

Tangible functional programming:

a modern marriage of

usability and composability

Conal Elliott

November, 2007

Software applications and libraries

have different intentions and strengths.

user-friendly

usable

concrete

visual

programmer-friendly

composable

abstract

syntactic

This split has drawbacks.

Applications limit access to functionality.

Applications are usually not composable.

Libraries aren't user-friendly,

 and thus limit access.

Medium influences & selects message.

So what’s the dream?

Unlimited access to functionality,

usably and

composably

Where have we seen

human interface and composition?

Where have we seen

human interface and composition?

Hint:

who | sort | lpr

“This is the Unix philosophy:

Write programs that do one thing
and do it well.

Write programs to work together.

Write programs to handle text streams,
because that is a universal interface.”

Doug McIlroy (inventor of Unix pipes)

“This is the Unix philosophy:

Write programs that do one thing
and do it well.

Write programs to work together.

Write programs to handle text streams,
because that is a universal interface.”

Doug McIlroy (inventor of Unix pipes)

If composability means text stream filters,

where’s my GUI?

“Despite popular mythology, this practice is
favored not because Unix programmers hate
graphical user interfaces. It's because if you don't
write programs that accept and emit simple text
streams, it’s much more difficult to hook the
programs together.”

Eric Steven Raymond
The Art of Unix Programming

So let’s make it easy.

How can GUI apps compose?

Translate the pipe idea:

Feed output of one piece to input of next.

Hide the intermediate data.

Add: loosely couple interface & content.

We’ll make some other improvements

along the way.

Graphics

Data types: convenience & safety

Multiple arguments (diff)

Scalability/consistency

(cf. stdio, argv, sockets, threads, C, sh)

Programming is a way to express

interfaces and functionality.

Code is a command-line UI.

Handy & inessential

Necessarily indirect

Authoring tools are

functional programming environments.

In disguise

Full of interpreted graphs

Lacks parameterization, type system

Scripting bolted on

Authoring tools are

functional programming environments.

“Any sufficiently complicated C or Fortran

program contains an ad hoc, informally-

specified, bug-ridden, slow implementation

of half of Common Lisp.”

Greenspun's Tenth Rule

Functional programming is

a simple and general framework.

Value-oriented programming

Expressions only – no statements

I’ll address core types of values: atomic
(numbers, images, ...), pairs, functions.

Where are we going?

Usability and composability

Eros user experience

Mechanics

Key idea #1 (of 4):
Use GUIs to visualize typed values.

GUI structure follows type.

GUI content presents value.

Functions visualize as interactive GUIs.

“Tangible values”

Base type values are widgets.

Pairs lay out horizontally.

“,” in (α , β) and (a,b)

Functions lay out vertically.

“→”
in

 α → β
and

λ a → b

Functions may be

curried or uncurried.

Functions visualize

as interactive GUIs.

Key idea #2:
Users make new TVs by fusion.

Select compatible input & output,

which disappear.

Everything else remains,

fused into a single new TV.

 R → Region R Region

TV fusion subsumes

function application.

 R → Region R → R R → Region

TV fusion subsumes

function composition.

Fusion may reach into nested inputs.

 R → (R,R)→Bool R → R R → R → R→Bool

Let's take a look.

demo

Where are we?

Usability and composability

Eros user experience

Mechanics

Key idea #3:
Keep visualization & value

combined and separable.

type TV a = (Out a, a)

Operate on both parts in tandem

Combined for convenience

Separable for composability

Visualizations assemble

as types and values do.

type Out a
put :: Put a -> Out a
opair :: Out a -> Out b -> Out (a, b)
olambda :: In a -> Out b -> Out (a->b)
type In a
get :: Get a -> In a
ipair :: In a -> In b -> In (a,b)

Tangible values are composable MVC.

type Model a = a
type View a
type Ctrl a
type MVC a = (View a, Model a)
put :: Put a -> View a
opair :: View a -> View b -> View (a, b)
olambda :: Ctrl a -> View b -> View (a->b)
get :: Get a -> Ctrl a
ipair :: Ctrl a -> Ctrl b -> Ctrl (a, b)

Key idea #4:
Translate gestural fusion to

combinator sequences.

“Deep application”. Reaches buried
arguments,
functions, and
inputs.

Define for values & extend to TVs.

We already have the tools to

aim functions at buried arguments.

first :: (a -> a') -> ((a, b) -> (a',b))
second :: (b -> b') -> ((a, b) -> (a ,b'))
result :: (b -> b') -> ((a->b) -> (a->b'))

first f = \ (a, b) -> (f a,b)
second g = \ (a, b) -> (a ,g b)
result g = \ f -> g . f

Compositions describe type paths

to edit deeply buried arguments.

sf :: (b->b') -> (a,(b ,c))
 -> (a,(b',c))
sf = second.first

frsrf :: (c->c') -> (a->(f,b->(c ,g)),e)
 -> (a->(f,b->(c',g)),e)
frsrf = first.result.second.result.first

A similar game

reaches buried functions.

funFirst ::
 (d -> (c->a)) -> ((d,b) -> (c->(a,b)))

Promotes a function extractor

Similarly, funSecond, funResult
Form type paths, as before.

The final combinators reach

buried inputs.

These tools generalize.

first and second work on arrows.
Add DeepArrow subclass & instances for
visualizations & pairings,
types, code, etc.

We can have usability and composability.

GUIs visualize typed values (meanings).

Users make new TVs by fusion.

No “universal interface” necessary.

GUI & content combined and separable.

Transform in tandem via deep application.

Next steps

Run-time, optimized code generation

GPU compiler back-end

Map ideas to non-functional languages

“GUIs are types” as GUI design guide

Tangible polymorphism

Extra slides

Doug McIlroy – fast-forward to 2007

“For lovers of things small and beautiful,
http://www.cs.dartmouth.edu/~doug/powser.html

boils down basic operations on power series with numeric
coefficients to the bare minimum--each is a one-liner.
Included are overloaded arithmetic operators, integration,
differentiation, functional composition, functional inverse and
coercion from scalars. --A telling demonstration of the power
of lazy evaluation and of Haskell's attunement to math.”

http://www.cs.dartmouth.edu/~doug/powser.html

What Doug knew

Three equivalent techniques:

co-routines

pipes

lazy evaluation

