
A more elegant specification for FRP

Conal Elliott

LambdaJam 2015

Conal Elliott A more elegant specification for FRP LambdaJam 2015 1 / 20

http://conal.net
http://conal.net


The story so far

Conal Elliott A more elegant specification for FRP LambdaJam 2015 2 / 20

http://conal.net


FRP’s two fundamental properties

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

FRP is not about:

graphs,

updates and propagation,

streams,

doing

Conal Elliott A more elegant specification for FRP LambdaJam 2015 3 / 20

http://conal.net


FRP’s two fundamental properties

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

FRP is not about:

graphs,

updates and propagation,

streams,

doing

Conal Elliott A more elegant specification for FRP LambdaJam 2015 3 / 20

http://conal.net


Semantics

Central abstract type: Behavior a — a “flow” of values.

Precise & simple semantics:

µ :: Behavior a Ñ pT Ñ aq

where T “ R (reals).

Much of API and its specification can follow from this one choice.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 4 / 20

http://conal.net


Semantics

Central abstract type: Behavior a — a “flow” of values.

Precise & simple semantics:

µ :: Behavior a Ñ pT Ñ aq

where T “ R (reals).

Much of API and its specification can follow from this one choice.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 4 / 20

http://conal.net


Semantics

Central abstract type: Behavior a — a “flow” of values.

Precise & simple semantics:

µ :: Behavior a Ñ pT Ñ aq

where T “ R (reals).

Much of API and its specification can follow from this one choice.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 4 / 20

http://conal.net


Original formulation

Conal Elliott A more elegant specification for FRP LambdaJam 2015 5 / 20

http://conal.net


API

time :: Behavior T

lift0 :: a Ñ Behavior a

lift1 :: pa Ñ bq Ñ Behavior a Ñ Behavior b

lift2 :: pa Ñ b Ñ cq Ñ Behavior a Ñ Behavior b Ñ Behavior c

timeTrans :: Behavior a Ñ Behavior T Ñ Behavior a

integral :: VS a ñ Behavior a Ñ T Ñ Behavior a

...

instance Num a ñ Num pBehavior aq where ...

...

Reactivity later.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 6 / 20

http://conal.net


Semantics

µ time “ λt Ñ t

µ plift0 aq “ λt Ñ a

µ plift1 f xsq “ λt Ñ f pµ xs tq

µ plift2 f xs ysq “ λt Ñ f pµ xs tq pµ ys tq

µ ptimeTrans xs ttq “ λt Ñ µ xs pµ tt tq

instance Num a ñ Num pBehavior aq where

fromInteger “ lift0 ˝ fromInteger

p`q “ lift2 p`q

...

Conal Elliott A more elegant specification for FRP LambdaJam 2015 7 / 20

http://conal.net


Semantics

µ time “ id

µ plift0 aq “ const a

µ plift1 f xsq “ f ˝ µ xs

µ plift2 f xs ysq “ liftA2 f pµ xsq pµ ysq

µ ptimeTrans xs ttq “ µ xs ˝ µ tt

instance Num a ñ Num pBehavior aq where

fromInteger “ lift0 ˝ fromInteger

p`q “ lift2 p`q

...

Conal Elliott A more elegant specification for FRP LambdaJam 2015 8 / 20

http://conal.net


Events

Secondary type:

µ :: Event a Ñ rpT , aqs -- non-decreasing times

never :: Event a

once :: T Ñ a Ñ Event a

p.|.q :: Event a Ñ Event a Ñ Event a

pùñq :: Event a Ñ pa Ñ bq Ñ Event b

predicate :: Behavior Bool Ñ Event pq

snapshot :: Event a Ñ Behavior b Ñ Event pa, bq

Exercise: define semantics of these operations.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 9 / 20

http://conal.net


A more elegant specification

Conal Elliott A more elegant specification for FRP LambdaJam 2015 10 / 20

http://conal.net


API

Replace several operations with standard abstractions:

instance Functor Behavior where ...

instance Applicative Behavior where ...

instance Monoid a ñ Monoid pBehavior aq where ...

instance Functor Event where ...

instance Monoid a ñ Monoid pEvent aq where ...

