
Folds and unfolds all around us

Conal Elliott

Tabula

Spring, 2013

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 1 / 35

http://conal.net
http://tabula.com/
http://conal.net
http://tabula.com/

Preliminaries

This talk is a literate Haskell program.

module FoldsAndUnfolds where

I’ll use some non-standard (for Haskell) type notation:

type 1 = ()
type (+) = Either
type (×) = (,)

infixl 7×
infixl 6 +

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 2 / 35

http://conal.net
http://tabula.com/

Recursive functional programming

On numbers:

fact0 0 = 1
fact0 n = n × fact0 (n − 1)

On lists:

data [a] = [] | a : [a]

productL :: [Integer]→ Integer
productL [] = 1
productL (a : as) = a × productL as

rangeL :: Integer → Integer → [Integer]
rangeL l h | l > h = []

| otherwise = l : rangeL (succ l) h

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 3 / 35

http://conal.net
http://tabula.com/

Recursive functional programming

On (binary leaf) trees:

data T a = L a | B (T a) (T a) deriving Show

productT :: T Integer → Integer
productT (L a) = a
productT (B s t) = productT s × productT t

rangeT :: Integer → Integer → T Integer
rangeT l h | l ≡ h = L l

| otherwise = B (rangeT l m) (rangeT (m + 1) h)
where m = (l + h) ‘div ‘ 2

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 4 / 35

http://conal.net
http://tabula.com/

Recursive functional programming?

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 5 / 35

http://conal.net
http://tabula.com/

Structured functional programming

... recursive equations are the “assembly language” of
functional programming, and direct recursion the goto.

Jeremy Gibbons, Origami programming

A structured alternative:

identify commonly useful patterns,

determine their properties, and

apply the patterns and properties.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 6 / 35

http://www.cs.ox.ac.uk/publications/publication2335-abstract.html
http://conal.net
http://tabula.com/

Folds (“catamorphisms”)

Contract a structure down to a single value.

For lists:

foldL :: (a → b → b)→ b → ([a]→ b)
foldL b [] = b
foldL f b (a : as) = f a (foldL f b as)

sumL = foldL (+) 0
productL = foldL (×) 1
reverseL = foldL (λa r → r ++ [a]) []

For trees:

foldT :: (b → b → b)→ (a → b)→ (T a → b)
foldT l (L a) = l a
foldT b l (B s t) = b (foldT b l s) (foldT b l t)

productT = foldT (×) id

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 7 / 35

http://conal.net
http://tabula.com/

Unfolds (“anamorphisms”)

Expand a structure up from a single value.

Lists:

unfoldL :: (b → Maybe (a × b))→ (b → [a])
unfoldL f b = case f b of

Just (a, b′)→ a : unfoldL f b′

Nothing → []

rangeL′ :: Integer × Integer → [Integer]
rangeL′ = unfoldL g

where
g (l , h) | l > h = Nothing

| otherwise = Just (l , (succ l , h))

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 8 / 35

http://conal.net
http://tabula.com/

Unfolds (“anamorphisms”)

Trees:

unfoldT :: (b → a + b × b)→ (b → T a)
unfoldT g x = case g x of

Left a → L a
Right (c, d)→ B (unfoldT g c) (unfoldT g d)

rangeTP :: Integer × Integer → T Integer
rangeTP = unfoldT g

where
g (l , h) | l ≡ h = Left l

| otherwise = Right ((l ,m), (m + 1, h))
where m = (l + h) ‘div ‘ 2

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 9 / 35

http://conal.net
http://tabula.com/

Factorial again

Assembly language:

fact0 0 = 1
fact0 n = n × fact0 (n − 1)

You may have seen this Haskelly definition:

fact1 n = product [1 . .n]

Theme: replace control structures by data structures and standard
combining forms.

Carry this theme further.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 10 / 35

http://conal.net
http://tabula.com/

Combining unfold and fold

Equivalently,

fact1 = productL ◦ rangeL 1

Note: composition of unfold (rangeL) and fold productL.

