16th September 2013, 02:52 pm
My previous few posts have been about cartesian closed categories (CCCs). In From Haskell to hardware via cartesian closed categories, I gave a brief motivation: typed lambda expressions and the CCC vocabulary are equally expressive, but have different strengths:
- In Haskell, the CCC vocabulary is overloadable and so can be interpreted more flexibly than lambda and application.
- Lambda expressions are friendlier for human programmers to write and read.
By automatically translating lambda expressions to CCC form (as in Overloading lambda), I hope to get the best of both options.
An interpretation I’m especially keen on—and the one that inspired this series of posts—is circuits, as described in this post.
Continue reading ‘Circuits as a bicartesian closed category’ »
My previous few posts have been about cartesian closed categories (CCCs). In From Haskell to hardware via cartesian closed categories, I gave a brief motivation: typed lambda expressions and the...
13th September 2013, 05:27 pm
In the post Overloading lambda, I gave a translation from a typed lambda calculus into the vocabulary of cartesian closed categories (CCCs). This simple translation leads to unnecessarily complex expressions. For instance, the simple lambda term, “λ ds → (λ (a,b) → (b,a)) ds
”, translated to a rather complicated CCC term:
apply ∘ (curry (apply ∘ (apply ∘ (const (,) △ (id ∘ exr) ∘ exr) △ (id ∘ exl) ∘ exr)) △ id)
(Recall from the previous post that (∘)
binds more tightly than (△)
and (▽)
.)
However, we can do much better, translating to
exr △ exl
which says to pair the right and left halves of the argument pair, i.e., swap.
This post applies some equational properties to greatly simplify/optimize the result of translation to CCC form, including example above. First I’ll show the equational reasoning and then how it’s automated in the lambda-ccc library.
Continue reading ‘Optimizing CCCs’ »
In the post Overloading lambda, I gave a translation from a typed lambda calculus into the vocabulary of cartesian closed categories (CCCs). This simple translation leads to unnecessarily complex expressions....
13th September 2013, 08:31 am
Haskell’s type class facility is a powerful abstraction mechanism. Using it, we can overload multiple interpretations onto a single vocabulary, with each interpretation corresponding to a different type. The class laws constrain these interpretations and allow reasoning that is valid over all (law-abiding) instances—even ones not yet defined.
As Haskell is a higher-order functional language in the heritage of Church’s (typed) lambda calculus, it also supports “lambda abstraction”.
Sadly, however, these two forms of abstraction don’t go together. When we use the vocabulary of lambda abstraction (“λ x → ⋯
”) and application (“u v
”), our expressions can only be interpreted as one type (constructor), namely functions. (Note that I am not talking about parametric polymorphism, which is available with both lambda abstraction and type-class-style overloading.) Is it possible to overload lambda and application using type classes, or perhaps in the same spirit? The answer is yes, and there are some wonderful benefits of doing so. I’ll explain the how in this post and hint at the why, to be elaborated in futures posts.
Continue reading ‘Overloading lambda’ »
Haskell’s type class facility is a powerful abstraction mechanism. Using it, we can overload multiple interpretations onto a single vocabulary, with each interpretation corresponding to a different type. The class...
12th September 2013, 03:20 pm
Since fall of last year, I’ve been working at Tabula, a Silicon Valley start-up developing an innovative programmable hardware architecture called “Spacetime”, somewhat similar to an FPGA, but much more flexible and efficient. I met the founder, Steve Teig, at a Bay Area Haskell Hackathon in February of 2011. He described his Spacetime architecture, which is based on the geometry of the same name, developed by Hermann Minkowski to elegantly capture Einstein’s theory of special relativity. Within the first 30 seconds or so of hearing what Steve was up to, I knew I wanted to help.
The vision Steve shared with me included not only a better alternative for hardware designers (programmed in hardware languages like Verilog and VHDL), but also a platform for massively parallel execution of software written in a purely functional language. Lately, I’ve been working mainly on this latter aspect, and specifically on the problem of how to compile Haskell. Our plan is to develop the Haskell compiler openly and encourage collaboration. If anything you see in this blog series interests you, and especially if have advice or you’d like to collaborate on the project, please let me know.
In my next series of blog posts, I’ll describe some of the technical ideas I’ve been working with for compiling Haskell for massively parallel execution. For now, I want to introduce a central idea I’m using to approach the problem.
Continue reading ‘From Haskell to hardware via cartesian closed categories’ »
Since fall of last year, I’ve been working at Tabula, a Silicon Valley start-up developing an innovative programmable hardware architecture called “Spacetime”, somewhat similar to an FPGA, but much more...