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What makes a language good for parallelism?
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What makes a language bad for parallelism?

e Sequential bias

o Primitive: assignment (state change)
o Composition: sequential execution

o “Von Neumann” languages (Fortran, C, Java, Python, ...)

e Qwer-linearizes algorithms.

e Hard to isolate accidental sequentiality.
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Can we fix sequential languages?

@ Throw in parallel composition.

e Oops:
o Nondeterminism

e Deadlock

e Intractable reasoning
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Can we un-break sequential languages?

Perfection is achieved not when there is nothing left to add,
but when there is nothing left to take away.

Antoine de Saint-Exupéry
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Applications perform zillions of simple computations.

e Compute all at once?

e Oops — dependencies.

e Minimize dependencies!
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Dependencies

@ Three sources:
@ Problem
@ Algorithm

@ Language

o Goals: eliminate #3, and reduce #2.
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Dependency in sequential languages

@ Built into sequencing: A; B

e Semantics: B begins where A ends.

e Why sequence?
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Idea: remove all state

e And, with it,
o mutation (assignment),

e sequencing,

e statements.

e Expression dependencies are specific & explicit.

e Remainder can be parallel.

Contrast: “A;B” vs “A+ B” vs “(A+ B) x C".
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Programming without state

e Programming is calculation/math:
o Precise & tractable reasoning (algebra),

o ... including optimization/transformation.

No loss of expressiveness!

“Functional programming” (value-oriented)

o Like arithmetic on big values
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Sequential sum

C:

int sum(int arr[], int n) {
int acc = 0;
for (int i=0; i<n; i++)
acc += arr[i];
return acc;

Haskell:

sum = sumAcc 0
where
sumAcc acc [] = acc
sumAcc acc (a: as) = sumAcc (acc + a) as
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Refactoring

sum = foldl (+) 0

where

foldl op acc [] = acc
foldl op acc (a: as) = foldl op (acc ‘op‘ a) as
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Right alternative

sum = foldr (+) 0

where

foldr op e [] e
foldr op e (a: as) = a ‘op‘ foldr op e as
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Sequential sum — left
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Sequential sum — right
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Parallel sum — how?

Left-associated sum:

sum [a,b,....z] = (...((0+a) + b)...) + 2

How to parallelize?

Divide and conquer?
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Balanced data

data Tree a = L a | B (Tree a) (Tree a)

Sequential:

sum = sumAcc 0
where
sumAcc acc (L a) = acc+ a
sumAcc acc (B s t) = sumAcc (sumAcc acc s) t

Again, sum = foldl (+) 0.
Parallel:

sum (La) =a
sum (B s t) = sum s+ sum t

Equivalent? Why?
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Balanced tree sum — depth 4
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Balanced computation

e Generalize beyond +, 0.

e When valid?
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Associative folds

Monoid: type with associative operator & identity.

fold :: Monoid a = [a] — a

Not just lists:

fold :: (Foldable f, Monoid a) = f a — a

Balanced data structures lead to balanced parallelism.
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Two associative folds

fold :: Monoid a = [a] — a
fold [] =0
fold (a: as) = a @ fold as

fold :: Monoid a = Tree a — a
fold (La) =a
fold (B s t) = fold s @ fold t

Derivable automatically from types.
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Trickier algorithm: prefix sums

C:
int prefixSums(int arr[], int n) {
int sum = 0;
for (int i=0; i<n; i++) {
int next = arr[i];
arr[i] = sum;
sum += next;
}
return sum;
}
Haskell:

prefirSums = scanl (+) 0
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Sequence prefix sum

32
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Sequential prefix sums on trees

prefizSums = scanl (+) 0

scanl op acc (L a) = (L acc, acc ‘op‘ a)
scanl op acc (B uv) = (B v v, vTot)
where

(v, uTot) = scanl op acc u
(v',vTot) = scanl op uTot v
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Sequential prefix sums on trees — depth 2
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Sequential prefix sums on trees — depth 3
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Sequential prefix sums on trees

prefizSums = scanl (+) 0

scanl op acc (L a) = (L ace, acc ‘op‘ a)
scanl op acc (B uv) = (B v v',vTot)
where

(v, uTot) = scanl op acc u
(v, vTot) = scanl op uTot v

o Still very sequential.

@ Does associativity help as with fold?
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Parallel prefix sums on trees

On trees:

scan (La) =(L0,a)
scan (B uw v) = (B ' (fmap adjust v'"), adjust vTot)
where
(u', uTot) = scan u
(v, vTot) = scan v
adjust x = uTot ® x

e If balanced, dependency depth O(logn), work O(nlogn).
e Can reduce work to O(n). (Understanding efficient parallel scan).

Generalizes from trees.

