A more elegant specification for FRP

Conal Elliott

LambdaJam 2015

Conal Elliott A more elegant specification for FRP LambdaJam 2015 1/ 20

http://conal.net
http://conal.net

The story so far

Conal Elliott A more elegant specification for FRP LambdaJam 2015 2 /20

http://conal.net

FRP’s two fundamental properties

e Precise, simple denotation. (Elegant & rigorous.)

e Continuous time. (Natural & composable.)

FRP is not about:

Conal Elliott A more elegant specification for FRP LambdaJam 2015 3/ 20

http://conal.net

FRP’s two fundamental properties

e Precise, simple denotation. (Elegant & rigorous.)

e Continuous time. (Natural & composable.)

FRP is not about:
e graphs,
e updates and propagation,
@ streams,

e doing

Conal Elliott A more elegant specification for FRP LambdaJam 2015

3/20

http://conal.net

Semantics

Central abstract type: Behavior a — a “flow” of values.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 4 /20

http://conal.net

Semantics

Central abstract type: Behavior a — a “flow” of values.

Precise & simple semantics:
2 Behavior a — (T — a)

where T = R (reals).

Conal Elliott A more elegant specification for FRP LambdaJam 2015 4 /20

http://conal.net

Semantics

Central abstract type: Behavior a — a “flow” of values.

Precise & simple semantics:
2 Behavior a — (T — a)

where T = R (reals).

Much of API and its specification can follow from this one choice.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 4 /20

http://conal.net

Original formulation

Conal Elliott A more elegant specification for FRP LambdaJam 2015 5/ 20

http://conal.net

API

time :: Behavior T

lifty ;2 a — Behavior a

lift, :: (a — b) — Behavior a — Behavior b

lifts (@ = b — ¢) —> Behavior a — Behavior b — Behavior ¢

timeTrans :: Behavior a — Behavior T — Behavior a

integral 2 VS a = Behavior a — T — Behavior a

instance Num a = Num (Behavior a) where ...

Reactivity later.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 6 /20

http://conal.net

Semantics

W time =\ >t

w (liftg a) =\ —>a

w (lifty f xs) =\ —>f(paxst)

p(lifts fasys) =X —f(past) (pyst)
w (timeTrans xs tt) = Xt — p xs (u tt t)

instance Num a = Num (Behavior a) where
fromlInteger = lifty o fromlInteger
(+) = lifts (+)

Conal Elliott A more elegant specification for FRP LambdaJam 2015

7/ 20

http://conal.net

Semantics

W time =1d

w (liftg a) = const a

p (lifty f xs) =fopuas

p(lifte f as ys) = liftds f (pxs) (1 ys)
p (timeTrans xs tt) = p xs o p tt

instance Num a = Num (Behavior a) where
fromlInteger = lifty o fromlInteger
(+) = lifts (+)

Conal Elliott A more elegant specification for FRP LambdaJam 2015

8 /20

http://conal.net

Events

Secondary type:

p:: Event a — [(T,a)] -- non-decreasing times
never :: Bvent a

once 2T — a— Event a

(.l) :: Bvent a — Event a — FEvent a

(=) ::Event a— (a — b) — Event b

predicate :: Behavior Bool — Event ()

snapshot :: Event a — Behavior b — FEvent (a, b)

FEzercise: define semantics of these operations.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 9/ 20

http://conal.net

A more elegant specification

Conal Elliott A more elegant specification for FRP LambdaJam 2015 10 / 20

http://conal.net

API

Replace several operations with standard abstractions:

instance Functor Behavior where ...
instance Applicative Behavior where ...

instance Monoid a = Monoid (Behavior a) where ...

instance Functor Event where ...

instance Monoid a = Monoid (Event a) where ...

Why?

Conal Elliott A more elegant specification for FRP LambdaJam 2015 11 / 20

http://conal.net

API

Replace several operations with standard abstractions:

instance Functor Behavior where ...
instance Applicative Behavior where ...

instance Monoid a = Monoid (Behavior a) where ...

instance Functor Event where ...

instance Monoid a = Monoid (Event a) where ...
Why?

@ Less learning, more leverage.

@ Specifications and laws for free.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 11 / 20

http://conal.net

Semantic instances

instance Functor ((—) z) where ...

instance Applicative ((—) z) where ...

instance Monoid a = Monoid (z — a) where ...

instance Num a = Num (z — a) where ...