More explicit:

fact2 = foldL (×) 1 ◦ unfoldL g
where

g 0 = Nothing
g n = Just (n,n − 1)

This combination of unfold and fold is called a “hylomorphism”.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 11 / 35

http://conal.net
http://tabula.com/

Fibonacci

Assembly language:

fib0 0 = 0
fib0 1 = 1
fib0 n = fib0 (n − 1) + fib0 (n − 2)

Via trees:

fibT :: Integer → T Integer
fibT 0 = L 0
fibT 1 = L 1
fibT n = B (fibT (n − 1)) (fibT (n − 2))

sumT :: T Integer → Integer
sumT = foldT (+) id

fib1 :: Integer → Integer
fib1 = sumT ◦ fibT

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 12 / 35

http://conal.net
http://tabula.com/

Fibonacci

More explicitly hylomorphic:

unfoldT :: (b → a + b × b)→ (b → T a)

fib2 :: Integer → Integer
fib2 = foldT (+) id ◦ unfoldT g

where
g 0 = Left 0
g 1 = Left 1
g n = Right (n − 1,n − 2)

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 13 / 35

http://conal.net
http://tabula.com/

Generalizing folds and unfolds

Summary of fold and unfold :

foldL :: (a → b → b)→ b → ([a]→ b)

unfoldL :: (b → Maybe (a × b))→ (b → [a])

foldT :: (b → b → b)→ (a → b)→ (T a → b)

unfoldT :: (b → a + b × b)→ (b → T a)

Why the asymmetry?

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 14 / 35

http://conal.net
http://tabula.com/

Playing with type isomorphisms

foldL :: (a → b → b)→ b → ([a]→ b)
' (a × b → b)→ b → ([a]→ b)
' (a × b → b)→ (1→ b)→ ([a]→ b)
' (a × b → b)× (1→ b) → ([a]→ b)
' ((a × b + 1)→ b) → ([a]→ b)
' (Maybe (a × b)→ b) → ([a]→ b)

Why Maybe (a × b)?

Because

[a] ' Maybe (a × (Maybe (a × (Maybe (a × (...))))))
' Fix (Λb → Maybe (a × b))

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 15 / 35

http://conal.net
http://tabula.com/

Regularizing

Recall:

foldL :: (a → b → b)→ b → ([a]→ b)

A more standard interface:

foldLF :: (Maybe (a × b)→ b)→ ([a]→ b)
foldLF h = foldL (curry (h ◦ Just)) (h Nothing)

Now the duality emerges:

unfoldL :: (b → Maybe (a × b))→ (b → [a])
foldLF :: (Maybe (a × b)→ b)→ ([a]→ b)

Similarly for tree fold and unfold.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 16 / 35

http://conal.net
http://tabula.com/

List and tree unfold and fold – pictures

Maybe (a× b)

b [a]

g

unfoldL g

Maybe (a× b)

[a] b

h

foldL h

a+ b× b

b T a

g

unfoldT g

a+ b× b

T a b

h

foldT h

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 17 / 35

http://conal.net
http://tabula.com/

General regular algebraic data types – pictures

Build up from “base functor” F to fixpoint µF :

F b

b µF

g

unfold g

F b

µF b

h

fold h

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 18 / 35

http://conal.net
http://tabula.com/

General regular algebraic data types – Haskell

Build up from “base functor” f :

newtype Fix f = Roll {unRoll :: f (Fix f)}

fold :: Functor f ⇒ (f b → b)→ (Fix f → b)
fold h = h ◦ fmap (fold h) ◦ unRoll

unfold :: Functor f ⇒ (a → f a)→ (a → Fix f)
unfold g = Roll ◦ fmap (unfold g) ◦ g

hylo :: Functor f ⇒ (f b → b)→ (a → f a)→ (a → b)
hylo h g = fold h ◦ unfold g

Let’s revisit our examples.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 19 / 35

http://conal.net
http://tabula.com/

Factorial via list hylo

data LF a t = NilF | ConsF a t deriving Functor
type L′ a = Fix (LF a)

fact3 :: Integer → Integer
fact3 = hylo h g

where
g :: Integer → LF Integer Integer
g 0 = NilF
g n = ConsF n (n − 1)
h :: LF Integer Integer → Integer
h NilF = 1
h (ConsF n u) = n × u

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 20 / 35

http://conal.net
http://tabula.com/

Fibonacci via tree hylo

data TF a t = LF a | BF t t deriving Functor
type T ′ a = Fix (TF a)

fib3 :: Integer → Integer
fib3 = hylo h g

where
g :: Integer → TF Integer Integer
g 0 = LF 0
g 1 = LF 1
g n = BF (n − 1) (n − 2)
h :: TF Integer Integer → Integer
h (LF n) = n
h (BF u v) = u + v

