Functional programming and parallelism

Conal Elliott

May 2016

What makes a language good for parallelism?

. . .

What makes a language bad for parallelism?

- Sequential bias
 - Primitive: assignment (state change)
 - Composition: sequential execution
 - "Von Neumann" languages (Fortran, C, Java, Python, ...)
- Over-linearizes algorithms.
- Hard to isolate accidental sequentiality.

Can we fix sequential languages?

• Throw in parallel composition.

- Oops:
 - Nondeterminism
 - Deadlock
 - Intractable reasoning

Can we *un-break* sequential languages?

Perfection is achieved not when there is nothing left to add, but when there is nothing left to take away.

Antoine de Saint-Exupéry

Applications perform zillions of simple computations.

- Compute all at once?
- Oops dependencies.
- Minimize dependencies!

Dependencies

- Three sources:
 - Problem
 - 2 Algorithm
 - 6 Language
- Goals: eliminate #3, and reduce #2.

Dependency in sequential languages

• Built into sequencing: A; B

 \bullet Semantics: B begins where A ends.

• Why sequence?

Idea: remove all state

- And, with it,
 - mutation (assignment),
 - sequencing,
 - statements.
- Expression dependencies are specific & explicit.
- Remainder can be parallel.

• Contrast: "A; B" vs "A + B" vs " $(A + B) \times C$ ".

Programming without state

- Programming is calculation/math:
 - Precise & tractable reasoning (algebra),
 - ... including optimization/transformation.
- No loss of expressiveness!
- "Functional programming" (value-oriented)
- Like arithmetic on big values

Sequential sum

\mathbf{C} :

```
int sum(int arr[], int n) {
    int acc = 0;
    for (int i=0; i<n; i++)
        acc += arr[i];
    return acc;
}</pre>
```

Haskell:

```
sum = sumAcc \ 0
where
sumAcc \ acc \ [] = acc
sumAcc \ acc \ (a:as) = sumAcc \ (acc + a) \ as
```

Refactoring

$$sum = foldl(+) 0$$

where

```
foldl\ op\ acc\ [] = acc
foldl\ op\ acc\ (a:as) = foldl\ op\ (acc\ `op'\ a)\ as
```

Right alternative

$$sum = foldr(+) 0$$

where

$$foldr \ op \ e \ [] = e$$

 $foldr \ op \ e \ (a : as) = a 'op' foldr \ op \ e \ as$

Sequential sum — left

Sequential sum — right

Parallel sum — how?

Left-associated sum:

$$sum [a, b, ..., z] \equiv (...((0 + a) + b)...) + z$$

How to parallelize?

Divide and conquer?

Balanced data

data
$$Tree \ a = L \ a \mid B \ (Tree \ a) \ (Tree \ a)$$

Sequential:

```
sum = sumAcc \ 0
where
sumAcc \ acc \ (L \ a) = acc + a
sumAcc \ acc \ (B \ s \ t) = sumAcc \ (sumAcc \ acc \ s) \ t
```

Again, sum = foldl (+) 0.

Parallel:

$$sum (L a) = a$$

 $sum (B s t) = sum s + sum t$

Equivalent? Why?

Balanced tree sum — depth 4

Balanced computation

• Generalize beyond +, 0.

• When valid?

Associative folds

Monoid: type with associative operator & identity.

$$fold :: Monoid \ a \Rightarrow [a] \rightarrow a$$

Not just lists:

$$fold :: (Foldable f, Monoid a) \Rightarrow f a \rightarrow a$$

Balanced data structures lead to balanced parallelism.

Two associative folds

fold :: Monoid
$$a \Rightarrow [a] \rightarrow a$$

fold $[] = \emptyset$
fold $(a:as) = a \oplus fold as$

$$fold :: Monoid \ a \Rightarrow Tree \ a \rightarrow a$$

 $fold \ (L \ a) = a$
 $fold \ (B \ s \ t) = fold \ s \oplus fold \ t$

Derivable automatically from types.