The Behavior instances follow in “precise analogy” to denotation.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 12 / 20

http://conal.net

Homomorphisms

A “homomorphism” h is a function that preserves (distributes over) an

algebraic structure. For instance, for Monoid:

h e =c
h (asobs)=h asoh bs

Conal Elliott A more elegant specification for FRP LambdaJam 2015 13 / 20

http://conal.net

Homomorphisms

A “homomorphism” h is a function that preserves (distributes over) an

algebraic structure. For instance, for Monoid:

h e =c
h (asobs)=h asoh bs

Some monoid homomorphisms:

length’ :: [a] — Sum Int
length’ = Sum o length

log" :: Product R — Sum R
log’ = Sum o log o getProduct

Conal Elliott A more elegant specification for FRP LambdaJam 2015

13 /20

http://conal.net

More homomorphism properties

Functor:
h (fmap f xs) = fmap f (h xs)
Applicative:

h (pure a) = pure a
h (fs <& xs) = h fs <> h s

Monad:

h(m>=k)=hm>=hok

Conal Elliott A more elegant specification for FRP LambdaJam 2015

14 / 20

http://conal.net

Specification by semantic homomorphism

Specification: p as homomorphism. For instance,
u (fmap f as) = fmap f (1 as)

p (pure a) = pure a

p(fs <> xs) = p fs <> pas

Conal Elliott A more elegant specification for FRP LambdaJam 2015

15 / 20

http://conal.net

Semantic instances

instance Monoid a = Monoid (z — a) where
€ =Xz —>¢€

fog=Az—>fzoqgz

instance Functor ((—) z) where

fmap g f=gof

instance Applicative ((—) z) where
pure a = Az —a

ff <= fz =Xz — (ff 2) (fz 2)

Conal Elliott A more elegant specification for FRP LambdaJam 2015

16 / 20

http://conal.net

Semantic homomorphisms

Put the pieces together:

w (pure a) w (fs <> xs)
= pure a = fs <> p s
=\ —>a =M — (ufst)(past)

Likewise for Functor, Monoid, Num, etc.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 17 / 20

http://conal.net

Semantic homomorphisms

Put the pieces together:

w (pure a) p (fs <> xs)
= pure a Eufs <& 0 TS
=X —>a =X — (ufst)(uast)

Likewise for Functor, Monoid, Num, etc.

Notes:

e Corresponds exactly to the original FRP denotation.
o Follows inevitably from semantic homomorphism principle.

e Laws hold for free (already paid for).

Conal Elliott A more elegant specification for FRP LambdaJam 2015 17 / 20

http://conal.net

Laws for free

pe =¢
plaob)=paoubd

where equality is semantic.

aoe =a
gob =0
ao(boc)y=(avb)oc

Conal Elliott A more elegant specification for FRP LambdaJam 2015

18 / 20

http://conal.net

Laws for free

aoe =a

€ =¢
a = eob =)

pwlaob)=paopb

ao(boc)=(acob)oc

where equality is semantic. Proofs:

p(aoe) p(eob) pao(boc)
=paope =peoubd =pao(pbopc)
=pace =copb =(paopb)opc
=pua =ub =p((aob)oc)

Works for other classes as well.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 18 / 20

http://conal.net

Events

newtype Event a = Event (Behavior [a]) -- discretely non-empty

deriving (Monoid, Functor)

Conal Elliott A more elegant specification for FRP LambdaJam 2015 19 / 20

http://conal.net

Events

newtype Event a = FEvent (Behavior [a]) -- discretely non-empty

deriving (Monoid, Functor)
Derived instances:

instance Monoid a = Monoid (Event a) where
e = Event (pure ¢)
Event u o Event v = Event (liftAs (¢) u v)

instance Functor Event where
fmap f (Event b) = Event (fmap (fmap f) b)

Conal Elliott A more elegant specification for FRP LambdaJam 2015 19 / 20

http://conal.net

Events

newtype Event a = FEvent (Behavior [a]) -- discretely non-empty

deriving (Monoid, Functor)
Derived instances:

instance Monoid a = Monoid (Event a) where
e = Event (pure ¢)
Event u o Event v = Event (liftAs (¢) u v)

instance Functor Event where
fmap f (Event b) = Event (fmap (fmap f) b)

Alternatively,

type Event = Behavior o []

Conal Elliott A more elegant specification for FRP LambdaJam 2015

19 / 20

http://conal.net

Conclusion

e Two fundamental properties:
o Precise, simple denotation. (Elegant & rigorous.)

o Continuous time. (Natural & composable.)

Warning: most recent “FRP” systems lack both.

Conal Elliott A more elegant specification for FRP LambdaJam 2015

20 / 20

http://conal.net

Conclusion

e Two fundamental properties:
o Precise, simple denotation. (Elegant & rigorous.)

o Continuous time. (Natural & composable.)

Warning: most recent “FRP” systems lack both.

@ Semantic homomorphisms:

e Mine semantic model for API.

o Inevitable API semantics (minimize invention).
o Laws hold for free (already paid for).

e No abstraction leaks.

e Matches original FRP semantics.

o Generally useful principle for library design.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 20 / 20

http://conal.net

