Functional programming and parallelism

Conal Elliott

May 2016

http://conal.net

What makes a language good for parallelism?

Conal Elliott Functional programming and parallelism May 2016 2 /61

http://conal.net

What makes a language bad for parallelism?

e Sequential bias

o Primitive: assignment (state change)
o Composition: sequential execution

o “Von Neumann” languages (Fortran, C, Java, Python, ...)

e Qwer-linearizes algorithms.

e Hard to isolate accidental sequentiality.

Conal Elliott Functional programming and parallelism May 2016 3/ 61

http://conal.net

Can we fix sequential languages?

@ Throw in parallel composition.

e Oops:
o Nondeterminism

e Deadlock

e Intractable reasoning

Conal Elliott Functional programming and parallelism May 2016 4 /61

http://conal.net

Can we un-break sequential languages?

Perfection is achieved not when there is nothing left to add,
but when there is nothing left to take away.

Antoine de Saint-Exupéry

Conal Elliott Functional programming and parallelism May 2016 5/ 61

http://conal.net

Applications perform zillions of simple computations.

e Compute all at once?

e Oops — dependencies.

e Minimize dependencies!

Conal Elliott Functional programming and parallelism May 2016 6 /61

http://conal.net

Dependencies

@ Three sources:
@ Problem
@ Algorithm

@ Language

o Goals: eliminate #3, and reduce #2.

Conal Elliott Functional programming and parallelism

May 2016

7 /61

http://conal.net

Dependency in sequential languages

@ Built into sequencing: A; B

e Semantics: B begins where A ends.

e Why sequence?

Conal Elliott Functional programming and parallelism May 2016 8 /61

http://conal.net

Idea: remove all state

e And, with it,
o mutation (assignment),

e sequencing,

e statements.

e Expression dependencies are specific & explicit.

e Remainder can be parallel.

Contrast: “A;B” vs “A+ B” vs “(A+ B) x C".

Conal Elliott Functional programming and parallelism May 2016

9 /61

http://conal.net

Programming without state

e Programming is calculation/math:
o Precise & tractable reasoning (algebra),

o ... including optimization/transformation.

No loss of expressiveness!

“Functional programming” (value-oriented)

o Like arithmetic on big values

Conal Elliott Functional programming and parallelism May 2016 10 / 61

http://conal.net

Sequential sum

C:

int sum(int arr[], int n) {
int acc = 0;
for (int i=0; i<n; i++)
acc += arr[i];
return acc;

Haskell:

sum = sumAcc 0
where
sumAcc acc [] = acc
sumAcc acc (a: as) = sumAcc (acc + a) as

Conal Elliott Functional programming and parallelism May 2016 11 / 61

http://conal.net

Refactoring

sum = foldl (+) 0

where

foldl op acc [] = acc
foldl op acc (a: as) = foldl op (acc ‘op‘ a) as

Conal Elliott Functional programming and parallelism

May 2016

12 / 61

http://conal.net

Right alternative

sum = foldr (+) 0

where

foldr op e [] e
foldr op e (a: as) = a ‘op‘ foldr op e as

Conal Elliott Functional programming and parallelism

May 2016

13 / 61

http://conal.net

Sequential sum — left

* “ .
32

Conal Elliott Functional programming and parallelism May 2016 14 / 61

http://conal.net

Sequential sum — right

* N .
32,

Conal Elliott Functional programming and parallelism May 2016 15 / 61

http://conal.net

Parallel sum — how?

Left-associated sum:

sum [a,b,....z] = (...((0+a) + b)...) + 2

How to parallelize?

Divide and conquer?

Conal Elliott Functional programming and parallelism

May 2016

16 / 61

http://conal.net

Balanced data

data Tree a = L a | B (Tree a) (Tree a)

Sequential:

sum = sumAcc 0
where
sumAcc acc (L a) = acc+ a
sumAcc acc (B s t) = sumAcc (sumAcc acc s) t

Again, sum = foldl (+) 0.
Parallel:

sum (La) =a
sum (B s t) = sum s+ sum t

Equivalent? Why?

