare } h i \text { of } \\
& \qquad G T \rightarrow \text { LF } 1 \\
& E Q \rightarrow \text { LF lo } \\
& L T \rightarrow \text { let mid }=(l o+h i)^{‘} \text { div }^{`} 2 \text { in } \\
& \quad \text { BF }(\text { lo, mid })(\text { mid }+1, h i)
\end{aligned}
$$

Parallel-friendly!

Another look and unfold and fold

newtype Fix $f=$ Roll $\{$ unRoll $:: f($ Fix $f)\}$
unfold :: Functor $f \Rightarrow(a \rightarrow f a) \rightarrow(a \rightarrow$ Fix $f)$
unfold $g=$ Roll \circ fmap (unfold g) $\circ g$
fold :: Functor $f \Rightarrow(f b \rightarrow b) \rightarrow($ Fix $f \rightarrow b)$
fold $h=h \circ$ fmap $($ fold $h) \circ$ unRoll

Another look and hylo

Another look and hylo

$$
a \xrightarrow{\text { unfold } g} \mu F \xrightarrow{\text { fold } h} b
$$

Definition of hylo.

Another look and hylo

By definitions of fold and unfold.

Another look and hylo

Since unRoll and Roll are inverses.

Another look and hylo

By the Functor law: fmap $v \circ f m a p u \equiv f m a p(v \circ u)$.

Another look and hylo

Definition of hylo. Directly recursive!

All together

Reversed

fold and unfold via hylo

hylo subsumes both fold and unfold:

$$
\begin{aligned}
\text { unfold } g & =\text { hylo Roll } g \\
\text { fold } h & =\text { hylo } h \text { unRoll }
\end{aligned}
$$

since

$$
\text { hylo } h g \equiv \text { fold } h \circ \text { unfold } g
$$

and
fold Roll $\equiv i d \equiv$ unfold unRoll

Summary

- Fold and unfold are structured replacements for the "assembly language" of recursive definitions.
- Unifying view of fold \& unfold across data types via functor fixpoints.
- Recursive programs have a systematic translation to unfold and fold.
- The translation reveals parallelism clearly and simply.

A cautionary tale

Picture credits