Why?

Less learning, more leverage.

Specifications and laws for free.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 11 / 20

http://conal.net


API

Replace several operations with standard abstractions:

instance Functor Behavior where ...

instance Applicative Behavior where ...

instance Monoid a ñ Monoid pBehavior aq where ...

instance Functor Event where ...

instance Monoid a ñ Monoid pEvent aq where ...

Why?

Less learning, more leverage.

Specifications and laws for free.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 11 / 20

http://conal.net


Semantic instances

instance Functor ppÑq z q where ...

instance Applicative ppÑq z q where ...

instance Monoid a ñ Monoid pz Ñ aq where ...

instance Num a ñ Num pz Ñ aq where ...

...

The Behavior instances follow in “precise analogy” to denotation.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 12 / 20

http://conal.net


Homomorphisms

A “homomorphism” h is a function that preserves (distributes over) an

algebraic structure. For instance, for Monoid:

h ε ” ε

h pas ˛ bsq ” h as ˛ h bs

Some monoid homomorphisms:

length 1 :: ra s Ñ Sum Int

length 1 “ Sum ˝ length

log 1 :: Product RÑ Sum R
log 1 “ Sum ˝ log ˝ getProduct

Conal Elliott A more elegant specification for FRP LambdaJam 2015 13 / 20

http://conal.net


Homomorphisms

A “homomorphism” h is a function that preserves (distributes over) an

algebraic structure. For instance, for Monoid:

h ε ” ε

h pas ˛ bsq ” h as ˛ h bs

Some monoid homomorphisms:

length 1 :: ra s Ñ Sum Int

length 1 “ Sum ˝ length

log 1 :: Product RÑ Sum R
log 1 “ Sum ˝ log ˝ getProduct

Conal Elliott A more elegant specification for FRP LambdaJam 2015 13 / 20

http://conal.net


More homomorphism properties

Functor :

h pfmap f xsq ” fmap f ph xsq

Applicative:

h ppure aq ” pure a

h pfs ă̊ą xsq ” h fs ă̊ą h xs

Monad :

h pm ąą“ kq ” h m ąą“ h ˝ k

Conal Elliott A more elegant specification for FRP LambdaJam 2015 14 / 20

http://conal.net


Specification by semantic homomorphism

Specification: µ as homomorphism. For instance,

µ pfmap f asq ” fmap f pµ asq

µ ppure aq ” pure a

µ pfs ă̊ą xsq ” µ fs ă̊ą µ xs

Conal Elliott A more elegant specification for FRP LambdaJam 2015 15 / 20

http://conal.net


Semantic instances

instance Monoid a ñ Monoid pz Ñ aq where

ε “ λz Ñ ε

f ˛ g “ λz Ñ f z ˛ g z

instance Functor ppÑq z q where

fmap g f “ g ˝ f

instance Applicative ppÑq z q where

pure a “ λz Ñ a

ff ă̊ą fx “ λz Ñ pff z q pfx z q

Conal Elliott A more elegant specification for FRP LambdaJam 2015 16 / 20

http://conal.net


Semantic homomorphisms

Put the pieces together:

µ ppure aq

” pure a

” λt Ñ a

µ pfs ă̊ą xsq

” µ fs ă̊ą µ xs

” λt Ñ pµ fs tq pµ xs tq

Likewise for Functor , Monoid , Num, etc.

Notes:

Corresponds exactly to the original FRP denotation.

Follows inevitably from semantic homomorphism principle.

Laws hold for free (already paid for).

Conal Elliott A more elegant specification for FRP LambdaJam 2015 17 / 20

http://conal.net


Semantic homomorphisms

Put the pieces together:

µ ppure aq

” pure a

” λt Ñ a

µ pfs ă̊ą xsq

” µ fs ă̊ą µ xs

” λt Ñ pµ fs tq pµ xs tq

Likewise for Functor , Monoid , Num, etc.

Notes:

Corresponds exactly to the original FRP denotation.

Follows inevitably from semantic homomorphism principle.

Laws hold for free (already paid for).