Conal Elliott Functional programming and parallelism May 2016

17 / 61

http://conal.net

Balanced tree sum — depth 4

32

32,

—| 32,

32

32

— 32

In —
32

32

32
32

| 32

32

32

Conal Elliott

——/

7

——/

32

32

32

32

32

32

+
~—/

32

~—/

Functional programming and parallelism

May 2016

18 / 61

http://conal.net

Balanced computation

e Generalize beyond +, 0.

e When valid?

Conal Elliott Functional programming and parallelism May 2016 19 / 61

http://conal.net

Associative folds

Monoid: type with associative operator & identity.

fold :: Monoid a = [a] — a

Not just lists:

fold :: (Foldable f, Monoid a) = f a — a

Balanced data structures lead to balanced parallelism.

Conal Elliott Functional programming and parallelism May 2016

20 / 61

http://conal.net

Two associative folds

fold :: Monoid a = [a] — a
fold [] =0
fold (a: as) = a @ fold as

fold :: Monoid a = Tree a — a
fold (La) =a
fold (B s t) = fold s @ fold t

Derivable automatically from types.

Conal Elliott Functional programming and parallelism May 2016 21 / 61

http://conal.net

Trickier algorithm: prefix sums

C:
int prefixSums(int arr[], int n) {
int sum = 0;
for (int i=0; i<n; i++) {
int next = arr[i];
arr[i] = sum;
sum += next;
}
return sum;
}
Haskell:

prefirSums = scanl (+) 0

Conal Elliott Functional programming and parallelism May 2016

22 / 61

http://conal.net

Sequence prefix sum

32

Conal Elliott Functional programming and parallelism May 2016 23 / 61

http://conal.net

Sequential prefix sums on trees

prefizSums = scanl (+) 0

scanl op acc (L a) = (L acc, acc ‘op‘ a)
scanl op acc (B uv) = (B v v, vTot)
where

(v, uTot) = scanl op acc u
(v',vTot) = scanl op uTot v

Conal Elliott Functional programming and parallelism May 2016

24 / 61

http://conal.net

Sequential prefix sums on trees — depth 2

Conal Elliott Functional programming and parallelism May 2016 25 / 61

http://conal.net

Sequential prefix sums on trees — depth 3

Conal Elliott Functional programming and parallelism May 2016 26 / 61

http://conal.net

Sequential prefix sums on trees

prefizSums = scanl (+) 0

scanl op acc (L a) = (L ace, acc ‘op‘ a)
scanl op acc (B uv) = (B v v',vTot)
where

(v, uTot) = scanl op acc u
(v, vTot) = scanl op uTot v

o Still very sequential.

@ Does associativity help as with fold?

Conal Elliott Functional programming and parallelism May 2016

27 / 61

http://conal.net

Parallel prefix sums on trees

On trees:

scan (La) =(L0,a)
scan (B uw v) = (B ' (fmap adjust v'"), adjust vTot)
where
(u', uTot) = scan u
(v, vTot) = scan v
adjust x = uTot ® x

e If balanced, dependency depth O(logn), work O(nlogn).
e Can reduce work to O(n). (Understanding efficient parallel scan).

Generalizes from trees.

Automatic from type.

Conal Elliott Functional programming and parallelism May 2016 28 / 61

https://github.com/conal/talk-2013-understanding-parallel-scan
http://conal.net

Balanced parallel prefix sums — depth 2

Out

Conal Elliott Functional programming and parallelism May 2016 29 / 61

http://conal.net

Balanced parallel prefix sums — depth 3

Conal Elliott Functional programming and parallelism May 2016 30 / 61

http://conal.net

Balanced parallel prefix sums — depth 4

http://conal.net

Balanced parallel prefix sums — depth 2, optimized

Out

Conal Elliott Functional programming and parallelism May 2016 32 /61

http://conal.net

Balanced parallel prefix sums — depth 3, optimized

32

32

32

Conal Elliott

32

32

32

7

-

Functional programming and parallelism

May 2016

Out

33 / 61

http://conal.net

Balanced parallel prefix sums — depth 4, optimized

4 R E————

_ EI &
S =a

———|) Qf"’"ﬁ
N S I SE A

i
0]

NSy
‘an‘%‘ ‘:

http://conal.net

Why functional programming?

o Parallelism

e Correctness

e Productivity

Conal Elliott Functional programming and parallelism May 2016 35 / 61

http://conal.net

R&D agenda: elegant, massively parallel FP

o Algorithm design:
o Functional & richly typed
o Parallel-friendly

e Easily composable

e Compiling for highly parallel execution:
o Convert to algebraic vocabulary (CCC).
o Interpret vocabulary as “circuits” (FPGA, silicon, GPU).

e Other interpretations.