Trickier algorithm: prefix sums

\mathbf{C} :

```
int prefixSums(int arr[], int n) {
    int sum = 0;
    for (int i=0; i<n; i++) {
        int next = arr[i];
        arr[i] = sum;
        sum += next;
    }
    return sum;
}</pre>
```

Haskell:

```
prefixSums = scanl (+) 0
```

Sequence prefix sum

Sequential prefix sums on trees

```
prefixSums = scanl \ (+) \ 0

scanl \ op \ acc \ (L \ a) = (L \ acc, acc \ `op` \ a)

scanl \ op \ acc \ (B \ u \ v) = (B \ u' \ v', vTot)

\mathbf{where}

(u', uTot) = scanl \ op \ acc \ u

(v', vTot) = scanl \ op \ uTot \ v
```

Sequential prefix sums on trees — depth 2

Sequential prefix sums on trees — depth 3

Sequential prefix sums on trees

```
prefixSums = scanl \ (+) \ 0

scanl \ op \ acc \ (L \ a) = (L \ acc, acc \ `op' \ a)

scanl \ op \ acc \ (B \ u \ v) = (B \ u' \ v', vTot)

\mathbf{where}

(u', uTot) = scanl \ op \ acc \ u

(v', vTot) = scanl \ op \ uTot \ v
```

- Still very sequential.
- Does associativity help as with fold?

Parallel prefix sums on trees

On trees:

```
scan (L \ a) = (L \ \emptyset, a)

scan (B \ u \ v) = (B \ u' \ (fmap \ adjust \ v'), adjust \ vTot)

where

(u', uTot) = scan \ u

(v', vTot) = scan \ v

adjust \ x = uTot \oplus x
```

- If balanced, dependency depth $O(\log n)$, work $O(n \log n)$.
- Can reduce work to O(n). (Understanding efficient parallel scan).
- Generalizes from trees.
- Automatic from type.

Balanced parallel prefix sums — depth 2

Balanced parallel prefix sums — depth 3

Balanced parallel prefix sums — depth 4

Conal Elliott

Balanced parallel prefix sums — depth 2, optimized

Balanced parallel prefix sums — depth 3, optimized

Balanced parallel prefix sums — depth 4, optimized

Why functional programming?

• Parallelism

Correctness

• Productivity

R&D agenda: elegant, massively parallel FP

- Algorithm design:
 - Functional & richly typed
 - Parallel-friendly
 - Easily composable
- Compiling for highly parallel execution:
 - Convert to algebraic vocabulary (CCC).
 - Interpret vocabulary as "circuits" (FPGA, silicon, GPU).
 - Other interpretations.

Composable data structures

• Data structure tinker toys:

data
$$Empty \ a = Empty$$
data $Id \ a = Id \ a$
data $(f + g) \ a = L \ (f \ a) \ | \ R \ (g \ a)$
data $(f \times g) \ a = Prod \ (f \ a) \ (g \ a)$
data $(g \circ f) \ a = O \ (g \ (f \ a))$

• Automatic, type-directed composition.

Vectors

$$\overbrace{Id \times \cdots \times Id}^{n \text{ times}}$$

Right-associated:

type family
$$RVec \ n$$
 where
 $RVec \ Z = Empty$
 $RVec \ (S \ n) = Id \times RVec \ n$

Left-associated:

type family $LVec\ n$ where $LVec\ Z = Empty$ $LVec\ (S\ n) = LVec\ n \times Id$

Perfect binary leaf trees

$$\overbrace{Pair \circ \cdots \circ Pair}^{n \text{ times}}$$

Right-associated:

type family
$$RBin \ n$$
 where
 $RBin \ Z = Id$
 $RBin \ (S \ n) = Pair \circ RBin \ n$

Left-associated:

type family
$$LBin \ n$$
 where
 $LBin \ Z = Id$
 $LBin \ (S \ n) = LBin \ n \circ Pair$

Uniform pairs:

type
$$Pair = Id \times Id$$

Generalized trees

$$\overbrace{h \circ \cdots \circ h}^{n \text{ times}}$$

Right-associated:

type family $RPow\ h\ n$ where

$$RPow\ h\ Z = Id$$

 $RPow\ h\ (S\ n) = h\circ RPow\ h\ n$

Left-associated:

type family $LPow \ h \ n$ where

$$\begin{array}{ll} LPow\ h\ Z &= Id \\ LPow\ h\ (S\ n) = LPow\ h\ n\circ h \end{array}$$