Conal Elliott A more elegant specification for FRP LambdaJam 2015 17 / 20

http://conal.net


Laws for free

µ ε ” ε

µ pa ˛ bq ” µ a ˛ µ b
ñ

a ˛ ε ” a

ε ˛ b ” b

a ˛ pb ˛ cq ” pa ˛ bq ˛ c

where equality is semantic.

Proofs:

µ pa ˛ εq

” µ a ˛ µ ε

” µ a ˛ ε

” µ a

µ pε ˛ bq

” µ ε ˛ µ b

” ε ˛ µ b

” µ b

µ pa ˛ pb ˛ cqq

” µ a ˛ pµ b ˛ µ cq

” pµ a ˛ µ bq ˛ µ c

” µ ppa ˛ bq ˛ cq

Works for other classes as well.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 18 / 20

http://conal.net


Laws for free

µ ε ” ε

µ pa ˛ bq ” µ a ˛ µ b
ñ

a ˛ ε ” a

ε ˛ b ” b

a ˛ pb ˛ cq ” pa ˛ bq ˛ c

where equality is semantic. Proofs:

µ pa ˛ εq

” µ a ˛ µ ε

” µ a ˛ ε

” µ a

µ pε ˛ bq

” µ ε ˛ µ b

” ε ˛ µ b

” µ b

µ pa ˛ pb ˛ cqq

” µ a ˛ pµ b ˛ µ cq

” pµ a ˛ µ bq ˛ µ c

” µ ppa ˛ bq ˛ cq

Works for other classes as well.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 18 / 20

http://conal.net


Events

newtype Event a “ Event pBehavior ra sq -- discretely non-empty

deriving pMonoid ,Functorq

Derived instances:

instance Monoid a ñ Monoid pEvent aq where

ε “ Event ppure εq

Event u ˛ Event v “ Event pliftA2 p˛q u vq

instance Functor Event where

fmap f pEvent bq “ Event pfmap pfmap f q bq

Alternatively,

type Event “ Behavior ˝ r s

Conal Elliott A more elegant specification for FRP LambdaJam 2015 19 / 20

http://conal.net


Events

newtype Event a “ Event pBehavior ra sq -- discretely non-empty

deriving pMonoid ,Functorq

Derived instances:

instance Monoid a ñ Monoid pEvent aq where

ε “ Event ppure εq

Event u ˛ Event v “ Event pliftA2 p˛q u vq

instance Functor Event where

fmap f pEvent bq “ Event pfmap pfmap f q bq

Alternatively,

type Event “ Behavior ˝ r s

Conal Elliott A more elegant specification for FRP LambdaJam 2015 19 / 20

http://conal.net


Events

newtype Event a “ Event pBehavior ra sq -- discretely non-empty

deriving pMonoid ,Functorq

Derived instances:

instance Monoid a ñ Monoid pEvent aq where

ε “ Event ppure εq

Event u ˛ Event v “ Event pliftA2 p˛q u vq

instance Functor Event where

fmap f pEvent bq “ Event pfmap pfmap f q bq

Alternatively,

type Event “ Behavior ˝ r s

Conal Elliott A more elegant specification for FRP LambdaJam 2015 19 / 20

http://conal.net


Conclusion

Two fundamental properties:

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

Warning: most recent “FRP” systems lack both.

Semantic homomorphisms:

Mine semantic model for API.

Inevitable API semantics (minimize invention).

Laws hold for free (already paid for).

No abstraction leaks.

Matches original FRP semantics.

Generally useful principle for library design.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 20 / 20

http://conal.net


Conclusion

Two fundamental properties:

Precise, simple denotation. (Elegant & rigorous.)

Continuous time. (Natural & composable.)

Warning: most recent “FRP” systems lack both.

Semantic homomorphisms:

Mine semantic model for API.

Inevitable API semantics (minimize invention).

Laws hold for free (already paid for).

No abstraction leaks.

Matches original FRP semantics.

Generally useful principle for library design.

Conal Elliott A more elegant specification for FRP LambdaJam 2015 20 / 20

http://conal.net