Conal Elliott Functional programming and parallelism May 2016 36 / 61

http://conal.net

Composable data structures

e Data structure tinker toys:

data Empty a = Empty

data Id a=1da
data (f +g)a=L(fa)| R (ga)
data (f x g) a = Prod (f a) (g a)
data (g o f)a= 0 (g9 (f a))

@ Specify algorithm version for each.

e Automatic, type-directed composition.

Conal Elliott Functional programming and parallelism May 2016 37 / 61

http://conal.net

Vectors

n times

——t—
Id x ---x Id
Right-associated:
type family RVec n where

RVec Z = Empty
RVec (S n) = Id x RVec n

Left-associated:
type family LVec n where

LVec Z = Empty
LVec (S n) = LVec n x Id

Conal Elliott Functional programming and parallelism

May 2016

38 / 61

http://conal.net

Perfect binary leaf trees

n times

Pair o---o Pair

Right-associated:

type family RBin n where
RBin Z =1d
RBin (S n) = Pair o RBin n
Left-associated:

type family LBin n where
LBin Z =1d
LBin (S n) = LBin n o Pair

Uniform pairs:

type Pair = Id x Id

Conal Elliott Functional programming and parallelism May 2016

39 / 61

http://conal.net

Generalized trees

n times
P———
ho---oh

Right-associated:

type family RPow h n where
RPow h Z =1Id
RPow h (S n)=hoRPowhn

Left-associated:

type family LPow h n where
LPow h Z = 1d
LPow h (S n) = LPowhmnoh

Binary:

type RBin n = RPow Pair n
type LBin n = LPow Pair n

Conal Elliott Functional programming and parallelism

May 2016

40 / 61

http://conal.net

Composing scans

class LScan f where
Iscan :: Monoid a = f a — (f x Id) a

pattern And! fa a = Prod fa (Id a)

instance LScan Empty where
Iscan fa = Andl fa)

instance LScan Id where
Iscan (Id a) = And1 (Id () a

instance (LScan f, LScan g) = LScan (f x g) where
Iscan (Prod fa ga) = And1 (Prod fa' ga') gz
where
Andl fa' fr = Iscan fa
Andl ga' gx = adjust fr (Iscan ga)

Conal Elliott Functional programming and parallelism May 2016

41 / 61

http://conal.net

Composing scans

instance (LScan g, LScan f, Zip g) = LScan (g o f) where
Iscan (O gfa) = And1 (O (zipWith adjust tots’ gfa’)) tot
where
(gfd, tots) = unzipAndl1 (fmap lscan gfa)
Andl1 tots' tot = lscan tots

adjust :: (Monoid a, Functor t) = a —ta—ta
adjust a t = fmap (a®) t

Conal Elliott Functional programming and parallelism May 2016

42 / 61

http://conal.net

Scan — RPow Pair N5

Conal Elliott Functional programming and parallelism May 2016 43 / 61

http://conal.net

Scan — LPow Pair N5

4D

—]

May 2016 44 / 61

Conal Elliott Functional programming and parallelism

http://conal.net

N3

LVec N3)

(

Scan — RPow

ional programming and parallelism May 2016 45 / 61

Functi

Conal Elliott

http://conal.net

Scan — RPow (LPow Pair N2) N3

Functional programming and parallelism May 2016 46 / 61

http://conal.net

Polynomial evaluation

ap 2"+ +a, - 2"

evalPoly coeffs © = coeffs - powers x

powers = Iproducts o pure

Iproducts = underF Product lscan

Conal Elliott Functional programming and parallelism May 2016

47 / 61

http://conal.net

Powers — RBwn Nj

http://conal.net

Polynomial evaluation — RBin N/

i

Conal Elliott Functional programming and parallelism May 2016 49 / 61

http://conal.net

Fast Fourier transform

DFT:

