Folds and unfolds all around us

Conal Elliott

Tabula

Spring, 2013

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 1/ 35

http://conal.net
http://tabula.com/
http://conal.net
http://tabula.com/

Preliminaries

This talk is a literate Haskell program.
module FoldsAndUnfolds where

I'll use some non-standard (for Haskell) type notation:

typel = ()
type (+) = Fither
type (x) = (,)
infix] 7 x

infixl 6 +

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 2/ 35

http://conal.net
http://tabula.com/

Recursive functional programming

On numbers:

facty 0 =1
facty n =n X facty (n — 1)

On lists:

data [a] =[]] a:[a]

producty, :: [Integer| — Integer
producty, [] =1
producty, (a : as) = a X producty, as

ranger, :: Integer — Integer — [Integer]
ranger, L h | 1> h =]
| otherwise = 1 : ranger, (succ 1) h

Conal Elliott (Tabula) Folds and unfolds all around us

Spring, 2013

3 /35

http://conal.net
http://tabula.com/

Recursive functional programming

On (binary leaf) trees:

data Ta=La| B (T a) (T a) deriving Show

producty :: T Integer — Integer
producty (L a) =a
producty (B s t) = producty s X producty t

ranger :: Integer — Integer — T Integer
ranger Lh |l =h =Ll
| otherwise = B (ranger | m) (ranger (m + 1) h)
where m = ([+ h) ‘div‘ 2

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013

4/ 35

http://conal.net
http://tabula.com/

Recursive functional programming?

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 5/ 35

http://conal.net
http://tabula.com/

Structured functional programming

. recursive equations are the “assembly language” of
functional programming, and direct recursion the goto.

Jeremy Gibbons, Origami programming

A structured alternative:

o identify commonly useful patterns,
o determine their properties, and

e apply the patterns and properties.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 6 / 35

http://www.cs.ox.ac.uk/publications/publication2335-abstract.html
http://conal.net
http://tabula.com/

Folds (“catamorphisms”)

Contract a structure down to a single value.

For lists:

foldy, :: (a—>b—>b)—>b—>([a]—>b)
foldy, _ b] =b
foldr, f b (a:as)=f a (folds, f b as)

sumy = foldg, (+) 0

producty, = foldy, (x) 1

reverser, = foldr, (Aa v — r H [a]) []
For trees:

foldp :: (b — b — b) —
foldp _1(La) =la
foldp b1 (Bst)="b

(a—b)— (T a—0b)

(foldy b 1 s) (foldr b 1 t)

productp = foldr (x) id

Conal Elliott (Tabula) Folds and unfolds all around us

Spring, 2013

7 / 35

http://conal.net
http://tabula.com/

Unfolds (“anamorphisms”)

Expand a structure up from a single value.

Lists:

unfoldy, :: (b — Maybe (a x b)) — (b — [a])
unfold;, f b = case f b of

Just (a,b") = a: unfoldy, f b’

Nothing —]

rangel/ :: Integer x Integer — [Integer]
rangel! = unfoldy, g
where
g(Lh)|I>h = Nothing
| otherwise = Just (I, (succ I, h))

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 8 / 35

http://conal.net
http://tabula.com/

Unfolds (“anamorphisms”)

Trees:

unfoldr :: (b - a+bxb)—(b— T a)
unfoldr g x = case g = of

Left a —La

Right (¢, d) — B (unfoldr g c) (unfoldr g d)

rangerp :: Integer X Integer — T Integer
rangerp = unfoldyp g
where
g(LLh)|l=h = Left |
| otherwise = Right ((I,m),(m + 1, h))
where m = ([+ h) ‘div‘ 2

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 9/ 35

http://conal.net
http://tabula.com/

Factorial again

Assembly language:

factp 0 =1
factg n = n x facty (n —1)

You may have seen this Haskelly definition:
fact; n = product [1..n]

Theme: replace control structures by data structures and standard
combining forms.

Carry this theme further.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 10 / 35

http://conal.net
http://tabula.com/

Combining unfold and fold

Equivalently,
fact; = producty, o rangey, 1

Note: composition of unfold (ranger) and fold producty.

