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The story so far
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FRP’s two fundamental properties

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

FRP is not about:

graphs,

updates and propagation,

streams,

doing
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Semantics

Central abstract type: Behavior a — a “flow” of values.

Precise & simple semantics:

µ :: Behavior a Ñ pT Ñ aq

where T “ R (reals).

Much of API and its specification can follow from this one choice.
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Original formulation
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API

time :: Behavior T

lift0 :: a Ñ Behavior a

lift1 :: pa Ñ bq Ñ Behavior a Ñ Behavior b

lift2 :: pa Ñ b Ñ cq Ñ Behavior a Ñ Behavior b Ñ Behavior c

timeTrans :: Behavior a Ñ Behavior T Ñ Behavior a

integral :: VS a ñ Behavior a Ñ T Ñ Behavior a

...

instance Num a ñ Num pBehavior aq where ...

...

Reactivity later.
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Semantics

µ time “ λt Ñ t

µ plift0 aq “ λt Ñ a

µ plift1 f xsq “ λt Ñ f pµ xs tq

µ plift2 f xs ysq “ λt Ñ f pµ xs tq pµ ys tq

µ ptimeTrans xs ttq “ λt Ñ µ xs pµ tt tq

instance Num a ñ Num pBehavior aq where

fromInteger “ lift0 ˝ fromInteger

p`q “ lift2 p`q

...
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Semantics

µ time “ id

µ plift0 aq “ const a

µ plift1 f xsq “ f ˝ µ xs

µ plift2 f xs ysq “ liftA2 f pµ xsq pµ ysq

µ ptimeTrans xs ttq “ µ xs ˝ µ tt
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fromInteger “ lift0 ˝ fromInteger
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Events

Secondary type:

µ :: Event a Ñ rpT , aqs -- non-decreasing times

never :: Event a

once :: T Ñ a Ñ Event a

p.|.q :: Event a Ñ Event a Ñ Event a

pùñq :: Event a Ñ pa Ñ bq Ñ Event b

predicate :: Behavior Bool Ñ Event pq

snapshot :: Event a Ñ Behavior b Ñ Event pa, bq

Exercise: define semantics of these operations.
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A more elegant specification
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API

Replace several operations with standard abstractions:

instance Functor Behavior where ...

instance Applicative Behavior where ...

instance Monoid a ñ Monoid pBehavior aq where ...

instance Functor Event where ...

instance Monoid a ñ Monoid pEvent aq where ...

Why?

Less learning, more leverage.

Specifications and laws for free.
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Semantic instances

instance Functor ppÑq z q where ...

instance Applicative ppÑq z q where ...

instance Monoid a ñ Monoid pz Ñ aq where ...

instance Num a ñ Num pz Ñ aq where ...

...

The Behavior instances follow in “precise analogy” to denotation.
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Homomorphisms

A “homomorphism” h is a function that preserves (distributes over) an

algebraic structure. For instance, for Monoid:

h ε ” ε

h pas ˛ bsq ” h as ˛ h bs

Some monoid homomorphisms:

length 1 :: ra s Ñ Sum Int

length 1 “ Sum ˝ length

log 1 :: Product RÑ Sum R
log 1 “ Sum ˝ log ˝ getProduct
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More homomorphism properties

Functor :

h pfmap f xsq ” fmap f ph xsq

Applicative:

h ppure aq ” pure a

h pfs ă̊ą xsq ” h fs ă̊ą h xs

Monad :

h pm ąą“ kq ” h m ąą“ h ˝ k
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Specification by semantic homomorphism

Specification: µ as homomorphism. For instance,

µ pfmap f asq ” fmap f pµ asq

µ ppure aq ” pure a

µ pfs ă̊ą xsq ” µ fs ă̊ą µ xs
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Semantic instances

instance Monoid a ñ Monoid pz Ñ aq where

ε “ λz Ñ ε

f ˛ g “ λz Ñ f z ˛ g z

instance Functor ppÑq z q where

fmap g f “ g ˝ f

instance Applicative ppÑq z q where

pure a “ λz Ñ a

ff ă̊ą fx “ λz Ñ pff z q pfx z q
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Semantic homomorphisms

Put the pieces together:

µ ppure aq

” pure a

” λt Ñ a

µ pfs ă̊ą xsq

” µ fs ă̊ą µ xs

” λt Ñ pµ fs tq pµ xs tq

Likewise for Functor , Monoid , Num, etc.

Notes:

Corresponds exactly to the original FRP denotation.

Follows inevitably from semantic homomorphism principle.

Laws hold for free (already paid for).
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Laws for free

µ ε ” ε

µ pa ˛ bq ” µ a ˛ µ b
ñ

a ˛ ε ” a

ε ˛ b ” b

a ˛ pb ˛ cq ” pa ˛ bq ˛ c

where equality is semantic.

Proofs:

µ pa ˛ εq

” µ a ˛ µ ε

” µ a ˛ ε

” µ a

µ pε ˛ bq

” µ ε ˛ µ b

” ε ˛ µ b

” µ b

µ pa ˛ pb ˛ cqq

” µ a ˛ pµ b ˛ µ cq

” pµ a ˛ µ bq ˛ µ c

” µ ppa ˛ bq ˛ cq

Works for other classes as well.
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Events

newtype Event a “ Event pBehavior ra sq -- discretely non-empty

deriving pMonoid ,Functorq

Derived instances:

instance Monoid a ñ Monoid pEvent aq where

ε “ Event ppure εq

Event u ˛ Event v “ Event pliftA2 p˛q u vq

instance Functor Event where

fmap f pEvent bq “ Event pfmap pfmap f q bq

Alternatively,

type Event “ Behavior ˝ r s
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Conclusion

Two fundamental properties:

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

Warning: most recent “FRP” systems lack both.

Semantic homomorphisms:

Mine semantic model for API.

Inevitable API semantics (minimize invention).

Laws hold for free (already paid for).

No abstraction leaks.

Matches original FRP semantics.

Generally useful principle for library design.
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