N-1 .
X, = E mn@_Tnk
n=0

FFT for N = Nj - N2 (Gauss / Cooley-Tukey):

Ni—1 Np—1 o omi
27 — 2Tt ok 2Ttk
— — = nike N, 2k2 N ikl
X = E [e N TNingt+n € 2 e M
n1=0 no=0
Conal Elliott Functional programming and parallelism May 2016

50 / 61

http://conal.net

Fast Fourier transform

class FFT f where
type FFO f :: % — %
[t :: RealFloat a = f (Complex a) — FFO f (Complex a)

instance FFT Id where
type FFO Id = Id

fit = id

instance FF'T Pair where
type FFO Pair = Pair
ft (a#0b)=(a+0b)F# (a—0b)

Conal Elliott Functional programming and parallelism May 2016

51 / 61

http://conal.net

FFT — composition (Gauss / Cooley-Tukey)

instance... = FFT (g o f) where
type FFO (gof) = FFO fo FFO g
fft = O o traverse fft o twiddle o traverse fft o transpose o unO

twiddle :: ... = g (f (Complex a)) — g (f (Complez a))
twiddle = (zip With o zipWith) (x) twiddles

where
n = sizeQ(g o f)
twiddles = fmap powers (powers w)
w = cis (=2 x w / fromIntegral n)
cis a = coS a:+ sin a

Conal Elliott Functional programming and parallelism May 2016 52 / 61

http://conal.net

)

FFT — RBin N3 (“Decimation in time”

Ilv

‘

“'II

-‘-—’(f&ﬂ!

A

"ﬁw.%«kﬂw ,

;

53 / 61

May 2016

Functional programming and parallelism

Conal Elliott

http://conal.net

FFT — LBin N3 (“Decimation in frequency”)

ST
SN A
‘4.355@\

54 / 61

May 2016

Functional programming and parallelism

Conal Elliott

http://conal.net

Bitonic sort

Conal Elliott Functional programming and parallelism May 2016 55 / 61

http://conal.net

Bitonic sort — depth 1

32

32 Out

Conal Elliott Functional programming and parallelism May 2016 56 / 61

http://conal.net

Bitonic sort — depth 2

Conal Elliott Functional programming and parallelism May 2016 57 / 61

http://conal.net

Bitonic sort — depth 3

g o i

el X
£y Ll S
|
R e eeB) = SR NS

R
\.=||" ifj Ry

1
)
s

http://conal.net

Bitonic sort — depth 4

<z
‘“.“r'_ N-n A=||<') =||g)
1o ' N NN
’gl'l's -I;gm)y*!‘.' .ﬁg}iﬂ-?.ﬁi“&!'};n
‘fr"&za.s,ﬁﬁaya‘%m%=»@mm}rf e
e = ﬁ‘ I il o
&" > n, ||’| 1 ‘/l'ﬂ"‘ "‘I' ‘ \
r-ll % ¢| Il \‘" e ||
| iR s \‘"‘ «'\" ﬁl ﬂA i
Eate s e ‘I' s it .
2 = =l J " ||\\\4 'ﬁ“ﬁ]\’

i '
B r"&" II;— II‘- e
_ h é“‘ <p\ || 4:. ‘?4”" *

¥ Y , Hinw: = ,/“1"5
e i{ﬁl‘%\yu"!n:;t“" I'q’.l!‘l .
i A0, 4 ‘=Ii‘ ; “i —

‘.—m‘

Conal Elliott Functional programming and parallelism May 2016 59 / 61

http://conal.net

Manual vs automatic placement

Conal Elliott Functional programmin 1 parallelism 2016 60 / 61

http://whyy.org/cms/radiotimes/2011/02/14/the-eniac-anniversary/
http://conal.net

Manual vs automatic placement

@ Programmers used to explicitly place computations in space.

e Mainstream programming sti/l manually places in time.

Sequential composition: crude placement tool.

Threads: notationally clumsy & hard to manage correctly.

If we relinquish control, automation can do better.

Conal Elliott Functional programming and parallelism May 2016 61 / 61

http://conal.net