Binary:

type $RBin \ n = RPow \ Pair \ n$ type $LBin \ n = LPow \ Pair \ n$

Composing scans

```
class LScan f where
  lscan :: Monoid \ a \Rightarrow f \ a \rightarrow (f \times Id) \ a
pattern And 1 fa a = Prod fa (Id a)
instance LScan Empty where
  lscan fa = And1 fa \emptyset
instance LScan Id where
  lscan (Id \ a) = And1 (Id \ \emptyset) \ a
instance (LScan f, LScan q) \Rightarrow LScan (f \times q) where
  lscan (Prod fa qa) = And1 (Prod fa' qa') qx
     where
        And fa' fx = lscan fa
        And1 \ aa' \ ax = adiust \ fx \ (lscan \ aa)
```

Composing scans

```
instance (LScan g, LScan f, Zip g) \Rightarrow LScan (g \circ f) where

lscan (O gfa) = And1 (O (zipWith adjust tots' gfa')) tot

where

(gfa', tots) = unzipAnd1 (fmap lscan gfa)

And1 tots' tot = lscan tots
```

```
adjust :: (Monoid\ a, Functor\ t) \Rightarrow a \rightarrow t\ a \rightarrow t\ a
adjust\ a\ t = fmap\ (a \oplus)\ t
```

Scan — RPow Pair N5

Scan — LPow Pair N5

Scan — RPow (LVec N3) N3

Scan — RPow (LPow Pair N2) N3

Polynomial evaluation

$$a_0 \cdot x^0 + \dots + a_n \cdot x^n$$

 $evalPoly\ coeffs\ x = coeffs \cdot powers\ x$

 $powers = lproducts \circ pure$

 $lproducts = under F \ Product \ lscan$

Powers — RBin N4

Polynomial evaluation — RBin N4

Fast Fourier transform

DFT:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}nk}$$

FFT for $N = N_1 \cdot N_2$ (Gauss / Cooley-Tukey):

$$X_k = \sum_{n_1=0}^{N_1-1} \left[e^{-\frac{2\pi i}{N} n_1 k_2} \right] \left(\sum_{n_2=0}^{N_2-1} x_{N_1 n_2 + n_1} e^{-\frac{2\pi i}{N_2} n_2 k_2} \right) e^{-\frac{2\pi i}{N_1} n_1 k_1}$$

Fast Fourier transform

```
class FFT f where type FFO f :: * \to * fft :: RealFloat a \Rightarrow f (Complex a) \to FFO f (Complex a)
```

instance
$$FFT$$
 Id where type FFO $Id = Id$ $fft = id$ instance FFT $Pair$ where type FFO $Pair = Pair$ fft $(a : \# b) = (a + b) : \# (a - b)$

FFT — composition (Gauss / Cooley-Tukey)

```
instance... \Rightarrow FFT (q \circ f) where
   type FFO(g \circ f) = FFO f \circ FFO g
   \mathit{fft} = O \circ \mathit{traverse} \ \mathit{fft} \circ \mathit{twiddle} \circ \mathit{traverse} \ \mathit{fft} \circ \mathit{transpose} \circ \mathit{unO}
twiddle :: ... \Rightarrow q (f (Complex a)) \rightarrow q (f (Complex a))
twiddle = (zipWith \circ zipWith) (*) twiddles
   where
                   = size@(q \circ f)
      twiddles = fmap \ powers \ (powers \ \omega)
                   = cis (-2 * \pi / fromIntegral n)
      ω
      cis \ a = cos \ a :+ sin \ a
```

FFT — RBin N3 ("Decimation in time")

FFT — LBin N3 ("Decimation in frequency")

Bitonic sort

Manual vs automatic placement

ENIAC, 1946:

Manual vs automatic placement

- Programmers used to explicitly place computations in space.
- Mainstream programming still manually places in time.
- Sequential composition: crude placement tool.
- Threads: notationally clumsy & hard to manage correctly.
- If we relinquish control, automation can do better.