More explicit:

facty = foldy, (x) 1 o unfoldy, g
where
g 0 = Nothing
gn=Just (n,n—1)

This combination of unfold and fold is called a “hylomorphism”.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 11 / 35

http://conal.net
http://tabula.com/

Fibonacci

Assembly language:

fibp 0 =0

fibp 1 =1

fibg n = fibg (n — 1) + fiby (n — 2)
Via trees:

fibr - Integer — T Integer

fibr 0 =L0O

fibr1 =11

ﬁbT n=2"B (ﬁbT (’Il - 1)) (ﬁbT (n - 2))
sump :: T Integer — Integer

sump = foldr (+) id

fiby :: Integer — Integer
fiby = sump o fibp

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 12 / 35

http://conal.net
http://tabula.com/

Fibonacci

More explicitly hylomorphic:

unfoldp :: (b — a+bxb)— (b— T a)

fibo :: Integer — Integer
fibe = foldr (+) id o unfoldr g

where
g0 = Left 0
gl = Leftl

g n = Right (n —1,n — 2)

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 13 / 35

http://conal.net
http://tabula.com/

Generalizing folds and unfolds

Summary of fold and unfold:

fold, =(a—b—0b)—b—([a] = b)
unfoldy, :: (b — Maybe (a x b)) — (b — [a])

foldp = (b—-b—b)—=(a—b)— (T a—b)
unfoldp :: (b — a+bxb)— (b— T a)

Why the asymmetry?

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 14 / 35

http://conal.net
http://tabula.com/

Playing with type isomorphisms

foldp :: (a —b—b) — b = ([a] = b)
~(axb—0b)—b — ([a] = b)
~(axb—=0)—(1—=0b)—(a] =)
~(axb—=0)x(1—=0b) — ([a] =)
~((axb+1)—b) — ([a] = b)
~ (Maybe (a x b) = b) — ([a] = b)

Why Maybe (a x b)?

Because

[a] ~ Maybe (a x (Maybe (a x (Maybe (a x (...))))))
~ Fiz (Ab — Maybe (a x b))

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 15 / 35

http://conal.net
http://tabula.com/

Regularizing

Recall:
foldr :: (a = b —b) = b— ([a] = b)
A more standard interface:

foldrp :: (Maybe (a x b) — b) — ([a] — b)
foldpr h = foldy, (curry (h o Just)) (h Nothing)

Now the duality emerges:

unfoldy, :: (b — Maybe (a x b)) — (b — [a])
foldrr :: (Maybe (a x b) — b) — (]

Similarly for tree fold and unfold.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 16 / 35

http://conal.net
http://tabula.com/

List and tree unfold and fold — pictures

Maybe (a x b) Magybe (a x b)
| |
unfoldy, g [a] [CL] foldr h b
a+bxbd a+bxb
[s |
unfoldr g

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 17 / 35

http://conal.net
http://tabula.com/

General regular algebraic data types — pictures

Build up from “base functor” F' to fixpoint pF':

Fb Fb
gT lh
b s M pE — b

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 18 / 35

http://conal.net
http://tabula.com/

General regular algebraic data types — Haskell

Build up from “base functor” f:

newtype Fix f = Roll {unRoll :: f (Fiz f)}

fold :: Functor f = (f b — b) — (Fiz f — b)
fold h = h o fmap (fold h) o unRoll

unfold :: Functor f = (a — f a) = (a — Fix f)
unfold g = Roll o fmap (unfold g) o g

hylo :: Functor f = (f b = b) — (a — f a) = (a — b)

hylo h g = fold h o unfold g

Let’s revisit our examples.

Conal Elliott (Tabula) Folds and unfolds all around us

Spring, 2013

19 / 35

http://conal.net
http://tabula.com/

Factorial via list hylo

data LF a t = NilF | ConsF a t deriving Functor
type L' a = Fix (LF a)

facts :: Integer — Integer
facts = hylo h g
where

g :: Integer — LF' Integer Integer
g0 = NilF
gn=ConsFn(n—1)
h:: LF Integer Integer — Integer
h NilF =1
h (ConsF nu)=n X u

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 20 / 35

http://conal.net
http://tabula.com/

Fibonacci via tree hylo

data TF a t = LF a | BF t t deriving Functor
type T’ a = Fiz (TF a)

fibg :: Integer — Integer
fibg = hylo h g
where
g :: Integer — TF Integer Integer
g0 =LFO0
gl =LF1
gn=DBF (n—1) (n—2)
h:: TF Integer Integer — Integer
h(LFn) =n
h (BF vv)=u-+v

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 21 / 35

http://conal.net
http://tabula.com/

Factorial via tree hylo

type Range = Integer x Integer

fact; :: Integer — Integer
fact; n=hylo h g (1,n)
where
g :: Range — TF Integer Range
g (lo, hi) = case lo ‘compare’ hi of
GT — LF 1
EQ — LF lo
LT — let mid = (lo+ hi) ‘div‘ 2 in
BF (lo, mid) (mid + 1, hi)
h:: TF Integer Integer — Integer
h (LF i) =i
h (BF uvv)=uXxwv

Parallel-friendly!