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 21 / 35

http://conal.net
http://tabula.com/

Factorial via tree hylo

type Range = Integer × Integer

fact4 :: Integer → Integer
fact4 n = hylo h g (1,n)

where
g :: Range → TF Integer Range
g (lo, hi) = case lo ‘compare‘ hi of

GT → LF 1
EQ → LF lo
LT → let mid = (lo + hi) ‘div ‘ 2 in

BF (lo,mid) (mid + 1, hi)
h :: TF Integer Integer → Integer
h (LF i) = i
h (BF u v) = u × v

Parallel-friendly!

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 22 / 35

http://conal.net
http://tabula.com/

Another look and unfold and fold

F a F (µF)

a µF

F (unfold g)

Rollg

unfold g

F (µF) F b

µF b

F (fold h)

hunRoll

fold h

newtype Fix f = Roll {unRoll :: f (Fix f)}

unfold :: Functor f ⇒ (a → f a)→ (a → Fix f)
unfold g = Roll ◦ fmap (unfold g) ◦ g

fold :: Functor f ⇒ (f b → b)→ (Fix f → b)
fold h = h ◦ fmap (fold h) ◦ unRoll

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 23 / 35

http://conal.net
http://tabula.com/

Another look and hylo

a b
hylo h g

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 24 / 35

http://conal.net
http://tabula.com/

Another look and hylo

a µF b
unfold g fold h

Definition of hylo.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 25 / 35

http://conal.net
http://tabula.com/

Another look and hylo

F a F (µF) F b

a µF b

F (unfold g)

Roll

F (fold h)

hg

unfold g

unRoll

fold h

By definitions of fold and unfold .

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 26 / 35

http://conal.net
http://tabula.com/

Another look and hylo

F a F (µF) F b

a µF b

F (unfold g) F (fold h)

hg

unfold g fold h

Since unRoll and Roll are inverses.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 27 / 35

http://conal.net
http://tabula.com/

Another look and hylo

F a F b

a b

F (fold h ◦ unfold g)

hg

fold h ◦ unfold g

By the Functor law: fmap v ◦ fmap u ≡ fmap (v ◦ u).

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 28 / 35

http://conal.net
http://tabula.com/

Another look and hylo

F a F b

a b

F (hylo h g)

hg

hylo h g

Definition of hylo. Directly recursive!

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 29 / 35

http://conal.net
http://tabula.com/

All together

F a F (µF) F b

a µF b

F (hylo h g)

F (fold h ◦ unfold g)

F (unfold g)

Roll

F (fold h)

h

hylo h g

g

unfold g

unRoll

fold h

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 30 / 35

http://conal.net
http://tabula.com/

Reversed

F b F (µF) F a

b µF a

F (fold h)

Roll

F (unfold g)

F (hylo h g)

F (fold h ◦ unfold g)

hg

unfold g

unRoll

fold h

hylo h g

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 31 / 35

http://conal.net
http://tabula.com/

fold and unfold via hylo

hylo subsumes both fold and unfold :

unfold g = hylo Roll g

fold h = hylo h unRoll

since

hylo h g ≡ fold h ◦ unfold g

and

fold Roll ≡ id ≡ unfold unRoll

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 32 / 35

http://conal.net
http://tabula.com/

Summary

Fold and unfold are structured
replacements for the “assembly
language” of recursive definitions.

Unifying view of fold & unfold across
data types via functor fixpoints.

Recursive programs have a systematic
translation to unfold and fold .

The translation reveals parallelism
clearly and simply.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 33 / 35

http://conal.net
http://tabula.com/

A cautionary tale

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 34 / 35

http://conal.net
http://tabula.com/

Picture credits

Robert Lang’s Origami BiCurve Pot 13

Maine Organic Farmers

unknown

Randall Munroe (xkcd)

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 35 / 35

https://popularkinetics.wordpress.com/2008/07/24/the-art-and-science-of-folding-paper/
http://www.mofga.org
http://imgbit.com/i313
https://xkcd.com/292/
http://conal.net
http://tabula.com/