Automatic from type.
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Balanced parallel prefix sums — depth 2
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Balanced parallel prefix sums — depth 3
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Balanced parallel prefix sums — depth 4
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Balanced parallel prefix sums — depth 2, optimized
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Balanced parallel prefix sums — depth 3, optimized
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Balanced parallel prefix sums — depth 4, optimized
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Why functional programming?

o Parallelism

e Correctness

e Productivity
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R&D agenda: elegant, massively parallel FP

o Algorithm design:
o Functional & richly typed
o Parallel-friendly

e Easily composable

e Compiling for highly parallel execution:
o Convert to algebraic vocabulary (CCC).
o Interpret vocabulary as “circuits” (FPGA, silicon, GPU).

e Other interpretations.
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Composable data structures

e Data structure tinker toys:

data Empty a = Empty

data Id a=1da
data (f +g)a=L(fa)| R (ga)
data (f x g) a = Prod (f a) (g a)
data (g o f)a= 0 (g9 (f a))

@ Specify algorithm version for each.

e Automatic, type-directed composition.
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Vectors

n times

——t—
Id x ---x Id
Right-associated:
type family RVec n where

RVec Z = Empty
RVec (S n) = Id x RVec n

Left-associated:
type family LVec n where

LVec Z = Empty
LVec (S n) = LVec n x Id
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Perfect binary leaf trees

n times

Pair o---o Pair

Right-associated:

type family RBin n where
RBin Z =1d
RBin (S n) = Pair o RBin n
Left-associated:

type family LBin n where
LBin Z =1d
LBin (S n) = LBin n o Pair

Uniform pairs:

type Pair = Id x Id
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Generalized trees

n times
P———
ho---oh

Right-associated:

type family RPow h n where
RPow h Z =1Id
RPow h (S n)=hoRPowhn

Left-associated:

type family LPow h n where
LPow h Z = 1d
LPow h (S n) = LPowhmnoh

Binary:

type RBin n = RPow Pair n
type LBin n = LPow Pair n
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Composing scans

class LScan f where
Iscan :: Monoid a = f a — (f x Id) a

pattern And! fa a = Prod fa (Id a)

instance LScan Empty where
Iscan fa = Andl fa )

instance LScan Id where
Iscan (Id a) = And1 (Id () a

instance (LScan f, LScan g) = LScan (f x g) where
Iscan (Prod fa ga) = And1 (Prod fa' ga') gz
where
Andl fa' fr = Iscan fa
Andl ga' gx = adjust fr (Iscan ga)
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Composing scans

instance (LScan g, LScan f, Zip g) = LScan (g o f) where
Iscan (O gfa) = And1 (O (zipWith adjust tots’ gfa’)) tot
where
(gfd, tots) = unzipAndl1 (fmap lscan gfa)
Andl1 tots' tot = lscan tots

adjust :: (Monoid a, Functor t) = a —ta—ta
adjust a t = fmap (a®) t
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Scan — RPow Pair N5
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Scan — LPow Pair N5
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Scan — RPow (LPow Pair N2) N3
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Polynomial evaluation

ap 2"+ +a, - 2"

evalPoly coeffs © = coeffs - powers x

powers = Iproducts o pure

Iproducts = underF Product lscan
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Powers — RBwn Nj
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Polynomial evaluation — RBin N/

i
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Fast Fourier transform

DFT:

N-1 .
X, = E mn@_Tnk
n=0

FFT for N = Nj - N2 (Gauss / Cooley-Tukey):
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Fast Fourier transform

class FFT f where
type FFO f :: % — %
[t :: RealFloat a = f (Complex a) — FFO f (Complex a)

instance FFT Id where
type FFO Id = Id

fit = id

instance FF'T Pair where
type FFO Pair = Pair
ft (a#0b)=(a+0b)F# (a—0b)
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FFT — composition (Gauss / Cooley-Tukey)

instance... = FFT (g o f) where
type FFO (gof) = FFO fo FFO g
fft = O o traverse fft o twiddle o traverse fft o transpose o unO

twiddle :: ... = g (f (Complex a)) — g (f (Complez a))
twiddle = (zip With o zipWith) (x) twiddles

where
n = sizeQ(g o f)
twiddles = fmap powers (powers w)
w = cis (=2 x w / fromIntegral n)
cis a = coS a:+ sin a
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FFT — RBin N3 (“Decimation in time”
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FFT — LBin N3 (“Decimation in frequency”)
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Bitonic sort
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Bitonic sort — depth 1
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Bitonic sort — depth 2
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Bitonic sort — depth 3
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Bitonic sort — depth 4
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Manual vs automatic placement
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Manual vs automatic placement

@ Programmers used to explicitly place computations in space.

e Mainstream programming sti/l manually places in time.

Sequential composition: crude placement tool.

Threads: notationally clumsy & hard to manage correctly.

If we relinquish control, automation can do better.
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