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 22 / 35

http://conal.net
http://tabula.com/

Another look and unfold and fold

Fa F (unfold g) F (,LLF) F (HF) F (fold h) Fb
QT lRoll unRollT lh
@iy ME P iy b

newtype Fix f = Roll {unRoll :: f (Fiz f)}

unfold :: Functor f = (a — f a) = (a — Fix f)
unfold g = Roll o fmap (unfold g) o g

fold :: Functor f = (f b — b) — (Fiz f — b)
fold h = h o fmap (fold h) o unRoll

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 23 / 35

http://conal.net
http://tabula.com/

Another look and hylo

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 24 / 35

http://conal.net
http://tabula.com/

Another look and hylo

unfold g foldh

Definition of hylo.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 25 / 35

http://conal.net
http://tabula.com/

Another look and hylo

Fa F (unfold g) F (/LF) F (fold h) Fb
g] unRollTlRoll lh
R s Y UF e > b

unfold g

By definitions of fold and unfold.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 26 / 35

http://conal.net
http://tabula.com/

Another look and hylo

F (unfold g) F F (fold h)

Fa (WF)

unfold g

Since unRoll and Roll are inverses.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 27 / 35

http://conal.net
http://tabula.com/

Another look and hylo

Fa F (fold h o unfold g) Fb
gT lh
O sty Y

By the Functor law: fmap v o fmap u = fmap (v o u).

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 28 / 35

http://conal.net
http://tabula.com/

Another look and hylo

Fa Fb
gT lh
L A rb

Definition of hylo. Directly recursive!

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 29 / 35

http://conal.net
http://tabula.com/

All together

F (hyloh g)

F (fold h o unfold g)

F (unfold g) F (fold h)
— — 3

Fa F(uF) Fb
9]\ unRollTlRoll lh
NP joan b
Thiohy

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 30 / 35

http://conal.net
http://tabula.com/

Reversed

F (hylo h g)

F (fold h o unfold g)

i Goldh) oy o POty
g]\ unRollTlRoll lh
b niidy T pE oo e
haioha

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 31/ 35

http://conal.net
http://tabula.com/

fold and unfold via hylo

hylo subsumes both fold and unfold:

unfold g = hylo Roll g
fold b = hylo h unRoll

since
hylo h g = fold h o unfold g
and

fold Roll = id = unfold unRoll

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 32 / 35

http://conal.net
http://tabula.com/

Summary

e Fold and unfold are structured
replacements for the “assembly
language” of recursive definitions.

e Unifying view of fold & unfold across
data types via functor fixpoints.

@ Recursive programs have a systematic
translation to unfold and fold.

@ The translation reveals parallelism
clearly and simply.

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 33 / 35

http://conal.net
http://tabula.com/

A cautionary tale

T COULD RESTRUCTURE
THE PF?OGRFMS FLow

OR [JSE ONE LITTLE
’GOTD‘\ INSTEAD.

Q%

EH, SCREW GQOD PRACTICE.

HOW BAD CAN 1T BE?
\ Goto main-sub3;

)JJ

*COMPILE

Conal Elliott (Tabula)

Folds and unfolds all around us

Spring, 2013

34 / 35

http://conal.net
http://tabula.com/

Picture credits

Robert Lang’s Origami BiCurve Pot 13

@ Maine Organic Farmers

unknown

"% Randall Munroe (xked)

Conal Elliott (Tabula) Folds and unfolds all around us Spring, 2013 35 / 35

https://popularkinetics.wordpress.com/2008/07/24/the-art-and-science-of-folding-paper/
http://www.mofga.org
http://imgbit.com/i313
https://xkcd.com/292/
http://conal.net
http://tabula.com/

